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Abstract: This study compares nonlinear model predictive controls, using setpoint tracking
objective function (NMPC), and economic objective function (E-NMPC), with a hierarchical
control structure of PI controllers applied to the water treatment of a Recirculating Aquaculture
System (RAS), which consists of a tank, a biofilter, a stripper and an oxygen cone. Two of the
three control structures used in this work consist of an optimization layer on top of proportional
integral (PI) control loops or NMPC. The optimization layer reduces the degrees of freedom with
an economic objective function by deactivating some of the manipulated variables when choosing
between buffer and base addition and location of addition to the system. The third structure
consists of a single layer with E-NMPC. The PI control structure is easy to design once we
know the relationship between the variables. The PI controllers’ performance were satisfactory,
but a small back-off would be needed, if the constraints would not be soft constraints, or use of
buffer with base would be necessary to improve speed and avoid constraint violation, as some
components took more than 6 days to reach the optimal concentration. The NMPC and the
E-NMPC performed better: the NMPC was much faster on conducting the controlled variables
to optimal conditions, despite not providing optimal economic cost during the trajectory; and
the E-NMPC provided a mixture of smooth trajectory and optimal cost.

Keywords: Process control applications, Control of constrained systems, Dynamics and
control, Hierarchical multilevel and multilayer control, Optimal operation of water resources
systems, Model predictive control of water resources systems

1. INTRODUCTION

Aquaculture systems for commercial purposes consists of
rearing one or more species of aquatic organisms inshore
or offshore. In inshore or offshore closed environments,
the focus is usually in rearing only one species, as the
conditions are controlled and external contact is avoided.
The effluent is significantly large in flow-through systems,
which are also called raceways, due to discharge of the en-
tire outflow of the tank (Ridler and Hishamunda, 2001). A
modification to raceways are recirculating of treated water,
and these processes are called Recirculating Aquaculture
Systems (RAS).

Automated RAS, also called as Smart RAS or Intelligent
Aquaculture, when artificial intelligence is used, consists of
implementing control and optimization solutions to avoid
risks and reduced production with as little as possible of
human interaction with the system. This is a challenge due
to the complexity of the system, but it is less difficult when
the system is divided into subsystems: rearing unit, solid
and water treatments.

This study is focused on the water treatment part of
RAS of Atlantic salmon (Salmo salar), which consists of

tanks, a biofilter, a stripper, and an oxygen cone. The
system is complex, but it was simplified in previous work
(Dos Santos et al., 2022), where the model was developed
for control and optimization purposes, the steady state and
dynamic behaviors were analyzed, and simple proportional
integral control of oxygen and nitrate were implemented.
For optimal growth and welfare of the fish, the conditions
of the environment are assumed to have a small range,
so other controllers are required to keep them within this
region.

Other authors applied control and optimization in other
RAS configurations, and it includes Wright (2011),
Farghally et al. (2014), and Summerfelt et al. (2015). In
order to the control and optimization to be successful, one
needs to gather information of all the toxic compounds, im-
portant water conditions, and all the safety bounds. When
the system operates in optimal conditions, one is able to
distinguish which constraints affect the optimization di-
rectly or indirectly, as they are active or not. The inactive
constraints are important to the dynamic optimization
to avoid abrupt changes and going too far from optimal
steady-state conditions, and the active ones dictate these
conditions.



The main contribution of this work is the comparison
of nonlinear model predictive control structures with a
systematic procedure for control design applied to a water
treatment system of recirculating aquaculture systems of
Atlantic salmon.

2. PROCESS DESCRIPTION

The process consists of a tank, where the fish is reared,
and a water treatment system. In the water treatment
system, the tank effluent is treated by a biofilter, on which
bacteria convert ammonium into nitrate, and a stripper,
which removes carbon dioxide from the system. Most of
the effluent is recycled back to the tank, and the rest is
purged. There are makeup streams of water and oxygen;
and other inputs such as air, fanned through the stripper,
fish feed, added in the fish tank, and base (NaOH) and/or
buffer (NaHCO3), that can be added to the tank or to the
biofilter.

