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Abstract: Process monitoring in microbial cultures became feasible thanks to the development
of accurate measurement devices, including in-situ probes to monitor biomass growth, oxygen,
carbon dioxide and sugar consumption. In comparison, estimating the metabolic fluxes of the
cell factories still rely on analysis based on an under-determined set of equations, and requires an
expensive and time consuming methods of verification. This problem intensifies in the presence
of complex substrates, in which different sugars are utilized in parallel by the cell factories. In
the present study, a growth experiment of Corynebacterium glutamicum in spent sulfite liquor
was studied. The bioprocess was monitored during batch and fed-batch phases, and a parameter
estimation routine was conducted to define a process model and the corresponding uptake rates.
A tracking optimization algorithm minimized the error between the measured process fluxes and
the equivalent fluxes of the elementary flux modes. The results indicate that the optimization
technique obtained a set of elementary modes that are closer to reality than the computed
from the metabolic analysis. Taken together, we show that an online estimation of metabolic
flux distribution of C. glutamicum based on a set of process measurement signals was possible
with an optimization function that links the process and metabolic model. The procedure can be
complementary to the sophisticated and expensive 13C NMR experimental analytical technique.
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1. INTRODUCTION

Genetic-metabolic networks define the theoretical bound-
aries of the microbial cell factory, predict key aspects of
network functionality, robustness, gene regulation (Stelling
et al., 2002). The elementary flux modes (EFM) analysis
is a useful tool to characterize cellular metabolism and
cellular physiological states with the least amount of ex-
perimental data (Trinh et al., 2009), and it represents the
simplest metabolic pathways that connect substrate with
end-products (Stelling et al., 2002). The main challenge of
the EFM is that it contains all feasible steady-state flux
vectors of a given metabolic network whether it is biolog-
ically relevant or not (Klamt et al., 2017), and therefore
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the method provides a larger solution space than the one
that is relevant to a particular cellular state.

Combined experimental and in silico metabolic network
studies of C. glutamicum have been conducted on glucose,
fructose (Kiefer et al., 2004) and sucrose for the produc-
tion of lysine (Vallino and Stephanopoulos, 1993), 1,5-
diaminopentane (Buschke et al., 2013), as well as meth-
ods for in vivo GC-MS analysis of intracellular amino
acids(Wittmann et al., 2002). However, studies with indus-
trial mixture of sugars have not been considered due to its
inherent complexity. Procedures to minimize the difference
between measured uptake rates with their corresponding
rates in the EFM have been presented using a minimiza-
tion algorithm of the weighted root mean squared error
(RMSE) (Soons et al., 2010), but the implementation was
only conducted in steady state, whereas microbial cultures
change dynamically. In this study, growth experiments in
spent sulphite liquor (SSL) of C. glutamicum strain were
investigated in a fed-batch reactor, where the SSL source is
from Borregaard a commercial plant in Sarpsborg, Norway.



The stoichiometric matrix and the metabolic network were
constructed considering the assimilation pathways of SSL.
The elementary flux modes were obtained using the efm-
tool (Terzer and Stelling, 2008). The process and metabolic
models were linked through a tracking optimization rou-
tine to define the temporal active set of elementary flux
modes throughout the culture. We test our optimization
method with culture fed industrial mixture of sugars that
have not been considered due to its inherent complexity.

