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Abstract: Dynamic process models are a key requirement for advanced process control and
the application of process optimization techniques. The derivation of these models is time
consuming and error-prone in cases where a lack of physico-chemical understanding is present.
Machine learning (ML) methods can be employed in these cases to extract models or model
elements from data. To reduce the amount of necessary data and to increase the extrapolation
capabilities, gray-box models can be used that combine mechanistic equations with ML models.
For embedded ML-models, the selection of a suitable model structure is challenging. Therefore,
we propose a methodology to approach this problem in several steps by firstly estimating what
values the ML-models should predict to accurately describe the experimental data. Subsequently,
the ML-submodels can be trained using any ML-toolbox. Finally, a full parameter estimation is
performed using a dynamic simulation in the cost function. We investigate different algorithmic
options and show promising results for a case study of the fermentation of a sporulating
bacterium.
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1. INTRODUCTION

Gray-box modeling denotes the combination of models
based on mechanistic knowledge, so-called white-box mod-
els, together with models based on data, so-called black-
box models. The motivation of this approach lies in com-
bining the favorable properties of the two extreme cases.
This includes a physical interpretability of the results as
well as the usage of the black-box submodels to extract
knowledge from data in cases where the underlying phe-
nomena are unknown or too difficult to model.
Gray-box models have been previously applied in many
cases. Over the years work has been focused on the ap-
plication to discrete-time models in various domains, as
chemical processes (Tulleken (1993)), fermentation pro-
cesses (Niu et al. (2013)) and hydrodynamic river mod-
els (Sohlberg and Sernfält (2002)). Nowadays, techniques
like augmented recurrent neural networks have also been
proposed for gray-box modeling in discrete time, see Halm-
schlager et al. (2019).
Recent work also addressed the development of continuous
time gray-box models, in which the black-box part rep-
resents an embedded variable within a set of differential
equations. In this case, initializing a machine learning
(ML) model and estimating the parameters using the sim-
ulation of the differential equations for the evaluation of
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the cost function is a difficult task. This is because it is not
a priori clear, what ML model structure is suitable for the
problem at hand and because the adaptation of all model
parameters at once is not effective without proper initial-
ization. Therefore, the problem should be approached in
a step-wise fashion. The first step entails the estimation
of input-output data of the embedded black box model
or models. After such an input-output/ feature/ training
data set has been estimated, an analysis of the model can
be performed, and the black-box models can be trained
on the estimated data. In some recent work, the model
was applied after this training step, while in other cases a
full dynamic parameter estimation step was performed. An
overview over these approaches is given in the following.
Scheffold et al. (2021) use a state estimator for the esti-
mation of the training data. They set up a model using
symbolic regression by finding suitable basis functions,
that are linearly combined to give the model predictions.
The model is applied in model predictive control to control
a polymerization semibatch reactor without full dynamic
parameter estimation.
In the work by de Prada et al. (2018), a data-estimation
technique similar to the one used in this work is proposed.
A piecewise constant function describing the growth of
biomass in a fermentation process is estimated, which in
this case leads to a quadratic optimization problem (QP).
This is due to the fact, that the differential equations are
linear with respect to the embedded variables. They use
the ALAMO toolbox for surrogate model construction and
show the successful application to the ABE fermentation



process.
Hebing et al. (2020) consider the rate estimation problem
of kinetic rates in a fermentation process. They reformu-
late the optimization problem for data estimation into a
quadratic form where they first estimate the stoichiometric
constants by an analysis of the cell internal metabolism.
In contrast to de Prada et al., Hebing et al. use a piecewise
linear dependency on time and at the end perform a full
dynamic parameter estimation.
In this work we extend these approaches in two directions.
Firstly, we consider a non-linear system as e.g. the de-
pendency on the substrate concentration is included. This
has the drawback that the problem has to be solved using
non-linear programs together with a solver for differential
equations. This leads to the need for a suitable initial value
generation strategy.
The second extension is the analysis of the reliability of
the estimated data by means of a sensitivity analysis.
The rest of this paper is structured as follows. Section 2
deals with the description of the methodology for creating
dynamic gray-box models in a non-linear setting. Section
3 contains the description of the simulation model that is
used as a case study for data-generation. In section 4, the
results of the application of the methodology to the case
study are presented. Finally, section 5 concludes the work
and gives an outlook on future research.

