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Abstract: Left ventricular assist devices (LVADs)—mechanical circulatory pumps—have been used as a 

therapeutic option for patients who have progressed to the advanced stage of left-sided heart failure (HF), 

which is a chronic condition that the heart is unable to pump sufficient blood out of the left ventricle as it 

should. This surgically implanted device supports the native heart to pump blood from the heart to the 

remainder of the body to keep the patient alive as a temporary therapy until a donor’s heart is available or 

as a destination therapy. However, the pump speed of the LVAD is typically set in a constant mode and 

cannot be freely changed. To promote the clinical use of LVADs as a long-term treatment option, a 

physiological control system is required to adaptively adjust the pump speed in response to time-varying 

blood demand. To this end, a model-free adaptive control (MFAC) algorithm is developed in this work, 

which estimates the control parameter over time using the data of manipulated and controlled variables 

(i.e., end-diastolic pressure of left ventricle and pump speed, respectively). In addition, since hemodynamic 

parameters in the cardiovascular system change over time due to short-term autonomic nerve regulation, 

we further considered baroreflex regulation to improve control performance; baroreflex regulation is one 

of the key factors of human’s hemostatic mechanisms. The performance of the physiological controller is 

investigated and validated with computer simulations, which shows that the LVAD can respond to constant 

and time-varying blood demand. 

Keywords: Left ventricular assist device, model-free adaptive control, time-varying physiological control, 

baroreflex regulation, cardiovascular system model.

1. INTRODUCTION 

Heart failure (HF) is a critical condition that the heart cannot 

circulate enough blood to the body, which often requires heart 

transplants at the advanced stage. It is estimated that about 6.5 

million adults in the U.S. have HF (Mensah, 2018), but not all 

patients can receive heart transplantation surgery due to mass 

donor shortages and health issues (e.g., impaired renal function 

or high pulmonary vascular resistance). As an alternative, left 

ventricular assist devices (LVADs) have been implanted in 

patients to provide temporary mechanical support for a failing 

left ventricle as a bridge-to-transplant until a donor's heart 

becomes available or a destination therapy for HF patients 

ineligible for heart transplants (Mancini and Colombo, 2015). 

Cardiovascular models have become essential tools to study 

hemodynamics of the failing heart managed by an LVAD 

(Simaan et al., 2009; Son et al., 2020; Wang et al., 2015; Wu, 

2004). Many numerical models describing the cardiovascular-

LVAD system have been developed, which have different 

levels of complexity. For example, a lumped model of the 

cardiovascular system with LVAD support has been proposed 

(Simaan et al., 2009), which consists of six state variables. In 

this model, the right heart, including the right atrium and 

ventricle, and the pulmonary circulation, is assumed healthy 

and not studied. In addition, a more sophisticated model of the 

cardiovascular system has been developed to predict the 

hemodynamics of an LVAD recipient by including pulmonary 

circulation and venous circulation (Wang et al., 2015). In our 

previous work (Son et al., 2020), we developed a stochastic 

model of the cardiovascular-LVAD system to describe the 

systemic and pulmonary circulations, left atrium, left ventricle, 

right atrium, right ventricle, and an LVAD. This model can 

provide a probabilistic description of hemodynamics to 

improve accuracy. While these models are useful to investigate 

hemodynamics in the cardiovascular system managed by an 

LVAD, challenges remain to provide accurate predictions 

because the autonomic regulation of the cardiovascular system 

has not been considered in these models. 

As a kind of short-term autonomic nerve regulation, baroreflex 

plays a key role in short-term pressure control. Specifically, it 

maintains the blood pressure stable by regulating neural 

effectors (Ottesen et al., 2004; Ursino, 1998). Due to such a 

baroreflex autoregulation mechanism, some parameters in the 

cardiovascular system can change over time, especially when 

the failing heart is managed by an LVAD (Liu et al., 2020). 

Thus, it is necessary to incorporate baroreflex response into the 

cardiovascular-LVAD model to provide accurate and 

autonomous predictions. It is worth mentioning that baroreflex 

regulation has been studied in several cardiovascular system 

models managed by LVADs (Bozkurt and Safak, 2013; Liu et 

al., 2020). However, the design of a feedback controller to 

automatically adjust the pump speed of an LVAD has not been 

studied, while taking into account the baroreflex regulation. 

