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Abstract: Hybrid modeling, meaning the integration of data-driven and knowledge-based
methods, is quickly gaining popularity in many research fields, including bioprocess engineering
and development. Recently, the data-driven part of hybrid methods have been largely extended
with machine learning algorithms (e.g., artificial neural network, support vector regression),
while the mechanistic part is typically based on differential equations to describe the dynamics
of the process based on its current state. In this work we present an alternative hybrid model
formulation that merges the advantages of Gaussian Process State Space Models and the
numerical approximation of differential equation systems through full discretization .
The use of Gaussian Process Models to describe complex bioprocesses in batch, fed-batch, and
continuous has been reported in several applications. Nevertheless, handling the dynamics of
the states of the system, known to have a continuous time-dependent evolution governed by
implicit dynamics, has proven to be a major challenge. Discretization of the process matching
the sampling steps is a source of several complications, as are: 1) not being able to handle
multi-rate date sets, 2) the step-size of the derivative approximation is defined by the sampling
frequency, and 3) a high sensitivity to sampling and addition errors. We present a coupling of
polynomial regression with Gaussian Process Models as representation of the right-hand side of
the ordinary differential equation system and demonstrate the advantages in a typical fed-batch
cultivation for monoclonal antibody production.

Keywords: Nonparametric methods, Nonlinear system identification, Grey box modelling, Time
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1. INTRODUCTION

Mathematical representations of (bio)chemical reaction ki-
netics in complex process systems can be broadly classified
into two approaches: (i) data-driven, statistical, black box,
or Machine Learning (ML) models, and (ii) first principles-
based, mechanistic, or white box models Narayanan et al.
(2020b). Hybrid models or grey-box models have emerged
aiming to combine the features of existing modeling tech-
niques and very interesting applications have been re-
ported in chemical engineering and in biotechnology Zhang
et al. (2019); Von Stosch et al. (2014).

1.1 Hybrid/Grey-Box Models

A typical procedure to setup the hybrid model involves
formulating the basic mass and energy balances while
using data-driven models to describe complex unknown
properties of the system. Some commonly used data-driven
models are: artificial neural network Tian et al. (2001),
Adaptive Regression Splines Duarte and Saraiva (2003),
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Support Vector Machine (for regression) Hu et al. (2011),
and genetic programming Marenbach and Bettenhausen
(1997).

1.2 Gaussian Process State Space Models

A very promising class are Gaussian Process State Spaces
Models (GPSSM) Hewing et al. (2018), which aim to
predict the dynamics of a process and its time evolution by
describing the state space with Gaussian Process Models
(GPM) Rasmussen (2003). By this, the advantages of
GPMs can be applied to nonlinear dynamic processes with
a very limited knowledge of the first principles governing
the time evolution of the system such as fed-batch cultiva-
tion Hutter et al. (2021). The added value of GPSSMs has
been documented in several applications Kocijan (2016),
and offer a clear advantage on systems, with small to mid
size data sets with noise that is close to Gaussian, and
where the uncertainty in the predictions play an impor-
tant role. Still, a major drawback is the forward problem
handling of the data and its representation, and issues
associated with it (e.g. sensitivity to noise). An additional
limitation is the impossibility to treat multi-rate data
sets properly. Finally, the discretization of the continuous



dynamic process is bound to the sampling rate of the data
set, which can pose several difficulties in scarce sampling
processes (e.g. mammalian cell cultures with samplings on
a daily basis).

1.3 Continuous Gaussian Process State Space Models

We present an alternative approach in an effort to enable
training of the GPSSMs considering a continuous time
system and exploiting to some extent the advantages in
the sense of inverse problem theory. To achieve this, we
use a polynomial regression on the states over time and
train the GPMs on its derivatives. In a sense, the rationale
is close to formulating a parameter estimation problem
using full discretization Cervantes and Biegler (2009) if
we consider that the right hand side of the differential
equation system is defined by GPMs. As a result, we
obtain the exact derivatives over time for any desired
point and are able to train significantly more efficient
and flexible GPSSMs. One of the major challenges is the
fact that polynomial slopes are not known. To tackle this,
we apply a slight modification of the IPDA method as
presented by Varziri et al. (2008). We demonstrate that
the increase in computational burden due to the iterative
procedure and larger number of support points, as well
as the complexity of the problem formulation due to
additional hyperparameters and optimization to be solved,
is justified for many cases.