2. MODELING METHODOLOGY

Our methodology assumes the existence of a structured
finite-dimensional model that is given as a system of
differential algebraic equations (DAE) as

ẋ = fΘ(x, z,u,ϕ) (1)

0 = gΘ(x, z,u,ϕ) (2)
Here x ∈ Rnx denotes the state vector, z ∈ Rnz the vector
of algebraic variables and u ∈ Rnu the vector of input
variables. The right hand sides of the differential equations
f and the set of algebraic equations g depend on a set of
parameters Θ ∈ RnΘ .
The goal of the methodology besides estimating the pa-
rameters Θ is to find a machine learning (ML) model of the
embedded dependent variables ϕ ∈ Rnϕ for which there is
no known mechanistic relationship. Specifically, we do not
assume that there is feature data of ϕ available.
The basis of the data-based modeling is a data set consist-
ing of

• the values of some output (measured) variables
{yexpi,j,k} = Y exp ∈ Rny×nexp×nsamp and

• the values of the input variables
{uexp

i,j,k} = U exp ∈ Rnu×nexp×nsamp at each of the
• known sampling times

{texpj,k } = T exp ∈ Rnexp×nsamp as well as
• the values of the initial states

{x0,exp
i,j } = X0,exp ∈ Rnx×nexp ,

which were collected by performing nexp experiments. Here
the vector of outputs y is related to the state vector x and
to the vector of algebraic variables z by the known relation
h as

y = h(x, z). (3)

Without loss of generality, we assume that nsamp data
points have been collected for each of the ny outputs in
every experiment. Additionally we assume that the initial
states for each experiment are known. If this data is not
available, the proposed methodology can still be applied,
but the subsequently discussed optimization problems
have to be adjusted to also include the unknown initial
states as decision variables.
A conventional approach to the problem is to intuitively
guess the model structure of ϕ. To this end, an estimation
of the set of descriptors d ⊂ {x, z,u} is needed. These
descriptors are the subset of the state, algebraic and
input variables that serve as independent variables for the
embedded dependent variables, such that ϕ = ϕΘML

(d).
In this notation ΘML denotes the ML-model parameters.
With ϕ defined, the full dynamic parameter estimation
problem shown in (4) can be solved using suitable initial
values for both the set of parameters of the DAE system
Θ, and the set of parameters of the ML model ΘML.

min
Θ,ΘML

J
(
Y exp, Ŷ

)
s.t. ẋ = fΘ

(
x, z,u,ϕΘML

(d)
)

0 = gΘ

(
x, z,u,ϕΘML

(d)
)

xi(tj,0) = x0,exp
i,j ∀ i = 1, . . . , nx

j = 1, . . . , nexp

ŷ = h(x, z)
(4)

In this formulation, the inputs u(t) are selected from
the available input data U exp. The objective function
describes the deviation from the experimental data as

J
(
Y exp, Ŷ

)
=

1

ny

ny∑
i=1

1

nexp

nexp∑
j=1

1

nsamp

nsamp∑
k=1

r2i,j,k. (5)

ri,j,k denotes the residuals
ri,j,k = yexpi,j,k − ŷi(t

exp
j,k ). (6)

This approach comes with multiple challenges. Firstly, it is
difficult to guess on the one hand the ML-model structure
of ϕ and on the other hand the set of descriptors d without
any knowledge of the complexity of the relationship it is
used to represent. Therefore, multiple iterations of trial
and error are necessary, where for each assumed model
structure and each set of descriptors the optimization
problem shown in (4) has to be solved.
Secondly, this parameter estimation problem is difficult
to solve, since the parameters of the ML-model ΘML

have to be randomly initialized as they have no physical
meaning. The set of DAEs might therefore not be stable,
which is problematic for the numerical integration and the
initial values might lie far from the optimal solution. This
together with the fact, that in ML-models usually large
parameter sets are used, leads to significant problems.
Therefore, we propose a step-wise procedure motivated
by work of Hebing et al. (2020) on gray-box modelling
of biotechnological processes based on dynamic metabolic
flux analysis (DMFA). An overview over the steps of our
methodology is given in Fig. 1.
After determining the gray-box model structure in steps

