
Method to design a neural network with minimal number of neurons for
approximation problems

H. Ruppert*, A. Krug*, Y. A. W. Shardt**

* Faculty of Electrical Engineering, Heilbronn University of Applied Sciences
Heilbronn, Germany, (e-mail: {holger.ruppert, andreas.krug}@hs-heilbronn.de)

** Faculty of Computer Science and Automation, TU Ilmenau
Ilmenau, Germany, (e-mail: yuri.shardt@tu-ilmenau.de)

Abstract: — The widespread use of neural networks to model complex processes requires that a
parsimonious model of the process be obtained. One of the main variables in neural networks is the number
of neurons in the hidden layer. Selecting an inappropriate number of neurons can lead to over- or
underfitting. Therefore, a method is required which determines the appropriate number of neurons in order
to approximate a defined system response or time function. This paper presents a proposition to determine
the appropriate number of neurons in a feedforward neural network, based on the number of inflection
points included in the system response or the time function. The results show that the proposed method has
marginal approximation errors (no underfitting) and overfitting can never occur because the minimal
number of neurons for the approximation problem is used. To verify the effectiveness of this method,
simulations were carried out on a second-order system with and without noise, the Lotka-Volterra
equations, and the Runge function.
Keywords: inflection point, number of neurons, feed forward neural network, approximation, hyperbolic
tangents

1. INTRODUCTION

Neural networks have a wide range of applications, for
example in controlling dynamic systems like electrical motors,
description and simulation of highly complex dynamic
systems (Hunter et al., 2012), approximation and prediction of
time series (Mhaskar et al., 1995), regression (Gronhold et al.
2005 and Bishop, 1995) and sensor applications (Kadlec,
et al., 2009). In this paper, we manly deal with approximation
behavior of neural networks for sensor applications.

The primary purpose of the sensors is to deliver data for
process monitoring and control. However, some process
variables cannot easily be recorded with hardware sensors
because the process variable is not available (Xu et al., 2018)
or the hardware sensors are disproportionately expensive
(Fortuna et al., 2006). Thus, researchers have to use the data
measured by hardware sensors to build predictive models. In
the context of the process industry, these predictive models are
called soft sensors (Kadlec et al., 2009).

At a very general level, one can differentiate between model-
and data-based soft sensors. The model-based soft sensor is
most commonly based on physical equations describing the
physical principles underlying the process, also called white-
box models because they have full phenomenological
knowledge about the process background (Shardt, 2015). On
the other hand, purely data-driven models are called black-box
models, because the model itself has no knowledge about the
process and is based on empirical observations of the process.
One of the most popular methods for modelling data-driven

soft sensors is using a regression model based on an artificial
neural network (Kadlec et al., 2009).

However, there are two major problems in the application of
neural networks to modelling processes (Mhaskar et al., 1995).
First, it is necessary to determine the number of neurons
required to achieve the approximation of the target function
within a given margin of tolerance. Secondly, it is necessary to
develop algorithms to actually construct the approximating
networks.

Therefore, many papers deal with how the architecture of a
neural network has to be chosen in order to be able to achieve
acceptable results. Neural networks with no hidden layers lack
the capability to approximate nonlinear functions (Scarselli
et al., 1998). Cybenko (1989) proved, that networks with one
hidden layer and the sigmoid activation function could be
universal approximators. Hornik et al. (1989) extended
Cybenko’s work to feedforward neural networks (FNN) with
other activation functions. The universal approximation
property of an FNN has been studied using tools from
functional analysis (e.g., the Hahn-Banach theorem in
Rudin (1973)) and real analysis (e.g., the Sprecher-
Kolmogorov theorem in Sprecher (1965) and Kolmogorov
(1957)). In Lin et al. (2021), the relationship between a
multilayer perceptron regressor and the piecewise polynomial
approximator was studied, and based on this relationship, a
multilayer perceptron construction method was proposed. The
Radon transform (Carroll, 1989), and the Fourier distribution
and series (Barron, 1993) have been used for the construction
of a FNN.