1.4 Hybrid Modelling of Bioprocesses

The inherent complexity of cellular biochemical reaction
that take place in bioprocess cultivations combined with
the limited and low-quality observations obtained from
laboratory experiments and production sites, has proven
to be an ideal playground for the use of hybrid models.
On the one hand, thousands of biochemical reactions
are taking place in each one of the millions of cells
inside the reactor. On the other, it is very challenging to
observe most of the species (e.g. intracellular metabolites,
enzymes, ribosomes) involved in the process. Even the
desired product and its quality require typically complex
and sophisticated analytical methods, strongly limiting the
number of possible samples per experiment (mostly end
point evaluations). On the one hand, mechanistic models
require model development and specific experiments to
support it. On the other, Black box models require many
experiments as the relation between inputs and outputs
that is typically highly non-linear. Both approaches are
infeasible due to the intrinsic costs of each experiment,
such that hybrid approaches are essential to find a proper
trade-off and tackle this situation. Without significant
loss of generality, we demonstrate the advantages of the
continuous GPSSMs in a cell culture fed-batch process for
production of a Monoclonal Antibody (MAB) Li et al.
(2010). These processes are known to be very difficult to
model with first principle formulations and require large
adaptations even for slight changes in the process, the cell
line, or the product. For many of the industrial process
parameters that are used to improve the cultivation, (e.g.
pH and temperature) there exist no mechanistic equations.
Finally, the cost of each experiment is very high, such that
only a few experiments are possible strongly limiting the
information that can be obtained about the system.

2. METHODOLOGY

2.1 Gaussian Process State Space Models

For the sake of generality, we stick to the definition of
GPSSM given in Eleftheriadis et al. (2017) The GPSSM
is here considered as a dynamical system whose building
blocks are Gaussian processes. The dynamical system is
represented by

xt = f(xt−1, ut−1) + εf , yt = g(xt) + εg (1)

where t indexes time, x ∈ RD is a latent state, u ∈ RP are
control signals (actions) and y ∈ RO are observations. Fur-
thermore, we assume i.i.d. Gaussian system/measurement
noise. The state-space model equation (1) can be fully
described by the measurement and transition functions, g
and f , respectively. The key idea of a GPSSM is to model
the transition function f in equation (1) using GPMs:

f(xt−1, ut−1) = xt−1 +

t∫
t−1

GPM(xτ , ut−1) dτ (2)

2.2 cGPSSM

The applications of GPSSM are well documented, the
reader is referred to Kocijan (2016) for a detailed descrip-
tion and case studies. Still, especially for dynamic systems
with a low frequency sampling rate, the limitations of
GPSSMs become clear. The step size of the prediction
∆(xt−xt−1) is fixed and defined by the sampling intervals.
For this reason the discretization is inaccurate if the sam-
pling is not faster than the time constant of the dynamic
system. Furthermore, the highest sampling rate that can
be used for the training of the GPs is subject to the fixed
rate where all observed states are measured. These are
important limitations that give Differential Equation Sys-
tems a significant advantage for a number of applications.

We propose an alternative approach based on three itera-
tive steps: 1. fitting polynomial curves to the data set, 2.
training the GPs with the derivative of the polynomials,
and 3. penalizing the polynomial fit if there is a large
difference between the GP predicted derivatives and the
polynomial derivatives

As a result, GPs are trained with the exact derivative at
any given point and can be used for adaptive multistep in-
tegration methods. Furthermore, the penalization assures
that the derivatives of all polynomials fitted in the different
data sets comply with the function defined by the GP.
This allows, considering that the data set is sufficiently
large, a well-posed problem penalizing divergent dynamics
in different data sets.

This approach stems from the gradient matching method,
were a similar methodology is suggested for parameter
inference of differential equation systems using GPs in-
stead of solving the inverse problem. ”Techniques based on
gradient matching, which aim to minimize the discrepancy
between the slope of a data interpolant and the derivatives
predicted from the differential equations, offer a computa-
tionally appealing shortcut to the inference problem” Don-
delinger et al. (2013).