Currently, the pump speed of the LVAD is typically set at a 

constant speed by clinicians during the LVAD implantation 

surgery and cannot be freely adjusted afterward (Fetanat et al., 



2020; Meki et al., 2020; Wu, 2004). The main challenge for 

operating LVADs at constant speed is that undesirable cardiac 

events such as ventricular suction and regurgitation can 

happen, thus threatening health condition of HF patients. 

Specifically, the ventricular suction is a lethal event in which 

the pump attempts to withdraw more blood in the left ventricle 

than is available. When suction happens, it leads to ventricular 

collapse causing myocardial damage and right ventricular 

dysfunction. The regurgitation, backflow from the aorta to the 

left ventricle, can be induced when the pump speed is too low, 

which possibly develops recurrence of symptomatic heart 

failure and aortic valve failure (Meki et al., 2020; Wu, 2004). 

In addition, the blood demand changes with respect to different 

physiologic conditions (e.g., different physical activity levels). 

Thus, the design of a physiological control system is useful to 

mitigate these hazardous events and to provide sufficient blood 

perfusion for accounting for different blood need. 

Different control methods for LVADs have been reported (Fu 

and Xu, 2000; Giridharan and Skliar, 2003; Simaan et al., 

2009; Son et al., 2020), which can meet the time-varying blood 

need, while avoiding ventricular suction and regurgitation. For 

example, the constant differential pressure between the left 

ventricle and aorta was used to tune the pump speed over a 

wide range of physical activities in (Giridharan and Skliar, 

2003); data of the predicted pump flow were used to adjust the 

pump speed in a control algorithm in (Simaan et al., 2009); and 

fuzzy logic-based controller was developed for the tunning of 

LVADs (Fu and Xu, 2000). However, most of the available 

control strategies only consider limited physiological changes 

to adjust the pump speed. In this case, the control performance 

cannot be guaranteed for a wide range of patients and heart 

conditions. To address this issue, a gain-scheduling control 

method was developed in (Son et al., 2020; Wang et al., 2015), 

but it requires an accurate cardiovascular-LVAD model for 

controller tuning, which is challenging to build and can be 

computationally impractical to adjust the pump speed in real-

time, since the model is complicated and highly nonlinear. 

To solve these challenges, in this work, we build a new model 

to combine the baroreflex regulation and the cardiovascular-

LVAD model for accurate and reliable predictions. In addition, 

we develop a model-free adaptive control (MFAC) algorithm 

to adjust the control parameters for the tuning of the pump 

speed of LVADs over a wide range of physiological 

conditions. Specifically, the control strategy in this work can 

meet time-varying blood demand, while providing stable 

hemodynamics. It is worth mentioning that the MFAC-based 

control design was previously used to control LVADs (Fetanat 

et al., 2020), but the baroreflex was not considered, which can 

greatly affect the control performance and hemodynamics of 

the heart. 

This paper is organized as follows. In Section 2, we present the 

cardiovascular system model that is managed by an LVAD and 

the baroreflex model that describes the autonomic nerve 

regulation, which can affect the short-term pressure control. 

Details about the feedback control design based on MFAC are 

given in Section 3, which are followed by the results of the 

computer simulation in Section 4. A brief conclusion is given 

in Section 5. 

2. BACKGROUNDS 

2.1 Cardiovascular-LVAD system model 

Several models of the cardiovascular system managed by an 

LVAD have been developed, which have various complexity 

levels. In this study, the cardiovascular model is built based on 

existing works (Fernandez de Canete et al., 2013; Simaan et 

al., 2009; Wu, 2004) to consider both sides of the failing heart, 

the feedback controller of LVADs, and the baroreflex 

regulation. This model has thirteen state variables, describing 

the systemic and pulmonary circulations, left atrium and 

ventricle (LA and LV), right atrium and ventricle (RA and 

RV), and an LVAD, as in (Son et al., 2020): 

𝑑𝒙

𝑑𝑡
= 𝑨(𝑡)𝒙 + 𝑩(𝑡)𝑝(𝒙) + 𝑐𝑣(𝑡) (1) 

where 𝒙 is a vector of states variables of the cardiovascular-

LVAD model (i.e., 𝑥1 to 𝑥13 listed in Table 1), 𝑨(𝑡) and 𝑩(𝑡) 

represent 13×13 and 13×4 time-varying matrices. In addition, 

𝑝(𝒙)  is a vector to mimic the nonlinear behavior of heart 

valves, and 𝑐  is a 13×1 constant vector. Lastly, 𝑣(𝑡) is the 

control variable of the LVAD represented with 𝑣(𝑡) = 𝜔2 , 

where 𝜔 is the pump speed. Details of the model in (1) and its 

parameters can be found in (Son et al., 2020). 