The fish feed is considered a disturbance that changes
from day to day in a piece-wise constant manner. The
fish metabolism is considered to produce ammonia, carbon
dioxide and biomass, which is the mass growth of the
fish, and their production rate are assumed to be linear
functions of the fish feed. In the biofilter, bacteria are con-
sidered to transform ammonia (NH3) into nitrate (NO−

3 )
with a constant conversion. The temperature and salinity
are assumed to be constant and equal to 14◦C and 15 g/kg,
respectively.

The model uses three reactions invariant variables, which
are variables that do not change with equilibrium reac-
tions, and these variables are defined as follows:

cTAN = cNH3
+ cNH+

4
(1)

cTIC = cH2CO3
+ cHCO�

3
+ cCO2�

3
(2)

calk = cOH� + cHCO�
3

+ 2cCO2�
3
− cNH+

4
− cH+ (3)

where cj is the concentration of component j; TAN denotes
total ammonia nitrogen; TIC, total inorganic carbon; and
alk, alkalinity.

Other differential states are nitrate and oxygen concentra-
tions in the tank and biofilter, and the algebraic states are
TIC concentration in the stripper, and pH in all units. The
model consists of 14 differential and algebraic equations.
More details about the process and model can be found in
Dos Santos et al. (2022).

3. OPTIMIZATION PROBLEM

3.1 Operating constraints

The system must satisfy a few constrains to keep the
fish safe, healthy and with optimal growth rate condition.
Depending on the species, these constraints differ. Peder-
sen (2018) exemplifies an optimization of RAS design for
Rainbow trout and Atlantic salmon, where it cites different
parameters depending on species. As the fish species in
this work is Atlantic Salmon, the restrictions for optimal
growth rate and safety regarding wi, which is the mass
concentration of component i, pH, and alkalinity are given
as follows:

• Carbon dioxide:

wTH2CO3
≤ 15mg/L

• Nitrate:
wT
NO�

3

≤ 100mg/L

• Ammonia:
wTNH3

≤ 20µg/L

• pH in the tank:

7 ≤ pHT ≤ 7.5

• pH in the biofilter:

7 ≤ pHB ≤ 8

• Alkalinity in the tank:

wTalk ≥ 50mg(CaCO3)/L

• Alkalinity in the biofilter:

wBalk ≥ 50mg(CaCO3)/L

There are also some operating constraints regarding oxy-
gen mass concentration, wTO2

, recirculating volumetric flow
rate, q, and maximum amount of air being ventilated
through the stripper, V̇air.

• Oxygen concentration:

80%× wO2,sat ≤ wTO2
≤ 120%× wO2,sat

where wO2,sat is the mass concentration of oxygen in
water at saturation.

• Recirculating volumetric flow rate:

5m3/min ≤ q ≤ 50m3/min

• Air flow rate:
V̇air ≤ 5qmax

3.2 Economic Objective Function

A general optimization problem is given by

min
x,z,u

J(x, z,u) (4)

s.t. ẋ = sd(x, z,u),

sa(x, z,u) = 0,

g(x, z,u) ≤ 0,

x(0) = x0

where functions sd and sa are the differential and the
algebraic equations, respectively, g is the set of inequality
constraints mentioned in the previous subsection, and x0
is the initial condition.

As the model does not take the effect of water quality on
the fish growth into consideration, the cost of the plant, S,
which is also the function J to be minimized in a steady-
state economic optimization in each step k, is purely given
by the operating cost, given by Eq. 5. In the case of a
dynamic economic optimization, J becomes S plus the
regularization term, as shown in Eq. 9, in the next section.

