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Abstract: The application of synthetic supercolloids extends across multiple industries. Owing
to their unique rheology, there is an increasing demand for these products. Therefore, the large-
scale production of these colloids must be efficiently done. Although some very new studies
have shed light on the controlled production of these colloids, no studies have focused on
the online estimation of system rheology during the production. Furthermore, it is desired
to have accurate estimates of the process variables from only a few measurements. Hence, it is
essential to design a proper soft sensor that can estimate the process states accurately with a few
measurements. Motivated by these requirements, a moving horizon state-estimator (MHE) was
designed in this work. Specifically, the MHE-based soft sensor was designed with a nonlinear
model developed to relate the process inputs to the system rheology. Finally, the developed
framework was implemented to a case study of wormlike micelles produced from cetrimonium
bromide (CTAB) and sodium chloride (NaCl).
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1. INTRODUCTION

Amphiphilic surfactant molecules self-assemble to form
supramolecular structures in polar solvents (Liu et al.,
2021; Bhat et al., 2021). One such self-assembled struc-
ture is wormlike micelles (WLMs) (Pahari et al., 2021a,c).
Since WLMs are formed via dynamic interactions between
such self-assembling monomers, they undergo continuous
breakage, and recombination processes (Zou et al., 2015;
Pahari et al., 2021a). Owing to the dynamic nature, WLMs
exhibit unique viscoelastic properties, which are of interest
across multiple industries (Pahari et al., 2021b). However,
the large-scale production of WLMs, for instance in phar-
maceuticals, energy, and food industries (Pahari et al.,
2021c), requires the online estimation of key rheological
properties such as zero-shear viscosity. Although recent
studies have provided insights into the controlled produc-
tion of the WLMs, only a few studies have highlighted
the online estimation of the system’s viscosity during the
operation (Pahari et al., 2021c). Furthermore, during the
production, zero-shear viscosity is not directly measured,
but rather small-angle X-ray scattering is utilized to obatin
the mean length of WLMs (Jensen et al., 2014). Thus, it is
essential to develop a soft sensor which estimates the dy-
namic variation of zero-shear viscosity from available mea-
surements (i.e., mean length of WLMs) to efficiently and
effectively regulate the large-scale production of WLMs.

Hence, in this work, an integrated framework to estimate
the zero-shear viscosity of WLMs during the production
is proposed. Given that operation variables (e.g., pH, salt
concentration, and temperature of a solution) considerably
affect the production of WLMs, it is important to develop
a mathematical model which can predict the evolution
of the system’s rheological properties with the varying
reaction conditions (Danov et al., 2020). Specifically, two
models are required to predict the temporal variation of
the system’s rheology during the WLMs synthesis: 1) a
model that captures the growth of the WLMs length; and
2) a model that computes the viscosity of the system by
the obtained WLMs length.

For this, a population balance model proposed in (Pahari
et al., 2021c) was adopted to capture the temporal varia-
tion of the WLMs length, and a pointer-based algorithm
based on the tube-reptation theory (Zou and Larson, 2014)
was implemented to capture the viscosity of the WLMs.
Herein, the pointer-based algorithm was chosen since it is
relatively fast while showing a higher prediction accuracy
compared to the models presented in previous studies (Zou
et al., 2015; Zou and Larson, 2014). Subsequently, the
population balance model and the rheology model are
combined to design a moving horizon estimator (MHE)
(Alessandri et al., 2010), which solves an optimization
problem by providing weights to the process, measure-



Figure 1. An illustation showing the growth of the WLMs
by fusion of aggregated monomers.

ment noise, and a priori state estimates while consider-
ing practical process constraints (Haseltine and Rawlings,
2005; Ferrari-Trecate et al., 2002). The MHE can incor-
porate constraints on estimated process states and does
not require the linearization of the system. Moreover, the
size of the prediction horizon for the state estimator can
conveniently be manipulated to keep the solution of the
optimization problem computationally tractable (Zavala
et al., 2008). Finally, the developed optimal state estimator
is utilized to estimate the viscosity of the WLMs system
of cetrimonium bromide (CTAB) and sodium chloride
(NaCl) (Pahari et al., 2021c).

The paper is organized as follows: the details of the
population balance model and the application of the
pointer-based algorithm are presented. Then, the MHE is
formulated by considering the nonlinear model proposed
for the growth and rheology of WLMs. Lastly, results
obtained by implementing the proposed framework to the
CTAB/NaCl system are highlighted and further discussed.