1 and 2 the modeling process is decomposed by firstly
estimating training data for the adaptation of the ML
models in step 3. This data defines the values of the ML-
model outputs ϕ for given values of states x, algebraic



Fig. 1. Visualization of the methodology

variables z and inputs u.
Using this set of feature data, the set of descriptors is
obtained in step 4 by analyzing the correlation of ϕ to
{x, z,u} together with physical understanding. A suit-
able ML-model structure can be found by using any ML
toolbox or automated procedures as hyperparameter op-
timization. By performing the training of the ML model
for the estimated data, a first estimate of the ML model
parameters becomes available as a result of step 4.
After the set of descriptors d and the ML-model structure
of ϕ have been determined and suitable initial values for
the ML-model parameters ΘML are available, the full
dynamic parameter estimation (4) can be solved relatively
easily, which is denoted as step 5.
The rest of this section deals with the details that are
involved in the different steps. In section 2.1, the proposed
procedure to generate the feature data is described. Sec-
tion 2.2 entails how regularization can be used to prevent
overfitting in this context.

2.1 Time explicit reformulation

For the estimation of the training set the proposed ap-
proach follows the one applied in Hebing et al. (2020).
To remove the dependency on a priori decisions regarding
model structure, discriptors and ML-model parameters,
the embedded variables are replaced by counter parts that
depend explicitly on time only: ϕΘML

(d) → ϕ̃(t).
A continuous piecewise linear structure is chosen for the
dependency of the embedded variables ϕ̃(t) on time, as
shown in (7). This provides more flexibility compared to
the method of de Prada et al. (2018), who use a piece-
wise constant function of time. Using a continuous linear
function has two advantages. Firstly, since the embedded
variables are modeled as continuous functions, this is closer
to the underlying relationship ϕΘML

(d). Secondly, if a
piecewise linear function is used, interpolation in time can
be applied to expand the training set significantly without
creating artefacts. Other continuous functions, e.g. higher
order polynomials, could also be used but are more prone
to overfitting.

ϕ̃i(t) =
ϕ̃i,j,k+1 − ϕ̃i,j,k

tj,k+1 − tj,k
(t− tj,k) + ϕ̃i,j,k t ∈ [tj,k+1, tj,k]

(7)

The values at the ”knot points” ϕ̃i,j,k are degrees of free-
dom, that are represented by the matrix Φ̃ = {ϕ̃i,j,k} ∈
Rnϕ×nexp×nsamp . They are determined by solving the train-
ing set estimation problem:

min
Φ̃, Θ

J
(
Y exp, Ŷ

)
+ λ Reg

(
Φ̃
)

s.t. ẋ = fΘ (x, z,u, ϕ̃(t))

0 = gΘ (x, z,u, ϕ̃(t))

xi(tj,0) = x0,exp
i,j ∀ i = 1, . . . , nx

∀ j = 1, . . . , nexp

ŷ = h(x, z).

(8)

In this optimization problem, the embedded variables ϕ
are replaced by the corresponding time-explicit functions
ϕ̃.

2.2 Regularization for robustness

As the set of all values at the knot points Φ̃ contains many
degrees of freedom, possibly more than the number of data
points in Y exp, regularization is applied by adding the
term Reg(Φ̃) to the cost function, weighted by the param-
eter λ. The regularization is applied for each experiment
and for each embedded variable separately as shown in
equation (9).

Reg
(
Φ̃
)
=

1

nϕ

nϕ∑
i=1

1

nexp

nexp∑
j=1

regi,j (9)

There exists a multitude of ways to conduct regulariza-
tion for this type of problems. An overview over some
frequently used formulations is shown in Table 1.