J = S(uk) = p1(1− r)qB + p2 ṁair + p3
∑
i=T,B

ṁi
base

+ p4
∑
i=T,B

ṁi
buffer + p5 q

m + p6 q
(5)

where pj with j = 1, 2, ..., 6 are prices of operation of
vacuum and exhaustion fans (Nistad, 2018); base (Tianjin



Table 1. Price of each input

Variable Value Unit Description
p1 19.19 NOK/m3 Effluent disposal
p2 5.71e-05 NOK/mol Vacuum and Exhaustion fans
p3 0.102 NOK/mol NaOH flakes
p4 0.148 NOK/mol NaHCO3 powder
p5 14.17 NOK/m3 Makeup water
p6 1.87e-02 NOK/m3 Pump operation

Chengyuan Chemical CO. LTD, 2021); buffer (Farmasino
CO. LTD, 2021); makeup water, which is assumed to have
the same price as fresh water; effluent disposal (Trondheim
kommune, 2021); and standard pump operation, respec-
tively, described in Table 1, assuming that the prices do
not change during the operation.

4. CONTROL DESIGN

A summary of all structures is presented in Fig. 1. Case A
consists of an upper layer with a steady-state optimization,
a middle layer with a Split-range block, and a down layer
with PI control. Case B consists of an upper layer with a
steady-state optimization, and a down layer with nonlinear
model predictive control (NMPC). And finally, Case C
consists of a single layer with economic model predictive
control (E-NMPC).

Steady-State
Optimization

PI NMPC E-NMPC

Steady-State
Optimization

valves

Split-range

Case A Case B

Case C

Fig. 1. Control structures

Another point is that the disturbance changes as piece-
wise constant dependent on day of operation, so the system
needs to be optimized daily for Cases A and B.

The simulation of the plant, which is represented by a first-
principle model of the water treatment of RAS, uses IDAS
method from SUite of Nonlinear and DIfferential/ AL-
gebraic Equation Solvers (SUNDIALS), distributed along
with CasADi v3.5.5 for Python v3.8.8.

4.1 Case A

After formulating the optimization problem, the next
steps are to optimize using Eq. (4) and (5) for expected
disturbances, and implement optimal operation, defining
what to control.

Based on the optimization result, the active constraints
dictate the most important variables to be controlled,
and its setpoint becomes the restriction value that was
reached. The optimization also defines the location of
base/buffer addition. In order to pass this optimal decision
to the regulatory layer, a split-range block must be put in
between to activate or deactivate the base/buffer addition,
depending on type and location.

In Dos Santos et al. (2022), we showed that it is essential to
control oxygen and nitrate concentrations. Based on that,
the oxygen and the nitrate pairings are set, but process
knowledge needs to be used to suggest other pairings. A
systematic procedure is conducted for the remaining pairs
to be defined.

Model identification: First, the system is identified as
first order plus time delay (FOPTD) models. To achieve
that, a step change is applied in one manipulated variable
(uk) at a time, and the identification of the dynamic
responses is executed using the Scipy package in Python,
minimizing the integral of the absolute magnitude of the
error (IAE), subject to bound constraints, and described
by Eq. 6.

min
t,y,k,τ,θ

∫ tf

0

|error(t, y, k, τ, θ)|dt (6)

s.t. θ ≥ 0,

τ ≥ 0

where error is the error function described by Eq. 7
dependent on time, t, gain, k, time constant, τ , and
time delay, θ; y is the dynamic response vector; tf is the
duration of the dynamic response.

error(t, y, k, τ, θ) = k(1− e−(t−θ)/τ )− y (7)

Closing the control loops: After all pairings are set, the
control loops are closed one by one, and the identification
is re-executed every time one loop is closed. The order of
the closure is told by prior knowledge of the system on how
intense one input variable can affect the other controlled
variables besides its pair.

Finally, the SIMC rules (Skogestad, 2003) (Skogestad’s
PID settings) for systems described by first order plus time
delay transfer functions are used to tune the controllers.

