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Abstract: Extremum seeking control (ESC) is an adaptive control method that can be used for
production optimization. In the standard ESC approach, the process optimum is found by slowly
adapting the inputs based on plant gradient approximations. Since ESC “learns” the system
characteristics online using only plant measurements, it requires an appropriate time-scale
separation between the system response, the excitation signal used for gradient approximation,
and the dynamics to be optimized. Krishnamoorthy et al. (2019) proposed a dynamic ESC that
identifies a local linear dynamic model using transient measurements and applies this model
to compute the plant gradients. Consequently, the time-scale separation between the system
response and the excitation signal is not required and the scheme converges to the optimum
faster than the standard ESC. Albeit attractive, some practical challenges have been identified,
such as gradient computation and constraint handling. The main contribution of this paper is to
investigate how to overcome these challenges in a more realistic setting, in which dynamic ESC
is implemented on a lab-scale plant that emulates a subsea oil well network. We compare the
performance of two gradient computation approaches and present a constraint handling strategy
for the system of interest, where multiple units compete for limited resources. The results show
that dynamic ESC is able to drive the system to its optimum without constraint violations.

Keywords: Real-time Optimization; Extremum Seeking Control; Practical implementation

1. INTRODUCTION

In chemical industries, economic optimization is typically
addressed by Real-time optimization (RTO) (Darby et al.,
2011), where an economic criterion is maximized (e.g.
profit) while satisfying operational and quality constraints.
The most common RTO approach is the two-step RTO
(Chen and Joseph, 1987). Here, the parameters of a
rigorous steady-state model are estimated online and the
updated model is used for finding the input values that
maximize the economic performance.

If an accurate model is available and an appropriate algo-
rithm is used for solving the optimization problems, two-
step RTO can improve the plant economic performance
significantly (Darby et al., 2011). However, obtaining such
models can be complicated, time-demanding, and a con-
tinuous task, since the system most likely will change over
time (Matias and Jäschke, 2021). Also, the model often
represents an oversimplification of the process, and its
predictions can differ significantly from the actual system
behavior due to plant-model mismatch, uncertainty in
parameters, and unmeasured disturbances. The calculated
inputs are then optimal for the model, but not necessarily
for the plant (Marchetti et al., 2009). Moreover, solving
rigorous models online is computationally expensive and
prone to numerical instabilities (Quelhas et al., 2013).

For addressing these issues, model-free optimization meth-
ods, like Extremum Seeking Control (ESC), can be used.
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ESC is an unconstrained optimization technique, where
the gradients of the objective function with respect to the
inputs are estimated implicitly or explicitly from measure-
ments. The process is then optimized by driving the esti-
mated gradients to zero using a control scheme. However,
only few ESC applications have been reported in chemical
processes, e.g.: wastewater chemical treatment (Mart́ınez,
2007), and de-ammonification process (Trollberg, 2011).

The need to estimate the gradients is one of the main
causes for the few practical applications. Chemical process
tend to be slow and subject to unmeasured disturbances.
Since ESC optimizes the static behavior of the system, we
need to reach steady-state before estimating the gradients.
If data from different plant conditions is used for estimat-
ing the gradients, the optimality of the computed inputs
is affected (Krishnamoorthy et al., 2019). Even if the gra-
dients are accurately estimated, the computed stationary
points may no longer be optimal if a disturbance occurs
while ESC is driving the plant to the desired condition
(Trollberg and Jacobsen, 2013).

Krishnamoorthy et al. (2019) proposed a dynamic ESC
that identifies a linear dynamic model using transient
measurements and uses it for local steady-state gradient
estimation. Consequently, this scheme tries to move to-
wards the optimum also during transients, which improves
the dynamic response to disturbances as well as the con-
vergence speed to the desired condition. Both characteris-
tics are attractive for industrial applications, especially in
chemical processes. In this paper, we implemented this new
dynamic ESC on a lab-scale plant. The lab rig emulates a
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Fig. 1. Example of standard static ESC for an objective
function J . Adapted from Brunton and Kutz (2019).

gas lift subsea oil well network, where the production opti-
mization objective is to maximize the total oil production
while accounting for multiple wells competing for limited
gas lift injection.