2. MODEL FORMULATION

2.1 WLM growth and rheology models

In this section, the population balance model is imple-
mented to obtain the dynamic evolution of the mean
length of WLMs. Herein, inputs such as salt concentration,
pH, and temperature of the solution are considered during
the WLMs synthesis. Subsequently, the mean length of
WLMs obtained from the population balance model is
employed in the rheology model based on the pointer-
based algorithm to obtain the viscosity of WLMs.

First, the major idea of the population balance equations
lies in a unimer exchange mechanism (Fig. 1) which is
observed by SAXS experiments of (Jensen et al., 2014).
Note that a detailed derivation of the population growth
model can be found in (Pahari et al., 2021c). According to
the proposed model, the growth of the WLMs is propelled
by the step-wise consumption of spherical aggregates.
Specifically, the growth of the WLMs is governed by the
fusion of aggregates as follows:

Mp + Un 
Mp+n (1)

where Mp is the WLM aggregate of size p, Un is the
aggregate of size n, and Mp+n is the combined aggregate
of size p + n. The rate of formation of the aggregates of
size p+ n is given as follows:

jp+n = k+φn

(
φp −

φp+n
φncsa

exp(− p

k1n
)

)
(2)

where φp denotes the concentration of aggregates of size p,
k+ is the rate constant for insertion, csa is the correction
term for the potential energy, k1 is the parameter value
determined from equilibrium, and p is the aggregation
number. The rate constant k+ is obtained as follows:

Figure 2. The relaxation mechanisms of WLMs: (a) repta-
tion and (b) breakage and recombination.
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where x is a pre-factor determined from thermodynamic
equilibrium, n is the number of monomers in the spherical
aggregate, and η denotes the solution viscosity. Finally, the
growth of aggregate of size p is obtained from the following
differential equation.

dφp
dt

= jp − jp+n + Ṅ(p) (4)

where φp is the number of aggregate of size p, and

Ṅ(p) is the additional flux of φp due to the breakage
and recombination of WLMs owing to their dynamic
nature. The proposed model has been found to show good
agreement with experimental results (Pahari et al., 2021c).
By following the previously proposed framework, the value
of Ṅ(p) is computed as follows:

Ṅ(p) = −c1pφp − c2φp

∫ ∞
0

φ′pdp
′ + 2c1

∫ ∞
p

φ′pdp
′+

c2

∫ ∞
0

∫ ∞
0

φ′pφ
′′
pδ(p

′ + p′′ − p)

(5)

where c1 and c2 are the rate constants for the breakage
and recombination events in the WLMs, respectively. A
detailed explanation of the terms in (5) can be found
in (Pahari et al., 2021c). Here, WLMs are assumed to
grow while minimizing their energy, and this assumption is
validated by experimental results (Marrucci, 1985) which
imply that energetically stable exponential distributions
are obtained at equilibrium. From those equations, both
the length distribution of the WLMs with respect to time
and the mean length of the WLMs can be obtained.

Subsequently, once the structural evolution of the WLMs
is obtained, the transition in rheological properties during
the synthesis can be successfully predicted via a stress-
relaxation model. Owing to its fast computational capa-
bility, the pointer-based algorithm has been implemented
to obtain rheological properties such as the zero-shear
viscosity of the WLMs (Zou and Larson, 2014). In detail,
the pointer-based algorithm tracks the ends (i.e., pointers)
of unrelaxed portion of WLM chains. As shown in Fig. 2,
crucial stress-relaxation mechanisms of WLMs such as
reptation and union-scission induce the movement, cre-
ation, or annihilation of pointers. Hence, as the simulation
proceeds, the curvilinear diffusion of the WLMs, which
leads to stress-relaxation, is evaluated by the pointers.
Additionally, it is also imperative to compute the time
required for WLMs chains to escape the confining tube



(i.e., reptation time) (Marrucci, 1985). The equations for
calculating the reptation time are as follows:

τrep =
< L >

πDc
(6)

Dc =
Do

< L >
(7)

D0 =
kbT

ζ
(8)

where < L > is the mean length of the WLMs, Dc is
the curviliear diffusion coefficient, and Do and ζ are
the diffusion and the drag coefficient per unit length of
WLM chain, respectively. Herein, the drag coefficient is
computed as follows:

ζ =
2πηs
ln( εd )

(9)

ε = l0.4p l0.6e (10)

where ε is the excluded volume, d is the diameter of WLM,
lp is the persistence length of the WLMs, and le is the
entanglement length of the WLMs. In every time step, all
the WLMs present in the solution undergo reptation via
the curvilinear diffusion. The time increment ∆t is given
by the following equation:

∆t =
τb

Nmicelles
=

ζτrep
Nmicelles

(11)

where τb is the breakage time of WLMs, ζ is the ratio of
breakage time to reptation time, Nmicelles is the number of
micelles considered in the simulation domain, and τrep is
the reptation time. Furthermore, the reptation of WLMs is
simulated by the movement of the pointers in a randomly
chosen direction.