4.2 Cases B and C

When letting the algorithm to decide the location of
addition of base/buffer, this decision can be added to a
nonlinear model-based predictive control. In order to solve
the minimization problem of the model predictive control,
the integration method needs to be chosen carefully. For
this system, which has a measured disturbance that varies
from day to day, the integration method single shooting
is not advised, and multiple shooting increases a lot the
computation time. Therefore, the method direct colloca-
tion was used, and set to have one intermediate collocation
point and to use a third degree polynomial to interpolate
within each control interval.



The objective function to be minimized is given as follows:

Case B) Setpoint Tracking:

J =

N−1∑
k=0

[
||xk − xopt||2Q + ||uk − uk−1||2R

]
(8)

where N is the ratio between control horizon
and control interval; Q and R are diagonal
matrices of dimension nx × nx, and nu × nu,
respectively, nx is the number of differential
states, x, and nu is the number of manipulated
variables, u; xopt is the optimal steady state
for the differential states, given by the upper
layer; ||uk−uk−1||2R is the penalty of change in
the manipulated variables, also called regular-
ization term.

Case C) Economic Dynamic Optimization:

J =

N−1∑
k=0

[
S(uk) + ||uk − uk−1||2R

]
(9)

where S is the cost function given by Eq. (5).

5. RESULTS AND DISCUSSION

5.1 Steady-state Optimization

With the optimization problem defined in Section 3, the
steady-state optimization can be easily done. The results
for the first day of the production are presented in Tables
2 and 3.

Table 2. Optimal operation data on day 1

Variable Value Unit
ṁair 1074.71 mol/min
r 0.9 -
ṁO2

11.36 mol/min
ṁT

base 4.21 mol/min
ṁB

base 1.21 mol/min
ṁT

buffer 0.0 mol/min

ṁB
buffer 0.0 mol/min

q 9.07 m3/min

Table 3. Optimal steady-state values for some
variables on day 1 [mmol/L or -]

Variables Tank Biofilter Stripper
calk 4.32 3.85 3.85
cTIC 4.74 4.27 4.04
cH2CO3 0.27 0.43 0.21
cTAN 0.18 4.91e-03 4.91e-03
cNH3 8.09e-04 1.21e-05 2.40e-05
c
NO�

3
1.61 1.61 1.61

cO2
0.35 1.01e-06 1.01e-06

pH 7.26 7.0 7.3

The optimization results in Table 2 indicate that either
base or buffer is added to a specific unit. However, manip-
ulating the price of buffer, this could change, as illustrated
in Fig. 2 in the region in the middle (between 0.005
and 0.04 NOK/mol, approximately). The figure illustrates
the trade-off between price and process requirement, and
shows a range of buffer prices that activates the upper
bound constraints of alkalinity and/or TIC concentration

(range between 0 and 0.005 NOK/mol, approximately);
a second region in the middle, where base is added in the
tank, and buffer is added in the biofilter, referenced in this
work as Case A.1; and a third region with only base being
used, referenced as Case A.2. The current price of buffer
lies at the third region, as seen in Table 1.
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Fig. 2. Buffer price sensitivity

Table 4 shows the operating constraints converted to the
units of the system to better visualization. Comparing it
with Table 3, we can see that the constraints are active
for cTO2

and cT
NO�

3

, so they are chosen to be controlled

variables. The other controlled variables are defined using
process knowledge.

Table 4. Upper and lower constraints [mmol/L
or -]

Lower bound Variables Upper bound
0.50 cTalk -
0.50 cBalk -

0 cTH2CO3
0.34

0 cTNH3
0.0012

0 cT
NO�

3

1.61

0 cTO2
0.2348

7.0 pHT 7.5
7.0 pHB 8.0

5.2 PI Control Design

In order for the fish to have optimal growth rate, the
environment is required to satisfy a few constraints. Be-
sides oxygen and nitrate concentrations, other restricted
variables have direct correlation with input variables, such
as ammonia concentration, which depends on TAN con-
centration and pH; carbon dioxide, which depends on
TIC concentration and pH; and pH, which is defined by
alkalinity, TAN and TIC concentrations.