2. MATERIALS AND METHODS

C. glutamicum ATCC13032 (pVWEx1-manA)(pEKEx3-
xylAB) was used in this study, and precultures were pre-
pared as outlined in (Sinner et al., 2020). For growth ex-
periments the bacteria were plated out from glycerol stocks
on 2TY agar plates and incubated at 30 ◦C. Thereby
obtained single colonies were then used to inoculate 5
mL precultures (2TY medium) (Sambrook et al., 2001) in
glass reaction tubes and incubated at 30◦C and 250 rpm
for 12 h before they were transferred to 1 L shake flasks
containing 100 mL CGXII minimial medium (Eikmanns
et al., 1991) with 10 g L-1 glucose and 0.5 mM IPTG for
another 12 h. The bacteria were separated from the broth
by centrifugation at (4000 g, 10 min), and used for the
inoculation in the bioreactor to reach an initial optical den-
sity at 600 nm of one. Labfors 5 (Infors, Switzerland) were
used with a 5 L max working volume. The initial working
volume was 3.0 L. The bioreactor batch had an initial
optical density of unity, the medium contained CGXII
medium (without urea and MOPS), supplemented with 5
% v/v ultrafiltrated SSL (UF-SSL) as carbon source, 50 µg
mL−1 kanamycin sulfate and 100 µg mL−1 spectinomycin
dihydrochloride and 1 mM IPTG. Temperature was kept
at 30 °C and culture pH was controlled at 6.5 by addition
of 6 M ammonium hydroxide and 1 M phosphoric acid.
Dissolved oxygen was controlled above 30 % by a cas-
caded adaption of stirrer speed (400 to 1200 rpm), gassing
rate (0.5 to 2 vvm) and oxygen concentration (20.95 to
60 % (v/v)) by supplementing pressurized air with pure
oxygen. Fed-batch phase was initiated upon substrate de-
pletion indicated by a drop in CO2 off-gas concentration
(see Section 2.1) below 0.25 %. UF-SSL, supplemented
with 1 mM IPTG, was used for feeding with specific growth
rate setpoints in the range of 0.01 to 0.12 h−1. All sensor
data were stored and managed by Lucullus (Securecell,
Switzerland).

2.1 Measurements

The biomass specific rates were calculated under usage of
a simple material balance equation for the corresponding
component. The best constant reaction rate between two
measurement points were determined by Nelder Mead
optimization (MATLAB 2020a: fmin). To determine the
uncertainty, rate calculations were repeated 500 times by
a Gaussian sampling procedure from the measurement
uncertainties. CO2 and O2 concentrations in the off-gas
were measured by infrared and zirconium dioxide sensor
modules in a BlueInOne Ferm gas analyzer (BlueSens
GmbH, Germany). During the experiment, carbon evo-
lution (CER) and oxygen uptake (OUR) rates were de-
termined with the inflow and outflow concentration differ-

ences. Biomass dry cell weight was determined gravimetri-
cally by centrifuging 1.8 mL culture broth at 10000 rpm for
10 min at 4 °C, washing the biomass pellet with phosphate
buffered saline and drying the washed pellet in pre-weighed
sample tubes at 105 °C for 72 h. Sugars were measured
from a filtrated sample by a HPLC procedure implemented
on a Thermo Scientific Ulti Mate 3000 with a VA 300/7.8
NUCLEOGEL® Sugar Pb column. The mobile phase was
deionized water with a flow rate of 0.4 mL min−1 HPLC,
and at a temperature 80 ◦C. The refractive index (RI)
detector Shodex RI-101 monitored the signals.

Matlab (Mathworks Inc.) was used for simulations, model
fitting and to solve the nonlinear least squares problem
that minimized the difference between the experimental
flux data and the data obtained from the elementary flux
matrix. For this we computed the euclidean difference
between the experimental data and the in-silico EFM data
(Schuetz et al., 2007). The efmtool was used to obtain
the EFM (Terzer and Stelling, 2008). Integration needed
for simulations and the sensitivity analysis was conducted
with Runge Kutta algorithm ode45.

3. RESULTS

3.1 Bioreactor procedure

Microbial systems consists of a vector of x states, u inputs,
p parameters, time t and observations y, with the following
general non-linear form:

ẋ(t) = f(x(t),u(t),p) (1)

y(t) = g(x(t),p) (2)

During the experiments, the concentration of sugars and
biomass were measured, and the uptake rates could be
estimated. The general bioreactor mass balances are:

V̇ = Fin − Fout, Ẋ = −XFin
V

+ µX

ṡ = (sin − s)
Fin
V
− qsX, Ṗ = −PFin

V
+ qPX

˙cX = cẊ +X ċ = (N · q)X (3)

Where the model states are the volume (V ), biomass
(X), a vector of substrate (s), products (P), and internal
metabolites (c). The system has an inlet flow (Fin), with a
sugar concentration (sin), an outlet flow (Fout), the specific
growth rate (µ), a vector of specific substrate uptake rates
(qs), intracellular specific flux (q) the specific product
formation (qp), and the stoichiometric matrix (N) with
m metabolites in r reactions. A summary of uptake rates
considered in this study are in Table 1 (Sinner et al., 2019,
2020), and the model parameters are in Table 2.