Any combination of these terms is possible, similar to
elastic net regression, see Fahrmeir et al. (2007). This can
lead to favorable results as shown by Scheffold et al. (2021).
Due to the fact that the optimization problem (8) is high-
dimensional and possibly strongly nonlinear, a method-
ology for finding good initial values is crucial to avoid
getting trapped in local minima and long computation
times. We propose to firstly solve (8) for a constant value
of ϕ̃ without regularization. The resulting values can be
used as suitable initial values. It should be noted that for



Table 1. Overview over commonly used regu-
larization formulations for estimating dynamic

data
Kind of
regularization

Equation

Differential L2 regi,j = 1
nsamp−1

∑nsamp

k=2

(
ϕ̃i,j,k−ϕ̃i,j,k−1

tj,k−tj,k−1

)2

Differential L1 regi,j = 1
nsamp−1

∑nsamp

k=2

∣∣∣ ϕ̃i,j,k−ϕ̃i,j,k−1

tj,k−tj,k−1

∣∣∣
Absolute L2 regi,j = 1

nsamp

∑nsamp

k=1

(
ϕ̃i,j,k

)2
Absolute L1 regi,j = 1

nsamp

∑nsamp

k=1

∣∣ϕ̃i,j,k

∣∣
large sets of experimental data and complex processes, a
good initialization is crucial.
The solution of the optimization problem (8) is denoted
as Φ̃

∗
and Θ∗. The values Φ̃

∗
correspond to the simulated

values of states X̂
∗

and algebraic variables Ẑ
∗
, along with

the inputs U exp.
A larger training set can be generated by interpolating
the values of Φ̃

∗
in time and simulating the differential

equations to obtain X̂
∗

and Ẑ
∗
.

After solving the optimization problem in (8), a sensitivity
analysis is performed in order to analyze which values in
Φ̃ have a strong influence on the objective function. The
main idea behind this approach is to avoid the presence
of decision variables that take arbitrary values as they
do not change the model fit but influence the following
analysis of the model. The set of sensitivities {σ̃i,j,k} =

Σ̃ ∈ Rnϕ×nexp×nsamp is computed as is shown in (10) by
taking the derivative of the residuals, which are defined in
(6) with respect to the values at the knot points of the
piecewise functions. Taking the absolute values ensures
that no cancellation of positive and negative influences
occurs.

σ̃i,j,k = ¯̃ϕ∗
i

1

ny

ny∑
i′=1

r̄i′

nexp

nexp∑
j′=1

1

nsamp

·
nsamp∑
k′=1

∣∣∣∣∂ri′,j′,k′

∂ϕ̃i,j,k

∣∣∣∣
∣∣∣∣∣
Φ̃

∗
,X̂

∗
,Ẑ

∗
,Uexp

(10)

Here, ¯̃ϕ∗
i , the mean value of the optimal values of the

embedded variables is used for normalization, as defined
in (11). r̄i′ is the mean absolute residual of output i′ as
shown in (12).

¯̃ϕ∗
i =

1

nexp

nexp∑
j′=1

1

nsamp

nsamp∑
k′=1

ϕ̃∗
i,j′,k′ (11)

r̄i′ =
1

nexp

nexp∑
j′=1

1

nsamp

nsamp∑
k′=1

|ri,j′,k′ |

∣∣∣∣∣
Φ̃

∗
,X̂

∗
,Ẑ

∗
,Uexp

(12)

It is worth noting that the derivative is not computed
for the second part of the objective function Reg

(
Φ̃
)

as
the regularization term depends on ϕi,j,k regardless of its
importance for describing the experimental data.
These sensitivities can be applied as a filter to generate a
filtered set of values of the embedded variables Φ̃

∗,filt
=

{ϕ̃∗
i,j,k|σ̃i,j,k > εi, i = 1 . . . nϕ, j = 1 . . . nexp, k =

1 . . . nsamp}. Analogously X̂
∗,filt

, Ẑ
∗,filt

, U exp,filt are
obtained.

The sets Φ̃
∗,filt

, X̂
∗,filt

, Ẑ
∗,filt

, U exp,filt are the basis
for finding a relationship for ϕ(d). Any ML-toolbox and
correlation analysis tool can be used to this end.
To improve the model accuracy, the obtained parameters
of the ML model ΘML are used as initial values to solve
the full dynamic parameter estimation problem (4) with
the chosen ML model structure.