3. ALGORITHM

3.1 Polynomial Regression on Finite Elements

In order to cope with the nature of bioprocesses, piece wise
polynomial functions divided in finite elements are pre-
ferred in terms of simplicity and flexibility. Furthermore, in
many applications, mammalian cell cultures are performed
using a bolus feeding strategy causing discontinuities in
the state variable profiles due to the sudden change in
concentration at each pulse. The grid should then be set
such that the value of all states is known in the initial time
point of each finite element. This is typically the same at
the rate of one finite element per day in mammalian cell
cultures. For the sake of simplicity, we do not consider the
case where some values are missing at the start of the finite
elements. This issue can easily be tackled by selecting other
methods to initialize the polynomials. Here, a polynomial
regression is used to generate the initial derivative values
to be used in the training of the GPM for each finite
elements. There are of course several polynomial types
that can be used, spline functions or Lagrange polynomials
for example. In this first case we use a simple quadratic
equation of the form:

p = α+ β · (t− t0,k) + γ · (t− t0,k)2 (3)

where α, β, γ are the polynomial coefficients, t represents
the time and t0,k the initial time point of the k − th FE.
In the first iteration, γ is set to zero, resulting in a linear
step identical to the GPSSM formulation.

We determine the coefficients of the quadratic polynomi-
als, minimizing the weighted least squares function:

S =

n∑
n=1

Wii(yi − pk,i(α, β, γ))2,Wii = 1/σ2
i (4)

3.2 GPM training with polynomial derivatives

Once the polynomials have been fitted to the data, we can
use their derivatives as a first approximation to train the
GPMs:

ṗk,i =
dp

dt
= β + 2 · γ · (t− t0,k) (5)

The GPMs are trained using the state variables, the
experimental set points, and the time varying control
variables (typically piece wise constant) as inputs. The
outputs dGPMk,j

are the derivatives of the polynomials on
the selected support points ṗk,i.

It is worth stressing that the polynomials in the first
iteration are restricted to γ = 0, hence the GPMs are
firstly trained with a piece wise constant profile. Selecting
a proper Kernel is crucial to ensure a convergence towards
the actual curvature of the time evolution of the states.
Considering that we are dealing with processes properly
described by Lipschitz continuous functions, the GPMs ap-
proximate the derivatives of the polynomials closer to the
average value of all experiments. As a result, the deriva-
tives are dragged towards the ”real” continuous curvature
of the process profile. The linearization enforced (caused
by the large step discretization: γ = 0) on lines that in
reality have curvatures causes different derivative values

for very similar input variables. As a result, if suficient
experimental data is used at suficiently different condi-
tions, the GPMs con only predict mean vaule averaging
the inconsistent slopes throughout the state space.

3.3 Iterative convergence to continuous functions

In order to drive the polynomials to the expected curve,
the iterative solution of the least square problem in equa-
tion (4) is penalized by the mean derivative predicted by
the GPMs at the given input conditions:

P =

n∑
n=1

(ṗk,j − dGPMk,j
)2 (6)

The resulting function for optimization being:

cH = S · (λ− 1) + P · λ (7)

As shown in figure 1 through an iterative process, the
polynomials converge to a proper description of the true
dynamics of the states at any point inside the design space,
given following conditions:

• a sufficiently informative data set,
• a correct selection of the finite element size,
• the proper degree and type of polynomials, and
• an observable system with the sampled state variables

3.4 Numerical integration

Being able to predict the exact derivatives of the function
at any given point within the design space, the GPM
predictions can now be used to predict the time evolution
of the process through numerical approximation. In this
example, we use an explicit Euler method with a fixed step
size of 0.5 hours. This is sufficient given the smoothness
of the process within each finite element and avoids an
extensive number of function calls. It is here noteworthy
that the pulses are solved with the equality constraints
between each finite elements. Depending of the size of the
data set contained in the GPM, the prediction calls can
rapidly increase the computational burden of the integra-
tion. This is especially the case, when standard integrators
are used which tend to start with very small step sizes and
perform a number of evaluations to assure robustness in
the solution. Note that the prediction results now deliver
values at a much higher frequency than the sampling one
(1 sampling per day), and could also work with adaptive
step approaches if necessary. The use of polynomials to link
GPMs and data allows a continuous and smooth prediction
of the systems dynamics throughout the state space and
accordingly of the evolution of the process over time.
Furthermore, due the property of GPMs, the predicted
derivatives also account for its uncertainty. This can be
used to compute not only the predicted time evolution
but also its associated uncertainty. This of course requires
a special treatment of the uncertainty propagation during
integration, which is out of the scope of this contribution.