The total sugar uptake rate (qSSL) takes into consideration
the SSL mol composition, where (MMglc,MMxyl,MMMan)
corresponds to the molar mass of glucose, xylose and
mannose, respectively, and the molecular weight of C. glu-
tamicum is MMC.glutamicum = 107.5 gmol−1 (Vallino and
Stephanopoulos, 1993). We took into account the previous
sugars because this genetically modified strain is capable
of metabolizing them. Since we link the process model
to the metabolic model, the process model sugar uptake



Table 1. Summary of uptake rates

Uptake rates
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qSSL = qS1

4.9·10−2·MMGlc
+ qS2

8.1·10−2·MMxyl
+ qS3

1.54·10−1·MMMan

rates were normalized with respect to the SSL uptake rate,
a common procedure metabolic model computations, for
instance:

qSSLglc =
qGlc
qSSL

, qSSLµ =
µ

qSSL ·MMCglutamicum

qSSLOUR =
OUR

X · V · qSSL
, qSSLCER =

CER

X · V · qSSL
(4)

Table 2. Process model parameters.

Parameter Value Unit Uncertainty

qGlc 0.176 g · g−1 · h−1 ±0.27%
qXyl 0.11804 g · g−1 · h−1 ±1.3%
qMan 0.20558 g · g−1 · h−1 ±1.2%
KGlc 0.0017 g · L−1 ±12.9%
KXyl 1.1167 g · L−1 ±2.15%
KMan 0.92684 g · L−1 ±1.7%
YXS1

0.55984 g · g−1 ±1.7%
YXS2

0.32163 g · g−1 ±4.1%
YXS3

0.42737 g · g−1 ±4.6%
SGlc−in 46.07 g · L−1 ±25%
SXyl−in 126.35 g · L−1 ±25%
SMan−in 69.98 g · L−1 ±25%

MCmol−S1,2,3
30.03 [g · Cmol−1] −

MCmol−X 27.28 [g · Cmol−1] −
DORO2

-4 [mole− · Cmol−1] −
DORS1,2,3

4 [mole− · Cmol−1] −
DORX 4.18 [mole− · Cmol−1] −

Figure 1 presents the results of the experimental fed-batch
C. glutamicum culture (in black dots, and gray confidence
area), and the results of the process model after parameter
estimation (blue lines, blue area). The process has a non-
linear behaviour of biomass growth and sugar consumption
in SSL as a function of time. The CDW values increased
during the batch phase followed by a short steady state in
the biomass when sugar were depleted (time 25-35 hr).
The subsequent fed-batch phase of the process further
increased the biomass concentration. An exponential sub-
strate feeding started when the CO2 concentration was
below 0.25%, and the SSL inlet feeding triggered a new
growth phase. The OUR and CER signals increased during
the batch and the feeding phases, exhibiting typical fed-
batch process dynamics (Paczia et al., 2012). During the
batch phase, glucose, xylose and mannose were consumed
consecutively, as discussed in previous publications (Sinner
et al., 2020, 2019). Microbial growth rate was found to be
highly variable during the process (black dashed in Figure
2 calculated from the experiments, blue dashed from model
simulations), and was highest during high glucose concen-
trations. Uptake rates of xylose and mannose (expressed

Fig. 1. Fed-batch experimental data of cell dry weight
(CDW), sugars concentrations, oxygen uptake rate
(OUR) and carbon evolution rate (CER). The black
circles correspond to the measured values with confi-
dent intervals (CI) in gray area. The simulations with
the model are represented with blue dashed lines, and
the CI of the model with a blue area.

by grams sugars per gram SSL per hour) were highly
variable during the process, with mannose exhibiting its
high uptake rate following glucose depletion.