3. SIMULATION STUDY: FERMENTATION OF A
SPORULATING MICROORGANISM

In this work we consider the case study of the fermentation
of a sporulating Bacillus micro organism. Neglecting both
(side-)product formation and the time delay between the
beginning and the end of the sporulation as well as
concentrating only one limiting substrate, the process can
be described using three state variables

• Xv: Concentration of vegetative cells that undergo
both growth and sporulation,

• S: Concentration of the limiting substrate that is
needed for the growth reaction and

• Xs: Concentration of sporulated cells that are the
product of the sporulation process.

The overall reaction system can be summarized as shown
in (13)

S
rg−−−−→

growth
Xv

rs−−−−−−−→
sporulation

Xs. (13)

Here, rg denotes the growth and rs the sporulation reac-
tion rate. With these reaction rates and states, a system
of ordinary differential equations (ODE) arises, which is
discussed in the next section.

3.1 Differential model of the case study

Introducing stoichiometry, the system of ordinary differ-
ential equations can be inferred as shown in (14)-(16).

Ẋv = rg − rs (14)
Ṡ = −rg Y −1

X/S (15)

Ẋs = rs, (16)
The stoichiometry is here introduced by the yield coeffi-
cient YX/S . The two reaction rates rg and rs are described
by introducing inhibition terms as shown in (17)-(18)

rg = µmax µ̃T (T ) µ̃S(S) Xv (17)

rs = ks,max k̃s,T (T ) k̃s,S(S) Xv. (18)
Here, µmax describes the maximum value of the reaction
rate constant, which is inhibited by both the temperature
T and the substrate concentration S as described by the
functions µ̃T (T ) and µ̃S(S). Similarly, the inhibition of
the maximum sporulation rate ks,max is described with
k̃s,T (T ) and k̃s,S(S). Both reaction rates are assumed to
depend on the vegetative cell concentration with first order
kinetics as shown in (17)-(18).
The measured outputs are provided by three different
measurements: the total cell concentration Xt and the con-
centrations of the spores and of the substrate. Therefore
the function h is linear in this case and defined as follows:



Fig. 2. Inhibition terms for the sporulation rate (dashed
line) and the growth rate (full line)[
Xt

Xs

S

]
= y = h(x) =

[
1 1 0
0 1 0
0 0 1

]
x =

[
1 1 0
0 1 0
0 0 1

][
Xv

Xs

S

]
(19)

The following section describes the inhibition terms re-
garding temperature and substrate in more detail.

3.2 Temperature and substrate inhibition

The temperature inhibition of the growth reaction is
modeled by the general assumption of a positive and a
negative influence as shown in (20), taken from Bastin and
Dochain (1990)

µ̃T (T ) = a1 exp

(
−E1

RT

)
− a2 exp

(
−E2

RT

)
. (20)

In this equation, a1, a2, E1 and E2 are parameters while
R denotes the universal gas constant.
For sporulation rate inhibition, a model from Baril et al.
(2012) is used, which depends on the minimum, maximum
and optimum temperatures Tmin, Tmax and Topt as well
as on a shape parameter n.

k̃s,T (T ) =
(T − Tmax)(T − Tmin)

n

(T − Topt)n−1 ((Topt − Tmin)(T − Topt)− aT )
(21)

with
aT = (Topt − Tmax) ((n− 1)Topt + Tmin − nT ) .

Both functions of temperature and substrate inhibition are
shown in Fig. 2.
In this figure, it can be seen that both temperature inhibi-
tion terms show a local maximum in the temperature range
of 25 to 40 °C, the sporulation rate decreases substantially
at both high and low temperatures. The temperature of
maximum growth is higher than for maximum sporulation.
The inhibition of the substrate concentration is modeled
as shown in (22)-(23) with relations taken from Das and
Sen (2011) and Atehortúa et al. (2007).