Table 1. State variables in the cardiovascular-LVAD model 

(Son et al., 2020) 

Variable  Description  Unit  

𝑥1(𝑡) AoP(t) Aortic pressure mmHg 

𝑥2(𝑡)  QAS(t) Arterial systemic circulation blood flow ml/s 

𝑥3(𝑡) ASP(t) Arterial systemic pressure mmHg 

𝑥4(𝑡) QVS(t) Venous systemic circulation blood flow ml/s 

𝑥5(𝑡) RAP(t) Right venous-atrial pressure mmHg 

𝑥6(𝑡) RVP(t) Right ventricular pressure mmHg 

𝑥7(𝑡) PAP(t) Pulmonary artery pressure mmHg 

𝑥8(𝑡) QAP(t) Arterial pulmonary circulation blood flow ml/s 

𝑥9(𝑡) APP(t) Arterial pulmonary pressure mmHg 

𝑥10(𝑡) QVP(t) Venous pulmonary circulation blood flow ml/s 

𝑥11(𝑡) LAP(t) Left venous-atrial pressure mmHg 

𝑥12(𝑡) LVP(t) Left ventricular pressure mmHg 

𝑥13(𝑡) QP(t) LVAD Pump flow ml/s 

 

In this model, there are four hemodynamic parameters that can 

be used to define different physiological states, which includes 

the systemic vascular resistance (SVR or 𝑅𝑠), the pulmonary 

vascular resistance (PVR or 𝑅𝑝𝑣), maximum elastance of the 

left ventricle (𝐸𝑚𝑎𝑥,𝑙𝑣), and the heart rate (HR). Among them, 

the resistance 𝑅𝑠 is the most representative parameter to define 

the physical activity level. For example, when HF patients are 

active (e.g., mild exercise), a smaller value of 𝑅𝑠 is used. The 

elastance function, which is defined as the inverse of each 

ventricular compliance, i.e., 𝐸(𝑡) = 1/𝐶(𝑡), can be given as 

in (Stergiopulos et al., 1996): 

𝐸(𝑡) = (𝐸𝑚𝑎𝑥 − 𝐸𝑚𝑖𝑛)�̅�(𝑡̅) + 𝐸𝑚𝑖𝑛 (2) 

where �̅�(𝑡̅) is the normalized elastance function, also referred 

to as “double hill” function (Stergiopulos et al., 1996), 𝑡̅ is the 

normalized time defined as 𝑡̅ = 𝑡/(0.2 + 0.15𝑇) and 𝑇 is the 

heart period (Simaan et al., 2009). In addition, 𝐸𝑚𝑎𝑥 and 𝐸𝑚𝑖𝑛 

are the maximum and the minimum elastance of each 



ventricle, respectively. The maximum elastance 𝐸𝑚𝑎𝑥  can be 

used as an indicator to represent the severity levels of HF. 

To describe the pump dynamics of LVADs, a semiempirical 

model is used in this work (Choi et al., 1997), which is based 

on the correlation among the pressure difference H across the 

pump, pump speed, and pump flow as in: 

𝐻 = 𝛾0𝑥13 + 𝛾1

𝑑𝑥13

𝑑𝑡
+ 𝛾2𝑣2 (3) 

where 𝛾0 , 𝛾1 , and 𝛾2  are pump-dependent coefficients, each 

value of which can be found in the literature (Simaan et al., 

2009). 

2.2 Baroreflex Regulation 

Baroreflex response contributes to short-term pressure control 

to maintain the blood pressure stable (Liu et al., 2020; Ottesen 

et al., 2004). Accordingly, it causes some of the hemodynamic 

parameters in the model to change over time. To incorporate 

the baroreflex regulation with the cardiovascular-LVAD 

model presented in Section 2.1, the baroreflex model, which 

was proposed in (Ursino, 1998) and slightly modified in (Liu 

et al., 2020), is adopted in this work. This model consists of 

the afferent pathway, efferent neural pathways, and effectors, 

which are discussed below. 