Fig. 2. Microbial growth rate (µ) and specific uptake rates
as a function of time.

When the uptake rates of the different sugars were nor-
malized with the rate of the SSL (qSSL) and computed
the confident intervals (CI) of these ratios (Figure 3), it
was found that the CI were largest in the start of the
batch phase when the biomass is lowest (due to large CDW
measurement error) but also when the individual sugars
were depleted (glucose, mannose and xylose). Moreover,
xylose exhibits large CI regions during most of the process,
implies uncertainty in the uptake calculations of xylose.
Due to this high uncertainty from the measurements, we



propose in this study to use the process model to estimate
the normalized uptake rates.

Fig. 3. Experimental normalized uptake rates as a function
of time during the process. The dashed lines represent
the value of the relative fluxes, and the gray area
correspond to the confidence intervals.

3.2 Elementary flux mode analysis

Metabolic steady state implies constant metabolite con-
centrations as a function of time (ċ = 0), and the
quasi-steady state (QSS) of the internal metabolites is
(Ben Yahia et al., 2017):

ċ ≈ 0⇒ 0 = N · q + (
Fin
V
− µ)c

(µ− Fin
V

)c = N · q (5)

Assuming, the order of magnitude of cell growth and
dilution are smaller than the flux contribution, Equation
5 becomes (Zupke and Stephanopoulos, 1995):

0 = N · q (6)

where N ∈ Rmxr where m is the number of metabolites,
and r are the number of reactions, and the vector of rates
is q ∈ Rrx1. The solution of Equation 6 corresponds to the
admissible flux space which form the unique convex basis
of the polyhedral cone (Rockafellar, 1970). The nonzero
vectors of the flux cone are the EFM. The EFM are defined
by a set of vectors q that describes the net flux rate of
the corresponding reaction. The convex polyhedral cone is
denoted as the flux cone (FC) of flux vectors that satisfy
Equation 6, with some irreversibility reaction constraints
(Irr) (Klamt et al., 2017; Gagneur and Klamt, 2004):

FC = {q ∈ Rn | N · q = 0, qi ≥ 0 for i ∈ Irr} (7)

The matrix of EFMs (E = qr,k) has r reactions (rows) and
k elementary modes (columns):

E = [q1, q2, ..., qk] (8)

Firstly, we proceed with the metabolic representation
of the metabolic network (Wittmann and Lee, 2012).
Secondly, the stoichiometric matrix N was defined, and

the EFM matrix was calculated solving Equation 6 (Orth
et al., 2010) with the efmtool (Terzer and Stelling, 2008).
Table 3 presents the number of metabolites, reactions,
stoichiometry, and the EFM size.

Table 3. EFM analysis

Metabolites 53 Stoichiometry 53x63
Reactions 63 Number of EFMs 63x18901

The EFM matrix E presents all the potential rates that
can be obtained from the metabolic model (Table 3),
although these rates are not necessarily active during the
actual process. The metabolic model is static, describing
all the possible reaction that can occur, whereas at any
given time during the process some reactions can be active
and others inactive (representing zero flux through the
reaction). In our case study, it implies that the matrix E in
Equation 8 is a matrix that contains 63 reactions (rows)
and all the possible combinations (modes, in columns),
each representing a solution, i.e. potential uptake rate
vector. Because the number of solution can be large (Table
3 presents 18901 solutions), the aim is to develop an
algorithm that can narrow down the number of solutions
to relevant ones during a given time. Figures 4 a-c rep-
resent several two dimensional projections of the uptake
rates that were calculated by the EFM algorithm and
obnained by the corresponding r-reactions (rows) and k-
modes (columns) of the matrix E (black dots). The projec-
tions include product formation as a function of biomass
production from SSL (Figure 4a), O2 consumption as a
function of CO2 production from SSL (Figure 4b), and the
biomass formation as a function of CO2 from SSL (Figure
4c). In each projection, these calculated rates define the
theoretical span of the possible (feasible) values that these
rates can be in the microbial cell factory. Interestingly,
when plotting the same rate projections of the qi values
from the process model (red dots), we find that they are
located within the same regions of the theoretical EFM
from the corresponding rows of matrix E (black dots),
which serves as a validation. Firstly, since the cell facto-
ries are not producing the product (peptide), the process
model data (red dots) lie on the qpep = 0 axis (Figure 4a).
The O2 consumption and CO2 production follow a linear
relationship, for both, the EFM results and the process
model equation, and that the stoichiometric model and the
process model are in agreement with respect to linearity in
the respiratory coefficient (RQ = CO2−produced