To reduce the amount of controllers and reduce nonlinear-
ity of relationship between MV and CV, alkalinity, TAN,
and TIC concentrations are studied to be substitutes for
direct controls of carbon dioxide, ammonia and pH. TAN
concentration in the biofilter is defined by the biofilter effi-
ciency, which is considered constant, TAN concentration in
the tank, which depends linearly on the fish feed according
to the fish metabolism assumption, and the liquid flow
rate, q, which dictates how fast the water treatment is.
Therefore, TAN concentration in the tank needs to be
controlled and its pair should be q, as the fish feed is a
disturbance.



Alkalinity and TIC concentrations (in the tank and in the
biofilter) can be controlled by the MVs left: amount of
base or buffer added in the tank and in the biofilter, and
amount of air used at the stripper. TIC concentration in
the biofilter just changes with TIC concentration in the
tank, recirculating volumetric flow rate,q, makeup water
and air inlet. Therefore, one of the TIC concentrations
need to be controlled by the air inlet, and the closest one
from the stripper is TIC concentration in the tank.

The bounded optimization solved to identify the responses
was very sensitive to the initial guess. Therefore, the
dynamic response graphs are important to set good initial
guesses. Using the knowledge from the process acquired in
previous work and choosing the closest pair, the pairing
is chosen as in Table 5, although controller using buffer is
deactivated on day 1, but it can be activated as needed by
the Split-range block.

The order of closing the loops affect the difficulty on con-
trolling the system, meaning that some CVs are coupled
with more than one manipulated variable, as expected, but
this problem can be bypassed if the loops that affect other
variables the most are closed before. The order of closure
of the loops, and the tuned τC , which is a vector of the
variables to be tuned in each control when using the SIMC
rules, are also shown in the table below.

Table 5. Suggested pairing and tuning param-
eter

MV CV τC
ṁO2 cTO2

15.46

r cT
NO�

3

22.25

q cTTAN 1000.0
ṁT

base cTalk 645.38
ṁB

base cBalk 153.72
ṁT

buffer cTalk -

ṁair cTTIC 1900.0

5.3 Dynamic Simulation with PI controllers

The system has 8 dynamic degrees of freedom, but with
the optimization results, 2 controllers are deactivated due
to Case A.2 being activated by the optimization layer.
Therefore, 6 controllers need to be active.

Fig. 3 shows the main dynamic responses to step changes
in disturbance with only oxygen being controlled. Almost
all variables violate the constraints, leading to the fish
to suffer, causing non-optimal growth or death. Fig. 4
shows the main MVs and CVs’ dynamic responses to the
same disturbance step changes. From this figure, it can be
seen that some CVs take more than 6 days to reach the
setpoints, and the controller could have not been any faster
due to abrupt changes and constraint violation of other
variables, such as pH. Alternatively, a small back-off would
be needed, or to use buffer at the beginning, when there
is a need for abrupt increase on base intake. The latter
alternative could lead the system to optimal conditions
quicker, as the pH would not violate the constraints and
alkalinity would increase faster with more base/buffer.

Overall, the closed loops performed well and the entire
system was driven to optimal steady-state condition even-
tually.
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Fig. 3. Dynamic behavior of the process with oxygen and
nitrate controls, and subjected to disturbance, F
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Fig. 4. Dynamic behavior of the process with all 6 PI
controllers, and subjected to disturbance, F - MVs
on the left column and CVs on the right column

5.4 Model Predictive Control comparison

Two different objective functions for the optimal con-
trollers were used: setpoint tracking and economic objec-
tive function, described by Eq. (8) and (9), respectively.
The tuned diagonal matrices Q and R are given as follows:



Q = diag(1e2, 1e2, 1e3, 1e3, 1e2, 1e2, 1, 1, 1, 1)