The afferent neural pathway carries signals sensed by the 

baroreceptors to the central nervous system (i.e., the brain). In 

this model, the afferent neural pathway is described by two 

properties such as the relationship between afferent nerve 

activity and arterial pressure and the sensitivity of arterial 

baroreceptors to the arterial pressure and its rate of change. 

The efferent neural pathways are modeled by the relation 

between the frequency of spikes in the sinus nerve and the 

frequency of the sympathetic fibers and vagal activity. These 

stimulation activities, i.e., stimulation of sympathetic nerves, 

result in dynamic changes of the effectors in the cardiovascular 

model (Ursino, 1998). As reported in (Liu et al., 2020), the 

baroreflex model in this work controls four effectors, such as 

systemic vascular resistance (SVR or Rs), maximum elastance 

of the left and right ventricles (Emax,lv and Emax,rv),  and heart 

period (T). Each effector controlled by baroreflex regulation 

can be mathematically represented as in: 

𝛿(𝑡) = 𝛿0 + ∆𝛿(𝑡) (4) 

where the generic parameter 𝛿  is used to represent each 

effector over time; 𝛿0 is each parameter in the absence of vagal 

and sympathetic activities; ∆𝛿 is the parameter change caused 

by sympathetic stimulation. Details on the description of the 

baroreflex model are given in (Liu et al., 2020; Ursino, 1998).  

In this work, we combined the baroreflex response with the 

cardiovascular-LVAD model, resulting in a detailed model of 

the heart defined by nineteen state variables. For clarity, Fig. 

1 illustrates the cardiovascular-LVAD model coupled with the 

baroreflex model. As seen, the model presented in Section 2.1 

can be executed to simulate the arterial pressure (i.e., 𝑥1  in 

Table 1). Then, the baroreflex model senses this information 

and sends a signal toward the central nervous system through 

afferent pathways. From the central nervous system, the 

efferent pathways carry this signal away by regulating a few 

distinct neural effectors. Consequently, the updated effectors 

alter hemodynamic in the cardiovascular-LVAD system. 

 

Figure 1. Illustration of the cardiovascular-LVAD 

system coupled to the baroreflex model. 

2.3 Model-Free Adaptive Control  

In this work, model-free adaptive control (MFAC) is employed 

to design a physiological control system, which is a type of 

data-driven control method. Most adaptive control methods in 

the literature are tuned to achieve desired control performance 

for patients under certain heart conditions. In this case, the 

control performance cannot be guaranteed across the wider 

inter- and intra-patient variations in the cardiovascular-LVAD 

system. However, the MFAC algorithm used in this work can 

adjust its controller gain over time, thereby allowing us to deal 

with changes in process dynamics and disturbances, which can 

be beneficial for controlling the LVAD pump under the time-

varying nature of the cardiovascular system (Fetanat et al., 

2020). Specifically, the data-driven MFAC is implemented by 

establishing a dynamic linearization data model between the 

input and output of the controlled system, then estimating the 

control parameter named pseudo-partial derivative (PPD) at 

each operation point online (Hou and Jin, 2013). A brief 

description of MFAC is given as follows. 

For simplicity, let consider a nonlinear discrete-time system of 

single-input, single-output (SISO), which can be defined as in: 

𝑦(𝑘 + 1) = 𝑓(𝑦(𝑘), … , 𝑦(𝑘 − 𝑛𝑦), 𝑢(𝑘), … , 𝑢(𝑘 − 𝑛𝑢)) (5) 

where 𝑦(𝑘) represents the system output (i.e., the controlled 

variable—end-diastolic pressure of left ventricle); 𝑢(𝑘) is the 

input (i.e., manipulated variable—pump speed) at time instant 

𝑘; and 𝑓 is an unknown nonlinear function. In addition, the 

integers 𝑛𝑦 and 𝑛𝑢 are unknown orders of the system output 

and the control input, respectively. This nonlinear system can 

be defined by the dynamic linearization data model as in: 

𝑦(𝑘 + 1) = 𝑦(𝑘) + ∅(𝑘)∆𝑢(𝑘) (6) 

where the time-varying parameter ∅(𝑘) is called PPD. This 

parameter is unknown and needs to be estimated at each time 

instant 𝑘  such that the SISO system described in (5) is 

represented with the model (6). By minimizing the differences 

between the desired and system outputs (i.e., 𝑦∗(𝑘 + 1) −
𝑦(𝑘)) and two consecutive control inputs (i.e., ∆𝑢(𝑘)), the 

control input can be derived as in (Hou and Jin, 2013): 