The main contributions of the paper are: 1. the first
application of the new dynamic ESC scheme in an real,
physical system; 2. the development and implementation
of a constraint handling strategy for the problem of inter-
est. This is essential for practical applications since ESC
is traditionally an unconstrained optimization method; 3.
studying how the gradient estimation method works in a
real system, which is typically not done in the literature.
These contributions are important for investigating po-
tential implementation issues, and give some intuition on
how some design decisions affect the overall performance
of dynamic ESC.

2. EXTREMUM-SEEKING CONTROL

In ESC schemes for production optimization, we use the
system inputs u to maximize (or minimize) an economic
objective function J without modeling their relationship.
The basic idea is shown in Fig. 1. It consists of perturbing
u periodically and measure the effect in J . The goal is
to probe the slope of the objective function around a
particular value of u. Then, based on the response pattern
(e.g. if u increases, J decreases) and magnitude (∆J/∆u),
we track the optimal input value u that corresponds to the
peak of the objective function J . An interesting property
of ESC schemes is that they are able to track the peak if
the relation between u and J changes slowly with time.

Krstic and Wang (2000) provided a rigorous assessment of
the stability of this ESC scheme. The main assumptions
are that the static relationship between J and u has a
unique local maximum (or minimum), and the system
presents an appropriate time-scale separation between
its response (the settling time after changing u), the
input perturbation dynamics, and the optimum tracking.
The reason is that, for proper identification of the static
relationship between J and u, the plant needs to stabilize
much faster than the periodic perturbation frequency. In
turn, the optimum tracking must happen in the slowest
time scale because the influence of the disturbances in the
static map needs to be “averaged out” before adapting the
inputs.

2.1 Dynamic Extremum-seeking control

If the principle of time scale separation holds, it is rel-
atively straightforward to implement ESC (Tan et al.,
2010). However, process plants are usually slow with set-
tling times of hours. Hence, the requirement that the
optimum tracking is carried out in a time scale much
slower than the system response leads to ESC schemes
that have prohibitive convergence speed (Krishnamoorthy
et al., 2019). One alternative to avoid this drawback is to
use a dynamic ESC approach, where transient measure-
ments are used for identifying the relationship between
the inputs u and the objective function J . In this case, the
time scale separation between the system response and the
periodic perturbation can be disregarded. Consequently,
the required time scale difference between the system dy-
namics and the optimum tracking decreases significantly.

To this end, Krishnamoorthy et al. (2019) proposed a
dynamic ESC that uses transient measurements to identify
online a linear dynamic model around the current operat-
ing point. A scheme illustrating the method is shown in
Fig. 2. Here, the steady-state gradients Ju are computed
using the identified model as opposed to estimating them
implicitly as in Fig. 1. Next, a simple control structure can
be used to drive the gradients to the desired setpoint; for
example, 0 if the optimization problem is unconstrained.
However, if the optimization problem of interest is con-
strained, a constraint handling strategy needs to be de-
veloped. Additionally, since we need to identify models
online, it is necessary to provide sufficient excitation to
the system. Otherwise, there is not enough information
to estimate the linear model parameters, especially near
steady-state. Thus, it is always necessary to apply excita-
tion signals (dithers) to the system.
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Fig. 2. Schematic of the Dynamic ESC approach proposed
by Krishnamoorthy et al. (2019).

3. CASE STUDY

The experimental rig emulates a subsea oil well network.
In the actual system, oil is extracted from reservoirs under
the seabed to the top facilities on the sea level. The driving
force for fluid flow is the reservoir natural pressure. In
some cases, however, this pressure is not high enough and
an artificial lifting method needs to be used. Among the
options, gas lift injection is widely used due to its relatively
low cost and robust design (Amara, 2017).

In gas lifted systems, compressed gas is injected at bottom
of the well. Consequently, both the fluid bulk density as
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Fig. 3. Experiment schematic.

well as the hydrostatic pressure exerted by the mixture at
the reservoir outlet decrease. Since the reservoirs typically
lie at depths of 300 to 2.000 meters, the change in the
hydrostatic pressure has a significant effect on the reservoir
back pressure, increasing the well production. However, if
the gas injection rate is too big, the frictional pressure drop
increases, dominates the hydrostatic pressure effect, and
decreases the well production. For maximizing the system
throughput, this trade-off needs to be considered.