RNMPC = diag(1e−3, 1e3, 1e2, 1e2, 1e2, 1e2, 1e2, 1e2)

RE-NMPC = diag(1e−7, 10, 1, 1e−3, 1e−4, 1e−4, 1e−4, 10)

Fig. 5 shows the closed loop response with control horizon
of 24 hours and control interval of 20 minutes, for both
the MPCs. The NMPC conducted all controlled variables
to their optimum values plus algebraic variables in a really
short time (less than a day). The E-NMPC performed well
also, although it took more time for the CVs to reach
optimal steady-state value.
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Fig. 5. Dynamic behavior of the process with MPCs and
subjected to disturbance, F

6. CONCLUSION

The volume of the different RAS units are big, except for
the stripping column, so the time constant of the entire
process is high. On the other hand, the disturbance can
lead the process to infeasibility, if no control is done. To
speed up the process and avoid infeasibility, a control
structure is needed.

In this work, we have presented a comparison of three
optimal control structures. Two of them are hierarchical
control structures, where an optimization layer calculates
the optimal setpoint. In Case A, after the optimization
layer, a split-range block handles the switch between
manipulated variables. In Case B, the optimization layer
gives the optimal setpoint directly to a nonlinear model
predictive controller. In Case C, the structure is a single
block consisting of an economic model predictive control,
led by an economic objective function.

All the control structures gave a satisfactory performance,
driving the system to the optimal steady-state conditions.
The PI control structure depends on how far from optimal
the system is at the beginning to drive it faster to optimal
conditions, as it took more than 6 days to reach optimality.

To make the PI controllers faster, buffer would be needed,
which means that it would cost more, as buffer is more
expensive than base, according to the current prices.
The E-NMPC provided a trajectory that is economically
optimal, but it achieves a different steady-state optimal.
On the other hand, the NMPC provided a dynamically
optimal trajectory, but also economically non-optimal,
as it uses buffer and base. Comparing NMPC with the
PI controllers, the NMPC performance was faster on
conducting the system to optimal steady-state condition,
as it uses buffer and base. The trade-off between speed
and cost is evident, but E-NMPC gave the best trajectory,
conducting the system to a optimal condition with lower
cost.

All the control structures were designed and tested us-
ing computational simulations and the model presented
in previous work. Therefore, an implementation of these
structures controlling the system with growth rate vari-
ation and addition of noise is suggested to evaluate the
effect of model mismatch on the results.

REFERENCES

Dos Santos, A.M., Bernardino, L.F., Attramadal, K.J.,
and Skogestad, S. (2022). Steady-state and Dynamic
Modelling of Recirculating Aquaculture Systems. In
Progress.

Farghally, H.M., Atia, D.M., El-madany, H.T., and Fahmy,
F.H. (2014). Control methodologies based on geother-
mal recirculating aquaculture system. Energy, 78, 826–
833. doi:10.1016/j.energy.2014.10.077.

Farmasino CO. LTD (2021). Factory supply high quality
99% Sodium bicarbonate cas 144-55-8. Alibaba website.
Accessed: Aug. 9, 2021.

Nistad, A.A. (2018). Energy use and efficiency in recir-
culating aquaculture systems. Technical report, Nor-
wegian University of Science and Technology, NTNU,
Trondheim.

Pedersen, S. (2018). Simulation and Optimization of Re-
circulating Aquaculture Systems. Ph.D. thesis, Chalmers
University of Technology.

Ridler, N.B. and Hishamunda, N. (2001). Promotion
of sustainable commercial aquaculture in sub-Saharan
Africa. Technical report, Food and Agriculture Organi-
zation of the United Nations, Rome.

Skogestad, S. (2003). Simple analytic rules for model
reduction and PID controller tuning. Journal of Process
Control, 13(4), 291–309. doi:10.1016/S0959-1524(02)
00062-8.
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