Thus, this paper proposes and examines a new method by
which the minimal number of neurons in a FNN can be
specified based on the number of inflection points in the
system response or time function. Furthermore, the proposed
approach is tested on simulated second-order system with and
without noise, the Lotka-Volterra equations, and the Runge
function.

2. MATHEMATICAL DESCRIPTION OF THE
FEEDFORWARD NEURAL NETWORK

Let us consider the propagation through a neuron as shown in
Fig. 1, where time 𝑡, weight 𝑤, and bias 𝑏 are inputs. With
these inputs the propagation function 𝑢 can be described by

𝑢 𝑤𝑡 𝑏. 1

The activation function 𝑎 𝑢 is equivalent to the output 𝑓 of
the neuron.

Figure 1: Propagation through one neuron in a FNN

The nonlinear hyperbolic tangent function, commonly used to
approximate nonlinear functions (Aggarwal, 2018), given as,

𝑎 𝑢
2

1 𝑒
1 2

is chosen here as the activation function. The propagation
function 𝑢 works as a scaling factor (Silva et al., 2017) that
horizontally stretches or shrinks 𝑎 𝑢 with the weight 𝑤. The
bias 𝑏 performs a horizontal translation. If the sign of 𝑤
changes, 𝑎 𝑢 is reflected over the y-axis.

As can see from the consideration above, a FNN with one
neuron can only describe a time behavior with the shape of the
activation function. With a FNN as shown in Fig. 2, with one
hidden layer {1} with 𝐾 neurons, and the output layer {2} with
one neuron with multiple inputs, other time behaviors with

Figure 2: Arrangement of neurons, weights, biases and activation

functions to describe the FNN

higher complexity can also be described by superposing.

The 𝑚 neurons are part of the hidden layer and described by

their individual weights 𝑤 , biases 𝑏 and propagation
functions 𝑢 . Therefore, (1) becomes

𝑢 𝑤 𝑡 𝑏 . 3

The activation function for each neuron 𝑚 is given by 𝑎 𝑢 .
The approximation 𝑓 of the nonlinear time functions by a
FNN with the input 𝑓, with 𝐾 neurons in the hidden layer and
one neuron in the output layer, including a linear activation
function gives

𝑓 𝑤 𝑎 𝑢 𝑏 , 4

where 𝑤 is the individual weight of each neuron of the
second layer and 𝑏 is the total bias of the second layer. Both
can be seen as a vertical scaling factor. The complete structure
of a FNN as shown in Fig. 2 and used in this paper, describes
(4). The approximated function 𝑓 is a set of 𝐾 superpose
hyperbolic tangent functions:

𝑓
2

1 𝑒
1 𝑤

2
1 𝑒

1 𝑤

…
2

1 𝑒
1 𝑤 𝑏 . 5

To adjust the weights 𝑤 and 𝑤 , the backpropagation
algorithm is commonly used (Hecht, 1989). Using 𝐽
optimization steps, the weights 𝑤 and 𝑤 are optimized by
looping through the following equations:

𝜕𝑒

𝜕𝑤 ,

𝜕
1
2 𝑓 𝑓

𝜕𝑓

𝜕𝑓

𝜕𝑤 ,

 

𝜕𝑒

𝜕𝑤 ,

𝜕
1
2 𝑓 𝑓

𝜕𝑓

𝜕𝑓

𝜕𝑎 𝑢 , 𝑤 ,

𝜕𝑎 𝑢 , 𝑤 ,

𝜕𝑤 ,

. 6

In (6) and (7), the functions 𝑒 and 𝑒 are the error functions
for each optimization step 𝑖. With the defined gradients for

each parameter, the weights 𝑤 , , 𝑤 , are optimized and
updated at each step 𝑖 using the gradient descent method
(Benvenuto et al., (1992), that is,

𝑤 , 𝑤 , 𝜂
𝜕𝑒

𝜕𝑤 , 

𝑤 , 𝑤 , 𝜂
𝜕𝑒

𝜕𝑤 ,

, 7

where 𝑤 , and 𝑤 , are the weights of the current
optimization step 𝑖 for respectively the hidden and the output

layer, and 𝑤 , , 𝑤 , are the weights of the last
optimization step. The variable learning rate for each

optimization step 𝑖 is given by 𝜂 . If no further improvement
of the approximation can be brought about by the algorithm,
𝑤 , converges to the weight 𝑤 and 𝑤 , converges to the

weight 𝑤 and the termination criterion has been reached.