ESC approaches are potential candidates for this task.
First, the relationship between gas injection (input u) and
the total production (objective function J) resembles the
profile shown in Fig. 1. Second, most of the currently used
production optimization methods is based on manually
controlling the marginal gas-oil rate (i.e. Ju). Thus, ESC
only automates the current procedures, which can increase
its acceptance in industry (Pavlov et al., 2017).

3.1 Experimental Rig

The lab rig represents a gas-lifted network with 3 wells
(Fig. 3). In the setup, water and air are used instead of oil
and gas. Although different fluids are employed, the gas lift
effect can still be seen and, consequently, the production
optimization problem can be studied.

The setup has three main sections, reservoir, wells, and
risers. The reservoir consists of a tank, a centrifugal pump,
and a pressure sensor at the pump outlet. The pump
rotation is regulated such that its outlet pressure is fixed
at 1.285 bar. The wells are represented by three parallel
hoses of 1.5 m with an inner diameter of 2 cm. Air is
injected by three air flow controllers in the range of 1 to
5 sL/min/well. The setpoints of these controllers are the
system inputs u, which are used for maximizing the system
production. This system configuration leads to well liquid
flowrates ranging from 2 to 20 L/min/well. The risers are
composed of 2.2 m high hoses with the same diameter
as in the well. After the riser, gas is vented out to the
atmosphere and the liquid recirculated to the tank.

3.2 Production optimization problem

The optimal economic operation point is found by maxi-
mizing the liquid production “revenue” while considering

the “cost” of gas lift compression. The optimization prob-
lem is subject to constraints g on gas injection bounds (QL

gl

and QU
gl) and maximum gas availability (Qmax

gl ):

max
u=[Qgl,1,Qgl,2,Qgl,3]T

J :=

3∑
i=1

αl,iQl,i − αgl

3∑
i=1

Qgl,i

s. t.

g :=

{
Qgl,1 +Qgl,2 +Qgl,3 ≤ Qmax

gl (1a)

QL,gl ≤ Qgl,i ≤ QU,gl i = 1, 2, 3 (1b)

(1)

where, Ql,i is the liquid flowrate and Qgl,i is the gas
lift injection of well i. The optimal gas injection u? is
implemented as the setpoint of the air flow controllers.

Table 1. Parameters values

Description Symbol Value

Max. gas lift availability Qmax
gl 7.5 sL/min

Gas injection lower bound QL,gl 1 sL/min
Gas injection upper bound QU,gl 4 sL/min
Well productivity index αl [5, 10, 20] ($ ×min)/L
Gas lift compression cost αgl 1 ($ ×min)/sL

4. DYNAMIC ESC IMPLEMENTATION

4.1 Linear model identification and gradient estimation

For estimating the gradients, we first collect a buffer of N
data points of the objective function, J = [J(1) . . . J(N)]
and the input, U = [u(1)T . . .u(N)T ]T , where N is newest
and 1 the oldest sample. Next, we use the N measurements
to identify an ARX model in the following form (for
simplicity, we show the single-input/single-output case):

Apoly(q)J(t) = Bpoly(q)u(t− nk) + e(t)

where Apoly(q) = 1 + a1q
−1 + . . .+ ana

q−na

Bpoly(q) = b′1 + . . .+ b′nb
q−nb+1

(2)

in which, q−1 is the unit delay operator, na is the number
of poles, nb is the number of zeros, and nk is the dead
time. In our implementation, we estimate the coefficients
a’s and b’s online but choose the ARX model structure
offline by defining na, nb, and nk beforehand. Then, the
steady-state gradient around the current operating point
can be computed by:

Ju = A−1polyBpoly (3)



4.2 Control and constraint handling

After calculating the estimated steady-state gradients,
we use a control structure to drive Ju (controlled vari-
able/CV) to the desired setpoints (SP) by changing Qgl

(manipulated variable/MV). In an unconstrained case, the
CVs can be controlled to a constant set-point of 0. Since
our case is constrained, we must integrate a constraint
handling strategy to the controller for finding the SPs.