µ̃S(S) =
S

1 +
∑n

i=1 AiSi
(22)

k̃s,S(S) =
1

1 + eGS(S−PS)
− 1

1 + eGS(S′−PS)
(23)

The resulting functions are shown in Fig. 2.
The growth rate vanishes at low substrate concentrations
and saturates at around 10 g/l. With more substrate, an
inhibition of the growth is observed.
For the sporulation rate, the maximum is observed when
no substrate is present, as this induces stress in the
cell metabolism leading to a high rate of sporulation.
Even at low substrate concentrations of about 5 g/l, the
sporulation rate is strongly inhibited.

4. RESULTS

The methodology presented in section 2 is applied to the
simulated case study from section 3. Data was generated
by performing 5 virtual experiments, nexp = 5. In each
of these experiments, the differential equations (14)-(16)
were simulated from a random initial composition and
temperatures that were random but constant for each
experiment. For the generation of the initial values, the
concentration of sporulated cells Xs was kept at zero,
while both the concentrations of vegetative cells and
substrate were varied in realistic ranges. 20 samples were
collected for each experiment, thus: nsamp = 20. After the
simulation, the output values were disturbed by simulated
measurement noise computed from (24) with additive
normally distributed noise as shown in (25).

σ2
meas(y

exp,no noise
i,j,k ) = (α+ β yexp,no noise

i,j,k )2 (24)

yexpi,j,k = yexp,no noise
i,j,k +N (0, σ2

meas) (25)
To create a dynamic gray-box model that describes the ob-
tained experimental data accurately, the following model
structure is proposed.

˙̂
Xv = ϕ1 X̂v Ŝ − ϕ2 X̂v (26)
˙̂
S = −ν ϕ1 X̂v Ŝ (27)
˙̂
Xs = ϕ2 X̂v (28)

This is a gray-box model structure as domain knowledge
is integrated into these equations:

• the presence of three states: X̂v, X̂s, Ŝ
• the presence of two reactions: r̂g = ϕ1 X̂v Ŝ, r̂s =

ϕ2 X̂v

• a first order dependency of the growth reaction wrt.
vegetative cells and substrate

• a first order dependency of the sporulation reaction
wrt. vegetative cells

What is missing in this model is the kinetic relationship
that is described by the embedded variables ϕ1 and ϕ2, i.e.
how these variables depend on the states and the inputs,
in this case the temperature. Additionally, the value of
the stoichiometric constant ν is unknown and therefore
represents the set of parameters Θ.
The following sections describe how, using the proposed
methodology, knowledge about these relationships can be
obtained.

4.1 Effect of the regularization on the training set

In order to estimate a training set for analysing the em-
bedded variables ϕ1 and ϕ2, the optimization problem in
(8) is setup in CasADi (Andersson et al. (2019)) using
CVODES (Hindmarsh et al. (2005)) and solved to get Φ̃

∗

and Θ∗, along with the corresponding set of inputs, states
and outputs. The results of this optimization problem are
shown in Fig. 3. Every set of colored lines corresponds to
solving the optimization problem once, with varying values
of λ. To keep the values of λ comparable, λ2 is applied,
when L2 regularization is considered.
In this figure, in the top row the predicted trajectories

of the three outputs are shown. All values of λ give rise



Fig. 3. Data estimation step, top row: experimental and modeled output values for different values of λ, middle row:
piecewise linear functions of time with which the embedded variables ϕ̃1 and ϕ̃2 are described, bottom row:
sensitivites of the knot points of the piecewise linear functions, the black line denotes the threshold for filtering

to reasonable trajectories for the outputs Xt and S. These
two outputs are only influenced by the first embedded vari-
able ϕ1. The output trajectory varies more for lower values
of λ, which is to be expected. With larger penalization
of changes in the values of ϕ, these take lower values in
general, which can be seen in the figure in the middle row
on the left. With the largest tested regularization value
λ = 1.00e+ 01, a flat response of ϕ̃1 results.
For the concentration of sporulated cells Xs a strong
variation in the prediction for different values of λ can be
observed. Not all values of λ lead to a satisfactory result.
In fact, low values as e.g. 1.00e − 01 to 4.64e − 01 lead
to a significant overfitting, which can be concluded from
the fact that the concentration of sporulated cells rises in
multiple steps which follow the measurements corrupted
by noise closely. For each of the steps the value of ϕ̃2