𝑢(𝑘) = 𝑢(𝑘 − 1) +
𝜌∅(𝑘)(𝑦∗(𝑘 + 1) − 𝑦(𝑘))

𝜆 + ‖∅(𝑘)‖2
 (7) 

where 𝑦∗ is the desired reference of system output 𝑦, 𝜌 is a 

step factor added to make (7) more general, and 𝜆 indicates a 



weighting constant to restrict the changing rate of the control 

input 𝑢. It is important to note that the time-varying parameter 

∅(𝑘) is unknown and has to be estimated. By using the PPD 

estimation algorithm in (Hou and Jin, 2013), the unknown 

parameter PPD can be found as below: 

     ∅̂(𝑘) = ∅̂(𝑘 − 1) 

(8) 
+

𝜂∆𝑢(𝑘 − 1) (∆𝑦(𝑘) − ∅̂(𝑘 − 1)∆𝑢(𝑘 − 1))

𝜇 + ‖∆𝑢(𝑘 − 1)‖2
 

     ∅̂(𝑘) = ∅̂(1), 𝑖𝑓 |∅̂(𝑘)| ≤ 𝜀 𝑜𝑟 |∆𝑢(𝑘 − 1)| ≤ 𝜀  

𝑜𝑟 𝑠𝑖𝑔𝑛(∅̂(𝑘)) ≠ 𝑠𝑖𝑔𝑛(∅̂(1)) 

where ∅̂(𝑘) denotes the estimated PPD, and ∅̂(1) is the initial 

value of ∅̂(𝑘). In addition, 𝜇 is a weighting constant, 𝜂 is a 

step factor added to make (8) more general and flexible, and ε 

is a small positive constant. Similar to (7), the PPD estimation 

in (8) is obtained by minimizing the squared error of the model 

(i.e., ∆𝑦(𝑘) − ∅̂(𝑘 − 1)∆𝑢(𝑘 − 1) in (6)) and changes in two 

consecutive PPD parameters (i.e., ∆∅̂(𝑘) ). Details on the 

derivation of these expressions and their assumptions can be 

found in (Hou and Jin, 2013). 

3. METHODOLOGY 

As noted in Section 2.1, the most representative parameter to 

define the physical activity level in the cardiovascular-LVAD 

model is systemic vascular resistance (SVR or 𝑅𝑠). Thus, in 

this work, we only focus on changes in 𝑅𝑠 to investigate the 

control performance. The control objective in this work is to 

automatically adjust the pump speed with respect to different 

levels of physical activity, while providing sufficient perfusion 

and avoiding suction. 

In this work, the manipulated variable is the pump speed of an 

LVAD, and left ventricular end-diastolic pressure (LVEDP)—

the left ventricular pressure at the end of diastole of the heart— 

is chosen as the controlled variable, since it is recognized as an 

efficient parameter to mimic the native heart’s hemodynamics 

in other physiological control strategies (Fetanat et al., 2020; 

Pauls et al., 2016). Also, LVEDP is an important measure of 

ventricular performance to indicate clinical symptoms of HF 

patients (e.g., pulmonary hypertension or right-sided heart 

failure) as in (Landsberg, 2018). For clarity, Fig. 2 shows the 

general block diagram of the feedback control strategy used in 

this study. 

 

Figure 2. Schematic of the model-free adaptive controller 

for the cardiovascular-LVAD system 

As seen in Fig. 2, once the measurements of the controlled 

variable (LVEDP or 𝑦) and the manipulated variable (pump 

speed 𝜔 or 𝑢) are available, the PPD parameter ∅̂ in MFAC is 

estimated by (8). Then, the estimated ∅̂ is used to update the 

pump speed by the update rule of MFAC as in (7). Lastly, the 

updated pump speed controls the LVAD in the cardiovascular 

system under baroreflex regulation, providing a new value of 

the controlled variable at each loop.  

To show the control performance for the constant and time-

varying physical activity level of an LVAD recipient, two case 

scenarios are investigated in this work. For each scenario, we 

designed the MFAC control system to maintain the controlled 

variable LVEDP at a constant value, which will be described 

in Section 4 with simulations. 