Our strategy, which is summarized in Fig. 4, was developed
based on the first-order conditions of optimality (FOC) of
Eq. (1). Note that the optimization problem in Eq. (1)
can be reformulated as min− J . Including only the active
constraints, we can define the Lagrangian of Eq. (1) as:

L(u, λ) = −J(u) + λTgA(u) (4)

where, λ are the KKT multipliers, in which gA denotes the
active set for a given scenario. The first order conditions
of optimality can then be written as:

∇uL(u?, λ?) = −∇uJ(u?) +∇ugA(u?)Tλ? = 0

gA(u?) = 0
(5)

Due to the nature of the problem of interest, the maximum
gas lift capacity is always active at the optimum (Krish-
namoorthy et al., 2019). If this is the only active constraint
(i.e. gA := gQmax

gl
), we obtain from Eq. (5):

∇uJ(u?) = [Ju1(u?), Ju2(u?), Ju3(u?)] = [1, 1, 1]λ?Qmax
gl

(6)
Then, by substituting λ?Qmax

gl
and rearranging, we have:

Jui
(u?)− Juj

(u?) = 0 ∀i 6= j (7)

Thus, by enforcing equality of the gradients, we fulfill the
FOC in the case where only the maximum gas lift capacity
is active. Note that this is specific for this system. For
example, if gQmax

gl
is chosen as a nonlinear function, the

equations above are not applicable.

Based on this principle, we first assume that only the
maximum gas lift capacity Qmax

gl (Eq. (1a)) is active and,

then, enforce the bound constraints (Eq. (1b)) afterwards.
We propose the following constraint handling strategy:

(i) Find the input with the largest magnitude. Denote
this input u1. This will be used later for controlling
the active constraint Qmax

gl (Eq. (1a)).

(ii) Treat the problem as if onlyQmax
gl is active. Use control

to drive Ĵu1
to the smallest possible value and use the

other inputs for guaranteeing gradient equality as in
Eq. (7). Check the gradient order to make sure that
the inputs with largest gradients are increased.

(iii) Enforce bounds (Eq. (1b)) by clipping (saturating) the
inputs.

(iv) Check the maximum gas lift capacity constraint Qmax
gl

(Eq. (1a)). If it is feasible, implement. Otherwise, go
to step (v).

If infeasible, we enforce Qmax
gl constraint by setting:

u1 = Qmax
gl − (u2 + u3) (8)

However, this can lead to two issues: (a) u1 is decreased,
even if Ju1 is the largest gradient, or (b) u1 lower bound
is violated. Thus, a certain amount φ must be subtracted
from u2 and u3 before enforcing Eq. (8).

(v) For determining φ, we check Ju1 and Ju2
:

(a) If Ju1
< Ju2

, then u1 can be decreased. However,
the lower boundQL,gl on u1 should not be violated:

φ = (u2 + u3)− (Qmax
gl −QL,gl)

(b) If Ju1
≥ Ju2

, then u1 should not be decreased:

φ = (u2 + u3)− (Qmax
gl − u1)

Since Ju2 > Ju3 (Step (ii)), φ is subtracted from u3.
However, u3 lower bound should not be violated. In
this case, the remaining part of φrem is subtracted
from u2. Next, we compute Eq. (8) and implement.

(v)

(i) Check flows: [Qgl,1, Qgl,2, Qgl,3]

Then: u1← input with largest flow

(ii) Check value of the gradients

for the two other inputs:

Then: u2← remaining input with largest grad.

u1,k+1

u2,k+1

u3,k+1

 = uk +

 kI Ĵu1

kI(Ĵu2 − Ĵu1)

kI(Ĵu3 − Ĵu2)


u1,k+1

u2,k+1

u3,k+1

 = uk +

 kI Ĵu1

kI(Ĵu2 − Ĵu3)

kI(Ĵu3 − Ĵu1)


(iii) Check min/max

constraints on inputs

◦ ui < QL,gl → ui = QL,gl

◦ ui > QU,gl → ui = QU,gl

(iv) Check constraint∑
ui ≤ Qmax

gl

Update: uk+1

(a) Compute φ as:

φ = (u2+u3)−(Qmax
gl −QL,gl)

(b) Compute φ as:

φ = (u2 + u3)− (Qmax
gl − u1)

Subtract φ from u3.