Specifically, the corresponding length by which the point-
ers are moved to simulate reptation is computed by the
following equation:

∆lR =
√

2Dc∆t (12)

where Dc is the diffusion coefficient of WLM chains. The
stress relaxation function, µ(t), is calculated by evaluating
the fraction of unrelaxed segment of WLMs in a dynamic
fashion. Consequently, the simulation data is processed to
obtain the storage and the loss modulus, respectively, as
shown in (13) and (14).

G′(ω) = GNω

∫ T

0

sin(ωt)µ(t)dt (13)

G”(ω) = GNω

∫ T

0

cos(ωt)µ(t)dt (14)

where G′(ω) is the storage modulus, G′′(ω) is the loss
modulus, and GN is the plateau modulus. Once the stress-
relaxation models and the dynamic growth models are
formulated, a MHE strategy which evaluates the temporal
evolution of the zero-shear viscosity of WLMs during the
synthesis can be formulated.

2.2 Moving horizon estimator (MHE)

In this section, a MHE is utilized as a soft sensor to
obtain the zero-shear viscosity of the WLMs. In practice,
the MHE is implemented to incorporate constraints in
the estimation procedure and to avoid the linearization
of a high-dimensional nonlinear system. Specifically, in

the MHE, an optimization problem is solved to estimate
the zero-shear viscosity by considering the measurements
of WLM length. Here, the cost function formulated for
obtaining the estimates of a nonlinear system is given by
the following equation:

J =

t∑
i=t−N+1

(Xi − X̂i)W (Xi − X̂i)
T

+

t∑
i=t−N+1

(Yi − Ŷi)Q(Yi − Ŷi)
T

+

(Xt−N − X̂t−N )P (Xt−N − X̂t−N )
T

(15)

where X = [φn, φ2n, ..., φkn, ..., φmn] are the process states
representing the number of WLMs with k × n aggregates,
J is the cost function considered in solving the MHE opti-
mization problem to obtain the state estimates, Y are the
measured values of the process output, Ŷ are the predicted
process outputs, X̂ are the predicted values of the process
states, W is the weight function corresponding to the pro-
cess noise, Q is the weight function corresponding to the
measurement noise, P is the penalty associated with the
arrival cost, and N is the estimation horizon of the MHE.
Here, the cost function considered has three components:
the process noise weighted by W , the measurement noise
weighted by Q, and the arrival cost weighted by P . It is
to be noted that the consideration of a quadratic function
weighted by P for the arrival cost is able to produce stable
error dynamics when an appropriate value of P is consid-
ered (Alessandri et al., 2010). Therefore, the constrained
optimization problem solved in the MHE can be expressed
as follows:

min
Xt−N ..Xt

J

s.t.
dX(t)

dt
= jp(X,u) − jp+n(X,u) + Ṅ(X,u)

Y = g(X,u)

0 < IX < 1φn(t0)

(16)

where jp denotes the influx due the growth of smaller
WLMs, jp+n denotes the loss of WLMs due to the loss

of monomers, Ṅ(p) denotes the flux of WLMs due to
their breakage and recombination, Y denotes the process
outputs (i.e., the mean length and zero-shear viscosity
of the WLM solution), g denotes the nonlinear function
relating the process states to the process outputs.

Furthermore, u are the process inputs (i.e., pH, salt
concentration, and temperature), 1 and 0 are the unit and
zero vectors of size (m × 1), where m is the dimension
of the nonlinear state-space model, φn(t0) is the number
of smallest self-assembling monomers with size n at time
t = 0, and I is the identity matrix of size (m × m).
The bounds considered in the inequality constraint are
derived from the process knowledge (Pahari et al., 2021c).
Here, N is the prediction horizon over which the MHE
optimization problem is solved. This value is chosen by
making a trade-off between the computational cost and
estimation accuracy.