3.5 Materials

The computations for the selected case study were per-
formed in a simple laptop computer. Memory: 7,6 GiB,
Processor: Intel® Core™ i7-8565U CPU @ 1.80GHz × 8,



OS: Linux, Ubuntu 18.04.6 LTS. The code was written and
computed using Matlab2021a. The packages (toolboxes)
used were: the nonlinear least-squares solver lsqnonlin
from the optimization toolbox, the polyfit function from
the curve fitting toolbox, and the rgp class from the sta-
tistical toolbox. The kernel used for the GPMs was the
ardexponential kernel with a (d+1)−by−1 vector φ, where
φ(i) contains the length scale for predictor i, and φ(d+ 1)
contains the signal standard deviation. d is the number of
predictor variables. Default initial value of the length scale
parameters are the standard deviations of the predictors
and the signal standard deviation is the standard deviation
of the responses divided by square root of 2. That is,

φ = [std(X)′; std(y)/sqrt(2)] (8)

The code can unfortunately not be shared due to Intellec-
tual Property concerns. However, pseudocode is presented
in the following section to illustrate the step-by-step pro-
cedure for implementation of the proposed algorithm.

Algorithm 1 pseudocode for the cGPPM approach: train-
ing

1: build grid of Ne points for discretization in finite
elements

2: select support points for GPM training
3: define the training set of NEx experiments with Nvar

process variables. Define Threshold
4: Start iterative penalized least-square procedure for up

to Nit iterations. Set penalization P = 0.
5: for nit = 1, 2, . . . , Nit do
6: for nEx = 1, 2, . . . , NEx do
7: for nvar = 1, 2, . . . , Nvar do
8: for ne = 1, 2, . . . , Ne do
9: polynomial regression with penalization

for each variable and each finite element (if nit=1 use
linear regression)

10: end for
11: end for
12: end for
13: train GPMs on the support points using the slope

of the polynomials
14: penalize the polynomial regression for next itera-

tion, nit + 1
15: if nit = Nit ∨ cH < Threshold then
16: finalize iterations
17: end if
18: end for

Algorithm 2 pseudocode for the cGPPM approach: sim-
ulation

Define initial conditions x(k=1), integration step dt,
feeding times tf,i and feeding profile uf,i for i =
1, 2, . . . , Nf . Set k = 1, t(k=1) = 0

2: for n = 2, 3, . . . , Nf do
solve mass balance for bolus addition uf,i−1

4: while tk < tf,n do
compute xk+1 = xk +GPM(xk) ∗ dt

6: compute tk+1 = tk + dt
add step k = k + 1

8: end while
end for

4. RESULTS

4.1 Case Study

We demonstrate the performance of the approach with a
mammalian cell culture bioreactor using a macro-kinetic
model to generate in-silico data. A cell culture fed-batch
bioreactor is simulated using a system of ODEs with
six variables, namely the Viable Cell Density (VCD),
glucose as the main substrate (Glc), glutamine (Gln),
ammonia (Amm), lactate (Lac) and the product titer.
30 experiments are planned using a Latin hypercube
sampling method, varying the bolus feed (F) and the initial
concentration of biomass and substrate. 20 experiments
are used to train the model and 10 experiments are used to
test the model. Time profiles are simulated in the interval
of [0, 14] days and measurements perturbed with 15%
Gaussian noise. For a detailed description of the insilico
data, the reader is referred to Narayanan et al. (2020a). For
the evaluation of the results, concentrations normalized to
the maximum value of the respective states in the training
set are used as inputs. The different models are compared
based on the Root Mean Squared Error in prediction
(RMSEP), computed with respect to the true values (not
the perturbed measurements), of individual states.