Check if u3 − φ < QL,gl

Set u3 = QL,gl and compute

φrem = QL,gl − (u3 − φ).

Then, u2 ← u2 − φrem

Set u1 = Qmax
gl − (u2 + u3)

If Ĵu1 ≥ Ĵu3 If Ĵu1 < Ĵu3

YES

NO

If Ĵu1 ≥ Ĵu2If Ĵu1 < Ĵu2

NO

YES

Fig. 4. Flow diagram for the constraint handling

Remark 1: We do not treat the MV bound constraints
rigorously. They also have associated KKT multipliers λ
that should be considered. However, our strategy guaran-
tees feasibility of the MV constraints, which are typically
prioritized over other constraints in real applications.

Remark 2: As an alternative, we could estimate the gra-
dients w.r.t. u2 and u3 inputs, and choose u1 = Qmax

g −
(u2 + u3). Albeit simpler, this strategy leads to a poorer
economic performance since the difference in the gradient
magnitudes is not taken into account for choosing which
input becomes u1.
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Fig. 5. Experimental results of dynamic ESC using ARX. The figure shows the inputs, objective function, the total
input usage, and the estimated gradients. The gradients were compared offline with the estimates obtained by the
technique proposed by Hunnekens et al. (2014) referred to as LSE. Note that gradient plots start at t = 30 min

4.3 Dither definition and parameter tuning

In order to have enough information for identifying the
ARX model online, a dither must be added to each of
the three inputs uk+1 for exciting the system. We use
a periodic square wave as a dither. This type of dither
is used in the lab rig because it is easy to implement,
and improves the convergence speed of the ESC approach
when compared to the sinusoidal dither (Tan et al., 2008).
However, different types of dither could be used instead.
The inputs with the added dither can be written as:

ûk+1 = uk+1 +

[
a1 sq.wave(ω1)k
a2 sq.wave(ω2)k
a3 sq.wave(ω3)k

]
(9)

where ai are the amplitudes of the dither signals, and ωi

the frequencies of the square wave. Since the inputs are
of the same nature (gas flow rates), the dither amplitudes
are chosen to be the same. They should be chosen large
enough such that their effect on the objective function can
be clearly identified. However, unnecessarily large input
perturbations should be avoided. The frequencies must
have different values in order to differentiate the individual
effects of the inputs in the objective function.

Regarding other parameters, we choose small control gains
kI for slowing down control actions, and a large buffer
length N to improve the ARX model parameter estima-
tion. To avoid oscillations due to noisy gradient estimates,
we apply a moving average filter using a sliding window
of length Nmaf in the CV before calculating the MVs
(step (ii) of Fig. 4). A detailed discussion about the tuning
parameters can be found in Myrvang (2021).

Table 2. Dynamic ESC Tuning parameters

Description Symbol Value

Controller sampling time ts 2 s
Buffer length N 900 data points
Moving average Nmaf 100 data points
Dither amplitude a 0.1 sL/min
Dither frequency ω [1/60, 1/50, 1/40] s−1

Controller gain kI 0.005 sL2/($ ×min2)
ARX model na, nb, nk 3, [2 2 2], [0 0 0]

5. EXPERIMENTAL RESULTS AND DISCUSSION

The results of the system optimization using dynamic ESC
are shown in Fig. 5. The left side plots show the three
inputs, which are the gas lift rates. On the middle column,
we show the total gas lift injection, constrained by Qmax

gl ,
and the objective function value J . The plots on the right
side present the gradients of the objective function with
respect to the inputs. Since the real values of the gradients
are unknown, the gradients computed online using the
ARX model are compared with an offline estimation based
on a technique proposed by Hunnekens et al. (2014),
referred as LSE. In this technique, a 1st order least-squares
fit model is identified at every sampling time and used
for gradient estimation. The goal of this comparison is to
check if the estimated gradients are reasonable or not.