3. SIMULATION SCHEME

The simulation of the WLM growth model proceeds by
introducing the aggregates of size n. The number of ag-



gregates of size n is denoted by φn(t0). The value of n is
obtained as the aggregation number of the smallest mi-
celles which participate as the self-assembling monomers.
Its value is obtained from the equation, p = V/ν, where V
is the volume of the smallest aggregate, and ν is the volume
per unit molecule of amphiphile. The volume of the aggre-

gate is computed by V = 4
3πR

2
s ·
(
Rs + (R2

s −R2
c)

0.5
)

,

where Rs is the length of amphiphile and Rc = 0.76 ×
Rs (Danov et al., 2020; Nagarajan, 2019). Note that the
length of amphiphile is related to the chemical structure
of specific amphiphile being considered (Nagarajan, 2019).
Specifically, for CTAB, the mean length of WLMs is ob-
tained as 2.550 nm. In addition, the value of ν is obtained
as ν = 0.5385 nm3. Subsequently, the value of φn(t0) is

obtained by
φ·Navg

p , where φ is the number of surfactant

molecules added to the solution, and Navg is Avogadro’s
number. Additionally, the value of pre-factor x is 4.25 ×
105, and the value of the correction factor csa is considered
to be 2.77 × 105, which is identical to that of ellipsoidal
micelles (Jensen et al., 2014). Lastly, for the recombination
and breakage, c1 = c2 = k+.

Meanwhile, the rheology model requires four crucial pa-
rameters as follows: persistence length (lp), WLM diameter
(d), flexibility ratio (α), and the ratio of breakage time
to reptation time (ζ). The variation of these parameters
with respect to the reaction conditions such as salt concen-
tration, pH, and temperature can be observed in (Pahari
et al., 2021c). Additionally, for the pointer-based algo-
rithm, WLMs with Nmicelles = 20, 000 were considered
in the simulation domain.

Henceforth, once the stress-relaxation function is obtained
it is utilized to calculate the storage and the loss modulus
of WLMs (G′ and G′′) from which the zero-shear viscosity

is calculated by η0 = limω→0
G′′(ω)
ω . Subsequently, to

implement this model to the MHE problem for online
estimation of rheological properties of WLMs, simplistic
correlation between the mean length of the WLMs and the
zero-shear viscosity is determined. For this, it is assumed
that other parameters (e.g., diameter, persistence length,
entanglement length, and the ratio of reptation time to
recombination time) do not significantly vary over the
considered input sequences in the given system. Finally,
once the relationship is determined, the output equation
of the nonlinear state-space model can be constructed.

Specifically, the MHE is implemented to estimate the zero-
shear viscosity of the WLM solution. It is observed that
the results from the MHE are susceptible to the values of
P associated with the arrival cost. The value of P which
gives stable and satisfactory error dynamics is obtained
as 19.65. Additionally, the weight matrices Q and W are
taken to be 0.001 and 0.01, respectively.

To validate the developed framework, a case study of
CTAB/NaCl system is employed. Herein, random input
sequences of varying pH, salt concentration, and temper-
ature are generated and provided as inputs to the WLM
growth model and the rheology model (i.e., when these
two models are combined, they are considered as virtual
experiments in this work). Given that the mean length of
WLMs can be only measured via experiments (i.e., SAXS),

noise is added to the outputs, which are obtained from the
virtual experiments, to accurately reflect the reality. Once
these measurements are obtained, they are utilized as the
inputs of the MHE. Consequently, the MHE can estimate
the mean length of the WLMs and the zero-shear viscosity
of the solution.

4. RESULTS AND DISCUSSIONS

In this section, we highlight the open-loop simulations
followed by the discussion on the estimation results of the
proposed MHE as a soft sensor to measure the zero-shear
viscosity during the synthesis of WLMs.

4.1 WLM growth simulation

As shown in Fig. 3a, the input sequences of surfactant con-
centration, pH, and temperature are randomly generated
as bounded within the practical operation limits (Pahari
et al., 2021a). Thus, the evolution of the mean length
with respect to the obtained input sequences is highlighted
in Fig. 3b. Subsequently, the stress-relaxation function
µ(t) (Fig. 4a) and the storage-loss modulus (Fig. 4b) for
different WLM mean lengths of 4,000 nm and 6,000 nm
are evaluated. From those rheology parameters, the zero-
shear viscosity is found to be 5.86 Pa · s and 60.76 Pa · s
for the mean length of 4,000 nm and 6,000 nm, respec-
tively. Thus, this implies that the proposed model can
capture the solution viscosity with varying mean lengths of
WLMs. Therefore, multiple simulations were carried out to
identify an empirical relationship between inputs (i.e., the
mean length of WLMs and surfactant concentration) and
output (i.e., zero-shear viscosity) by varying the inputs.
Specifically, LASSO regression was performed to identify
the relationship between the inputs and the output. The
obtained empirical relationship is as follows:

η0 = −5.445 · 10−17· < L >5 +1.185 · 10−12 < L >4 −
9.562 · 10−9· < L >3 +0.00003494· < L >2 ·cs−

0.04625· < L > +21.02
(17)

where < L > is the mean length of the WLMs, and cs is
the concentration of the surfactant added to the solution.
As shown in Fig. 6, the predicted values and fitting values
of zero-shear viscosity are presented with Rsquared value of
0.910. Then, this relationship was utilized in the nonlin-
ear model in the MHE to obtain the zero-shear viscosity
as an output. Specifically, in this CTAB/NaCl system,
the synthesis process continues for two days, and hence,
WLMs are likely to grow to substantially long chains,
producing products with an extremely high zero-shear
viscosity (Pahari et al., 2021c). In other words, operation
failures may happen once the zero-shear viscosity exceeds
a specific value (e.g., 2,000 Pa · s), which also results in
multiple shortcomings. Additionally, the output (i.e., zero-
shear viscosity) is highly sensitive to operating conditions,
and all operational decisions are based on such output so
that the online estimation of the zero-shear viscosity is
significant. Moreover, in practice, the measurements of the
mean length of WLMs are available in every 40 minutes,
which are not sufficient to update the rheological proper-
ties of WLMs in real time. Hence, the proposed framework
is appropriate to accurately estimate the viscosity during



(a)

(b)

Figure 3. The results highlighting (a) the input sequence,
and (b) mean length evolution of WLMs with respect
to time.

the process even with extremely sparse measurements of
process variables such as the mean length of WLMs.

4.2 Moving horizon estimation

Once the nonlinear system is obtained from the input
and output relationship, the MHE optimization problem
is solved while considering the set of nonlinear equation
as a constraint and the set of bounds on the process
states. Herein, the set of inputs (Fig. 3a) was fed into
the computationally expensive WLM growth model and
rheology model (i.e., the virtual experiments) to obtain
process measurements (i.e., the mean length and the
zero-shear viscosity of WLMs). Note that only the mean
length is measured at a sampling period of 40 minutes.
Then, white gaussian noise is added to the measurements
to include measurement uncertainties. Finally, the MHE
estimator utilizes the mean length of WLMs to obtain
online estimates of the mean length (Fig. 6) and zero-
shear viscosity (Fig. 7) of the solution. As shown in Figs. 6
and 7, the estimates show high accuracies for both mean
length and zero-shear viscosity. Here, an optimal set of
weight vectors derived via trial and error is employed to
obtain such results. For the regimes where measurements
are sparse and noisy, it should be noted that the nonlinear
model in the estimation problem successfully provides
good estimates.

(a)

(b)

Figure 4. Figure highlighting (a) Stress-relaxation function
for WLMs of mean length < L >= 4000 nm and
< L >= 6000 nm, and (b) Storage and loss modulus
of WLMs for mean lengths 4000 nm and 6000 nm.

Figure 5. Regression of data obtained from high-fidelity
model.

5. CONCLUSION

In this study, an MHE developed with a quadratic arrival
cost was utilized as a soft sensor to obtain the estimates
of zero-shear viscosity during the production of supercol-
loidal self-assemblies such as WLMs. A nonlinear state-
space model, which includes the population balance of
the WLMs, was utilized to obtain the structural evolution
of the WLMs during the synthesis process. Subsequently,
a pointer-based rheology model was implemented to ob-
tain the zero-shear viscosity of the WLMs. However, the
high-fidelity model comprising of the nonlinear state-space



Figure 6. Mean length of WLMs estimated by the MHE.

Figure 7. Zero-shear viscosity estimated by the MHE.

model and the pointer based algorithm is computationally
expensive. Hence, for utilizing the high-fidelity model in
the MHE, a regression model that relates the mean length
of WLMs and surfactant concentration to the zero-shear
viscosity of the solution was identified. Then, the identified
regression model was utilized with the nonlinear states-
space model to predict the zero-shear viscosity relatively
faster. Utilizing this nonlinear model and regression model
as constraints, the MHE optimization problem was solved
to obtain online estimates of zero-shear viscosity of the
WLM solution. Finally, as a case study, the proposed soft
sensor was applied to the system of CTAB and NaCl while
considering crucial variables such as pH, temperature, and
salt concentration. The results verified that the MHE was
able to accurately estimate the mean length and zero-shear
viscosity in the presence of noisy and sparse measurements.
In the future study, given that no linearization approx-
imation of the system dynamics has been carried out,
the performance of MHE can be compared with Extended
Kalman Filter (EKF).
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