4. RESULTS 

4.1 Cardiovascular-LVAD model under baroreflex response 

To test and validate the model in this work that combines the 

cardiovascular-LVAD model in Section 2.1 with the 

baroreflex response in Section 2.2, several hemodynamic 

variables are simulated, which include left ventricular pressure 

(LVP, 𝑥12), aortic pressure (AoP, 𝑥1), arterial flow (𝑄𝐴𝑆, 𝑥2) 

and pump flow(𝑄𝑃, 𝑥13). The simulation results of consecutive 

cardiac cycles from 58 to 60 seconds are given in Fig. 3. 

 

Figure 3. Simulation results of the hemodynamic 

variables in the presence of baroreflex regulation with 

different pump speeds of an LVAD. (Left ventricular 

pressure (LVP) and aortic pressure (AoP); arterial flow 

(QAS) and the pump flow (QP)) 

As seen in Fig. 3, with the increase of pump speed, it was found 

that the left ventricular pressure decreases; the aortic pressure 

slightly increases; the pulsatility of the pump flow decreases, 

showing stable and periodic predictions. In addition, as can be 

seen, the heart period, the length of time corresponding to one 

cardiac cycle, is different depending on the pump speed due to 

the baroreflex regulation involved in the model. Specifically, 

the heart period in the third row of Fig. 3 is longer than the 

results in the first two rows. Note that the generic parameter 
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 11 krpm 



values in the absence of vagal and sympathetic activities, i.e., 

𝛿0 in (4), i.e., 𝑅𝑠,0, 𝑇0, 𝐸𝑚𝑎𝑥,𝑙𝑣0, and 𝐸𝑚𝑎𝑥,𝑟𝑣0, are set to 0.71 

mmHg·s/mL, 0.52 sec, 1.0 mmHg/ml and 0.6 mmHg/ml, 

respectively (Liu et al., 2020). Combining the cardiovascular 

model with the baroreflex regulation, each generic parameter 

𝛿 in (4) keeps changing and eventually reaches a stable value. 

The resulting parameters of the effectors 𝑅𝑠, 𝑇, 𝐸𝑚𝑎𝑥,𝑙𝑣 , and 

𝐸𝑚𝑎𝑥,𝑟𝑣 at the given pump speed are summarized in Table 2. It 

was found that as the pump speed increases, three parameters, 

i.e., 𝑅𝑠, 𝐸𝑚𝑎𝑥,𝑙𝑣, and 𝐸𝑚𝑎𝑥,𝑟𝑣, decreases, while the heart period 

𝑇 increases. This observation is consistent with the results in 

(Liu et al., 2020), which clearly shows the accuracy of the 

cardiovascular-LVAD model in this work, which can consider 

the baroreflex regulation and the effect of LVAD on the heart. 

Table 2. Simulated effectors controlled by the baroreflex 

regulation for three different pump speeds of the LVAD 

Pump speed 𝑅𝑠 𝑇 𝐸𝑚𝑎𝑥,𝑙𝑣 𝐸𝑚𝑎𝑥,𝑟𝑣 

9 krpm 1.0450 0.7930 1.1712 0.8796 

10 krpm 1.0069 0.8064 1.1524 0.8490 

11 krpm 0.9240 0.8523 1.1122 0.7832 

 

4.2 Control performance of the model-free adaptive control 

4.2.1 Constant systemic vascular resistance.  

In the first case scenario, we assume that the patient's activity 

level remains unchanged for a long time. Thus, a constant 

value of 𝑅𝑠 is considered to describe the unchanged physical 

activity of an LVAD recipient. Since the parameter 𝑅𝑠  can 

change over time due to the baroreflex regulation involved in 

the model, we fix the parameter 𝛿0 for 𝑅𝑠 (i.e., 𝑅𝑠,0) in (4) to 

0.71 mmHg·s/mL in this work. Note that the MFAC used in 

this work adjusts the pump speed of LVADs to minimize the 

error between the controlled variable and the set point, and the 

MFAC parameters, i.e., 𝜌, 𝜆, 𝜂, and 𝜇 in (7) and (8), were set 

to 1, 0.45, 2, and 0.5, respectively, which were chosen 

empirically. Fig. 4 shows the simulation results of the pump 

speed and the corresponding pump flow, the PPD estimation, 

and the control error between the set point and the dynamic 

values of the controlled variable (LVEDP). Due to the space 

limit, only the noise-free simulations are shown in this study. 