spikes from low to high values or back at about 2, 3, 4,
8 and 13 h. This is not physically reasonable, therefore
this is considered as an unwanted behavior. On the other
end, a high value of λ leads to an approximately constant
value of ϕ̃2, which is also not desired, as this results in a
trajectory of Xs, that does not follow the sharp observed
increase, thus underfits the data.
Therefore, a value of λ is chosen that prevents overfitting,
while not leading to underfitting as well. In this case, a
value of λ = 2.15e+ 00 is chosen.
This decision is supported by a visualization of the mean
squared error of the experimental data (MSE, calculated
from J(Y exp, Ŷ )) to model complexity (Reg(Φ̃)) tradeoff,
shown in Fig. 4
In this figure, one can see that for the different types
of regularization, different values of the tradeoff between
MSE and the regularization Reg(Φ̃) result. The shown
values can be interpreted as the Pareto front of the multi-
objective optimization to minimize both the MSE of the
experimental data and the model complexity. The closer
the Pareto front gets to the utopia point the better, as
this denotes the point, where both objectives are indepen-
dently minimal. All methods show the expected behavior,
but absolute L1 regularization shows unwanted oscillatory
trajectories except for high values of λ. Note, that the
values of Reg(Φ̃) cannot be directly compared between
the regularization methods.
To understand the different regularization methods, the

Fig. 4. Plot of model complexity vs. deviation from ex-
perimental data for different regularization weighting
factors λ, the star denotes that this value of λ is
chosen for further studies

chosen values of λ are applied and the resulting trajectories
of the sporulated cell concentrations together with its
derivatives are shown in Fig. 5.

Fig. 5. Effect of choosing a regularization method, left: pre-
dicted and experimental spore concentration, right:
derivative of the prediction wrt. time

Here, the previous result that the absolute L1 regular-
ization is not working well is also visible. The strong
regularization of the absolute values of ϕ̃ leads to no
sufficient sporulation. Thus, the final spore concentration
underestimates the experimental value.
The other methods seem to produce similar trajectories
of Xs, though when visualizing the derivative of the out-
put trajectory it becomes apparent, that a slight overfit-
ting can be observed for the absolute L2 method. The
differential L1 and L2 regularizations lead to physically
appropriate data sets. Here, differential L1 regularization



is considered to work best due to the higher peak and
slightly smaller s-shaped behavior of the derivative at 6 h,
and therefore used for next steps.
From the plotted sensitivities in the bottom row of Fig. 3
it can be seen that all values of ϕ̃1 after approx. 3 h and
almost all values of ϕ̃2 after approx. 4 h have a low impact
on the prediction of the experimental data, which makes
these values unreliable. These values are mostly influenced
by the regularization, which is why no further significant
change in these values is visible. Therefore, all values of ϕ̃
with a sensitivity less than 0.01 are omitted.
With the sensitivity filter applied, the final training set
is finalized. An interpolation is applied to obtain 5 addi-
tional training points between the sample times, which are
filtered according to interpolated sensitivities.

4.2 Feature and model selection

With the obtained training set, feature and model selection
can be performed. Feature selection denotes in this case
the determination of the set of descriptors d. To determine
the set of descriptors, the correlation plots of the resulting
embedded variables to the states and the input are shown
in Fig. 6.