4.2 Description capabilities of the cGPSSM

As we can see in Figure 1, the resulting model can describe
a continuous smooth dynamic profile of the fed-batch pro-
cess. It can be seen, that the iterative procedure converges
to a smooth representation that is indeed closer to the
”real” trajectory of the process. The model catches the
smooth evolution seen in the Cell Viable Density but also
(due to the proper grid discretization) the discrete changes
in the glucose profile. The discontinuities caused by the
sudden additions are handled in the switch from one finite
element to the next one. Figure 2 shows a comparison
between the standard method (discretized GPM) versus
cGPSSM on the validation data set demonstrating the
improved prediction capabilities of the proposed approach.
Furthermore, the smooth curves, describing the real time
evolution of the process, that are generated with this novel
method are depicted in Figure 3. An important concern is
the convergence of the penalized LSQ to a stable solution,
which was indeed the case in our example (see Figure 4).
Still, the method can fail if the value of λ is selected to
close to 1, or the insufficiency of data impede an accurate
prediction for each given state.

Two important conditions are to be considered, that are
only valid in the in-silico data set and not necessarily in
real process data. First, the system we are dealing with is
time invariant and fully observable. There are, hence, no
complications due to state variables that affect the process
but are not monitored and the dynamics of the system
never change (in contrast to real biological systems). Sec-
ondly, the noise is Gaussian by which it completely fulfills
the underlying assumptions and the necessary conditions
to use GPMs. Real data sets do not have a perfectly
Gaussian noise, and, in fact, the error distributions can
be very complex. Still, several real applications are close
to the conditions given in our example and the capability



Fig. 1. Simulation results for an experiment of the training
subset. The simulation of all 60 iterations of the
cGPSSM framework. The first iteration is represented
by the dark blue line and red represents the last one.
The convergence to a significantly better prediction
and a smooth representation of the time evolution of
the states is clearly represented

Fig. 2. Simulation results on an experiment of the valida-
tion subset showing first (standard GPSSM solution)
and 15th iterations of the cGPSSM framework. The
six state variables are depicted. The better prediction
of a previously unseen experimental setup is demon-
strated.

of GPMs to describe mammalian cell cultures has been
widely reported Tsopanoglou and del Val (2021).

5. DISCUSSION

Despite their advantages, there still some challenges re-
lated to the implementation of the approach. Clearly, the
iterative process implies a significantly higher computa-
tional burden, and it adds further hyperparameters to
the framework. Additionally, the integration can also be
computational demanding, especially if the uncertainty in-
tervals are computed using ensemble models. Furthermore,
there is no experimental evidence on the true curvature of
the polynomial between two sampling points. As a result,
it is difficult to validate the final results besides visual in-
spection. Still, this approach allows the use of GPSSMs in

Fig. 3. Simulation results of the Viable Cell Density
(VCD) time evolution in an experiment of the valida-
tion subset showing first (standard GPSSM solution)
and 15th iterations of the cGPSSM framework. The
better prediction of a previously unseen experimental
setup is demonstrated.

Fig. 4. Evolution of the Root Mean Square Error (RMSE)
throughout the iterations, for experiments in the
training subset (left) and in the validation subset
(right). For the specific case, 15 iterations are suffi-
cient to reach the final result and best predictions.

multi-rate sampling data sets enabling the implementation
of GPM technologies in new fields and applications.

6. CONCLUSIONS

In this work, we present an alternative formulation to ob-
tain Gaussian Process State Space Models with a smooth
continuous time evolution of the state variables. To achieve
this, we use polynomials as interpolants in the data and
solve a penalized least-squares problem to enforce consis-
tency across data from different experiments. The mam-
malian cell culture example demonstrates, not only the
good performance of the approach, but also its added value
for the description of complex processes that are widely
used in biotechnology and biopharma. The bolus fed-
batch process is described precisely in comparison to the
ground truth obtained from the in-silico simulations and a
continuous smooth time evolution is obtained despite the
large gaps in the measurement samplings. This approach



can also overcome important issues that standard machine
learning algorithms face. First, it can deal with process
information with different sampling rates in its varibales.
Second, it allows the use of adaptive step integrators and
delivers an accurate prediction at any given time point
within the design space. Thirdly the convergence of the
iterative training and penalized least-square procedure
assures a consistent and somewhat ”well-posed” problem.
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