As can be seen from Fig. 4, the pump speed keeps increasing 

to meet the physiological demand and reaches a steady-state 

with sufficient setting time, without inducing a suction. It is 

worth noting that the onset of suction can be characterized by 

two signatures, which are (i) a significant change in the 

minimum pump flow in consecutive cardiac cycles and (ii) a 

large variation in the flow signal after the onset of suction. 

Clearly, the pump flow as in Fig. 4 (b) does not have any of 

these signatures to indicate the onset of suction. Detailed 

descriptions for identifying the onset of suction can be found 

in (Ferreira et al., 2009; Simaan et al., 2009; Son et al., 2020). 

In addition, as shown in Fig. 4 (c), the PPD parameter ∅̂ of the 

MFAC is time-varying and estimated over time by (8). 

Accordingly, the error between the set point and the controlled 

variable (i.e., LVEDP) eventually converges to zero. Note that 

the MFAC exhibits time-invariant PPD parameter after around 

80 secs. This is because the change in two consecutive 

parameters ∅̂ is smaller than the predefined small constant 𝜀 

as defined in (8). This clearly shows that the MFAC here can 

adaptively adjust the control parameter using the input/output 

data of the cardiovascular-LVAD system. 

 

Figure 4. Simulation results of the MFAC for a constant 

level of physical activity, while considering the 

baroreflex regulation. (a) pump speed, (b) pump flow, 

(c) PPD estimation, and (d) control error. 

4.2.2 Time-varying systemic vascular resistance. 

In the second case study, it is assumed that the parameter 𝑅𝑠,0 

in (4) changes over time, which can be used to define changes 

in the physical activity level of a HF patient. For the first 150 

sec, 𝑅𝑠,0  was set to 0.71 mmHg·s/mL by assuming that the 

status of the patient was resting. For the rest of the simulation 

time,  𝑅𝑠,0 was set to 0.21 mmHg·s/mL to represent the mild 

exercise of the patient, e.g., walking stairs. The result of the 

MFAC-based control design is shown in Fig. 5. 

.  

Figure 5. Simulation results of the MFAC for time-

varying level of physical activity, while considering the 

baroreflex regulation. (a) pump speed, (b) pump flow, 

(c) PPD estimation, and (d) control error. 

As seen in Fig. 5 (a), the controller can appropriately adjust the 

pump speed with respect to the changes in the physical activity 

level to meet blood perfusion demand. Specifically, the pump 

speed of the LVAD can converge to a specific speed for each 

(a) (b) 

(c) (d) 

(a) (b) 

(c) (d) 



value of 𝑅𝑠,0, i.e., each level of physical activity. Note that the 

settling time in Fig. 5 (a) can be changed by the MFAC control 

parameters. In addition, as observed in the results of the 

constant 𝑅𝑠,0, any signature to indicate an onset of suction is 

not found in the resulting pump flow during the adjustment of 

the pump speed as shown in Fig. 5 (b). Furthermore, Fig. 5 (c) 

and (d) show the simulation results of the time-varying PPD 

parameter ∅̂ in MFAC and the error between the set point (i.e., 

LVEDP) and the values of the controlled variable. When the 

patient’s activity level is changed at around 150 sec, a sharp 

change is observed in each result. This shows that the MFAC-

based controller can quickly respond to a new hemodynamic 

in the cardiovascular system under the baroreflex regulation 

that may result from a change in the physical activity level. 

5. CONCLUSIONS 

In this current work, we develop a model that combines the 

cardiovascular-LVAD model with the baroreflex regulation to 

consider the effect of the short-term autonomic regulation on 

the control design of an LVAD. To automatically adjust the 

pump speed of an LVAD, a model-free adaptive control, one 

of the data-driven control methods, was employed, where left 

ventricular end-diastolic pressure was used as the feedback 

variable. To validate the performance of the controller, two 

different case scenarios were investigated, representing 

constant level and time-varying levels of physical activity of a 

HF patient. The simulation results show that the controller can 

adapt to a new physiological state caused by a change in the 

level of physical activity and can adaptively adjust the control 

parameter over time with the input/output data only. Future 

work will involve validating the performance of the algorithm 

through comparison with previously developed algorithms for 

LVAD including standard PID control. 
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