Fig. 6. Correlation plots of all states (first three columns)
and the input (fourth column) to the estimated values
of the embedded variables, dots are used for the
visualization of the distribution

It can be seen that the two embedded variables show
multiple correlations. For instance, ϕ̃1, which governs the
growth reaction, seems to be correlated to all states and
inputs. This is due to the fact that the states themselves
are not independent as they change according to the differ-
ential equations. The strongest correlations of ϕ̃1 among
the three state variables seems to be to the substrate
concentration S.
For the embedded variable that describes the rate of sporu-
lation, ϕ̃2, the strongest correlation can also be observed
for the substrate concentration, the inverse relationship is
clearly visible. The fact, that the rate does not go to zero
might be a result of the application of differential regu-
larization. Changing the sporulation rate to zero comes
with a regularization penalty in the cost function of (8),
and might have a low influence on the change of the spore
concentration, as the concentration of vegetative cells also
approaches zero, which is a factor in the sporulation reac-
tion kinetics.
For both embedded variables, a correlation to temperature
can be observed. Therefore, temperature T and substrate
concentration S are chosen as the set of descriptors d. In

the correlation plot of ϕ̃1 and Xs one trajectory stands out.
This might be the result of insufficient filtering. Since this
phenomenon only seems to occur in this one experiment,
the overall impact is assumed to be negligible. Addition-
ally, spore and vegetative cell concentration can be dis-
regarded anyways from the correlation plot and from the
physical understanding that spores are inactive cells and
that all reactions are modeled specific to the vegetative
cells already. It should be noted that in cases where these
physical relationships are not apparent, the correlation of
the state variables among themselves can make it difficult
to determine d.
With the descriptors d determined, the training of an ML
model ϕΘML

can be performed. Here, a simple artificial
neural network with 1 hidden layer and 4 nodes is used
with the tanh activation function. Training on the esti-
mated data is done using the Levenberg-Marquardt algo-
rithm with early stopping after 6 iterations of no further
progress on a validation set. The resulting regression plot
is shown in Fig. 7.

Fig. 7. Regression plot of the two embedded variables

In this figure it can be seen that the regression model gives
reasonable results, even though there are some deviations
between the model and the estimated data. Some horizon-
tal and vertical clusters of points lead to the conclusion
that the data estimation problem results in imperfect
training data, due to strong measurement noise. As after-
wards a full dynamic parameter estimation is performed,
this is acceptable at this point in the procedure.

4.3 Full dynamic parameter estimation

The full dynamic parameter estimation problem, as de-
scribed in (4), can be solved for the model structure, the
set of descriptors and the estimated model parameters
from section 4.2. The resulting model is already validated
structurally. The final model predictions with conditions
that were not used during training are shown in the fol-
lowing figure. Here, also results for a black-box model are
shown, where the entire right-hand side of the ODE is
described by ANN models. The parameters were trained
using the full dynamic parameter estimation routine.

From Fig. 8 it can be inferred that both versions of the
gray-box model show physically feasible and reasonable
trajectories as opposed to the black-box model predictions.
Also, even though there are some deviations in the re-
gression shown in Fig. 7, the resulting trajectories, shown
as dashed lines, approximate the experimental data quite



Fig. 8. Simulation results of the full dynamic models after
parameter estimation for all outputs and for different
models

well. This validates the data estimation step, the ML-
model parameters that are obtained by this preliminary re-
gression are already reasonably accurate and provide good
initial values for the full dynamic parameter estimation
problem. The results of the latter are depicted in Fig. 8 as
solid lines. The final dynamic model accurately describes
the system dynamics.

5. CONCLUSION AND OUTLOOK

We have proposed a comprehensive methodology for de-
termining dynamic gray-box process models of complex
dynamic processes and have shown the performance of the
methodology for a simulation case of the fermentatation
of a sporulating bacterium. The methodology consists of
three steps. First, training data for the embedded vari-
ables, that are later described by ML-models, is estimated.
This is used in the second step for model selection and
training. Third, full scale dynamic parameter estimation
is performed to fine-tune the parameters, using the previ-
ously obtained results for initialization.
The discussion focused on choosing an appropriate regu-
larization method and on the use of sensitivity analysis to
increase the reliability of the estimated data. This is espe-
cially important in systems where the embedded variables
are multiplied with vanishing states, which commonly oc-
curs in chemical and biochemical systems, because this
causes the sensitivity and thus the reliability to decrease
significantly.
Further research is needed to make the methodology scal-
able to large sets of experimental data. This is currently a
challenge, as the set of decision variables in the estimation
step increases linearly with the number of experimental
data points. Distributed optimization is a promising di-
rection to this end.
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