Although the optimal operation cannot be rigorously cal-
culated, we can use engineering intuition to determine if
the optimization approach behaves as expected. Due to
the weights in J , α3 > α2 > α1, we expect Qgl,3 to be on
the upper bound (4sL/min) and Qgl,1 on the lower bound
(1sL/min). Since Qmax

gl should be active at the optimum,

Qgl,2 can be easily calculated (2.5sL/min).

Before any control action (t < 33 min), we apply the dither
to u0 = [1, 1, 1]T sL/min. The goal of this initial part of
the experiment is to have enough information (by filling
the buffer with N + Nmaf measurements) for estimating
the ARX model parameters. The control initiates after
this period and drives the inputs to the predicted value.
However, around 45 minutes there is a deviation in the
expected behavior. For a short time period Ĵu2

> Ĵu3
and,

according to the diagram in Fig. 4, u2 (Qgl,1) should be in-
creased and u3 (Qgl,2) decreased. This unwanted behavior
happens most likely due to unmeasured disturbance in the
rig; however, dynamic ESC is able to reject it and track the
optimum again. From the objective function perspective,
there is no visible loss as a consequence of this disturbance.

Regarding the gradient estimation, the computed values
are coherent with the objective function weights (i.e.
JQgl,3

> JQgl,2
> JQgl,1

). As Qgl,3 goes to the optimum,



JQgl,3
decreases, as expected, and then stabilizes. In turn,

Ju1 and Ju3 present some small oscillation. However, since
JQgl,2

> JQgl,3
most of the time, there is no significant ef-

fect on the overall performance. By comparing the different
gradient estimation techniques, ARX and LSE have similar
results except for the initial period. The main reason is
the presence of transient information. In LSE, the system
needs to behave as a static map. Although the rig dynam-
ics is fast due to small pipe holdups, abrupt changes in the
inputs that happen after the control starts dominate the
system dynamics. After the inputs tend to their stationary
values, the gradient estimation is consistent.

Finally, the constraints are not violated during the ex-
periment, which shows that the constraint handling strat-
egy worked. Additionally, it did not seem to affect the
gradient estimation for the ARX and LSE, since there is
no significant effect after the bound constraints on Qgl,1

and Qgl,3 become active. In Myrvang (2021), the strategy
has been implemented together with dynamic ESC in the
same system, but with different disturbance scenarios. It
also had good results, showing flexibility. However, it may
require adaptation for specific disturbance scenarios that
have not been considered. Additionally, further studies to
determine how the strategy affects the closed-loop stability
and speed of response should be carried out.

6. CONCLUSIONS

We discussed two practical challenges for dynamic ESC
implementations: constraint handling and gradient estima-
tion. We developed an ad-hoc constraint handling strategy
for the system of interest (Fig. 4). Moreover, the exper-
imental results indicated that the strategy works since
dynamic ESC was able to drive the system to its optimum
without violating the constraints. H When it comes to the
different gradient estimation techniques, ARX and LSE
had similar performances. LSE worked well in the system
because the lab rig dynamic response is fast. In systems
where the dynamic transitions play an important role,
ARX is expected to have a better performance, since ARX
is a time series model.

In addition to the challenges listed above, a clear drawback
of ESC implementations is the significant number of pa-
rameters that have to be tuned. Although there are some
vague guidelines in the literature, this is a demanding task.
The parameters affect each other and the task becomes
even harder if the system has several inputs. Furthermore,
even though we are using a dynamic ESC, in which the
convergence is faster, we had to choose parameter values
that led to a very slow and smooth operation. Specifi-
cally, the controller gains kI and the CV moving aver-
age Nmean. Otherwise, the overall performance would be
strongly affected by the noisy objective function measure-
ments. Hence, in the tuning stage, there is a clear trade-off
between economic performance and stability that should
be properly addressed. Another drawback is the need to
apply a dither to the inputs. The constant input oscillation
is usually not desired in chemical systems and may be
associated with safety risks. However, if we can show
that ESC can be reliably implemented and systematically
improve the economic performance of different systems
while guaranteeing a safe operation, it could be possible to

convince plant operators and engineers to implement ESC
in real chemical systems.
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