O2−consumed ). Finally,
biomass formation as a function of CO2 production is
constrained and defined in a region. Hence, consistency
between the result of the complete elementary flux matrix
and the process model was observed in the phase plot
diagrams.

3.3 Optimization Procedure

As was mentioned before, the aim is to develop an opti-
mization algorithm that confine the number of solutions to
the most relevant ones at any given time during the pro-
cess. The optimization procedure minimizes the difference
between the output of the reaction (r) relative uptake rate
from the elementary flux matrix E (Equation 8), and the
r-relative uptake rates estimated from the process model.



Fig. 4. Phase plot diagrams (a-c) from the EFM (black
dots), and model simulation (red dots). d) Objective
function as a function of EFM.

The optimization problem computes at each time T the
closest modes from the EFM matrix E that minimize:

min
k∈Rnk

JKT =
∑
r

(qSSL
rprocess

−qSSL
k,rEFM

)2

max(qSSL
rprocess

)

s.t. N · q = 0
(9)

where the k modes from the E matrix (qSSLk,rEFM
) and their

r-reaction equivalent from the process model (qSSLrprocess).
Figure 4d presents the euclidean difference between pro-
cess model and different modes in the EFM matrix. Then,
a selection of (nL) modes that have the lowest numerical
value in Equation 9 is done, and an average value (qav−L)
of the reactions with the modes selected:

qav−L =
∑
L

qSSLk,rEFM

nL
(10)

The EFM matrix and the process model were linked
through the optimization algorithm. Figure 5 presents
the uptake ratio of glucose, xylose, mannose, O2 and
production of biomass and CO2. The computed optimized
solution (green lines) is the average of the closest modes
obtained from the optimization procedure with Equation
9. The results follow the process model (blue line), and the
normalized fluxes computed by the optimization problem
follow the rates obtained from the experiments.

The non-redundancy in the stoichiometric matrix can be
evaluated through the pseudo inverse of the stoichiometric
matrix. For that, a metabolic flux analysis (MFA) and a
multiple linear regression (MLR) were conducted, but a
non-unique solution was found for the MFA and the result
presented not finite confidence intervals in the MLR.

The resulting r reaction rates from the optimization prob-
lem as functions of the process time can be represented
as a heat map (Figure 6). The data was normalized with
respect to their own maximum in the process allowing to
compare the simulation through the microbial culture. The
heat map derives information on the dynamics of the cellu-
lar and metabolic activities of the cell factories during the
bioprocess. This information is not obtained by the static

Fig. 5. Ratio of uptake rates. The results show in blue lines
the model simulation and in blue area the confidence
interval for the simulation. The green line corresponds
to the average from the solution of the optimization
problem from the EFM selection, and the green area
is the standard deviation of the selected modes.

metabolic flux analysis (Eq. 6). Most importantly, the
well stablished 13C methods to obtain temporal metabolic
states from experiments require a defined medium, de-
riving experimental data, for instance by using of this
dynamic on the cellular metabolic state is challenging,
and compared to other studies, this study is in a complex
mixture of sugars, and it is a limitation for the 13C method.

4. CONCLUSIONS

The estimation of the relative uptake rates throughout
a culture was conducted using a process model and an
tracking optimization function. The objective function
minimized the difference between process and the matrix
of the elementary flux analysis, and it estimated the flux
distribution in the bioreactor, the proposed procedure can
be complemented with dedicated 13C experiment when
required.
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