To adjust the biases 𝑏 and 𝑏 , the same procedure is used.

3. APPROXIMATION OF A SECOND-ORDER SYSTEM
BY A FEEDFORWARD NEURAL NETWORK

Let us consider the time series resulting from the simulation of
a second-order system of the form

𝑦 2𝐷𝑇
d𝑦
d𝑡

𝑇
d 𝑦
d𝑡

𝑃𝑥, 8

where the damping constant D = 0.268, the time constant
T = 0.193, and the gain P = 1. The second-order system is a
common model for describing damped oscillation, e.g. a mass-
spring-damper systems and RLC circuits. The process will be
excited using a step of magnitude 1 for the variable x. The
output variable y describes then the step response of the
process.

The approximations 𝑦 of the step response 𝑦 were generated
with the FNN described above. The results of modelling the
process using 𝐾 1, 2, and 3 neurons are shown in Fig. 3.

Figure 3: Step response of a second-order system with FNN

approximations 𝑦 , 𝑦 , and 𝑦 for different 𝐾

As is shown by (5), the approximation 𝑦 resembles a
hyperbolic tangent, which has a form similar to that of the
integral symbol (. The backpropagation algorithm adjusts
𝑦 , that is, the hyperbolic tangent, in such a way that when all
the deviations between 𝑦 and 𝑦 are added together, the
smallest sum results. Therefore, 𝑦 approaches the first
positive edge of 𝑦 until this tends towards a final value that is
roughly the mean value of the over- and undershoots.

A better approximation can be achieved by superimposing
additional hyperbolic tangent functions, as described in (5).
The first overshoot can be approximated by 𝑦 with 𝐾 2
neurons, and the subsequent undershoot can also be
approximated by 𝑦 with a third neuron. It is therefore obvious
that for every further inflection point in the step response 𝑦,

another neuron is necessary, in order to guarantee a complete
approximation over the considered interval.

Let us consider the step response between two extrema,
defined by a peak in the overshoot and a peak in the subsequent
undershoot, then it is noticeable that this area has the shape of
an integral symbol or its reflection about the y-axis. Since each
neuron only forms one hyperbolic tangent of the form of an
integral symbol, the number of neurons must be equal to the
number of inflection points 𝑊. In this case, 𝑊 5 inflection
points are present. Thus, the result of the approximation with
a FNN with 𝐾 5 neurons is shown in Fig. 4.

Figure 4: Step response of a second-order system with FNN

approximation 𝑦 for 𝐾 5

A sufficiently good approximation is achieved with 𝐾 5
neurons (see Fig. 4), where 𝑅 0.999 and the deviation
between 𝑦 and its approximation 𝑦 is smaller than 1.5%. The
coefficient of regression 𝑅 measures the correlation between
𝑦 and 𝑦 , where R = 1 denotes a strong relationship between
𝑦 and 𝑦 , and R = 0 no relationship. The approximation error
∆ 𝑦 𝑦 is shown in Fig. 5.

Figure 5: Approximation error ∆ produced by the FNN with

different 𝐾.

Every approximation error ∆ oscillates between 1.2%. The
quality of the approximation improves only marginally with a
further increase in the number of neurons, since the coefficient
of regression remains at 𝑅 0.999 for 𝐾 5, 7, 8, and 10.
Furthermore, the approximation error (see Fig. 5) remains
roughly the same despite an increasing number of neurons.

4. PROPOSITION REGARDING THE APPROXIMATION
OF OSCILLATING FUNCTIONS

Based on the experiment above, let us consider a proposition
that defines the minimum number of neurons required in a
FNN. Let us divide a time function f in the interval 𝐿,𝑈 into
𝑀 subintervals ∆𝐿 ,∆𝑈 ∈ 𝐿,𝑈 with the index 𝑚 ∈ 𝑀. If
every interval boundary is determined by 𝑓 ∆𝐿 0 and
𝑓 ∆𝑈 0, where 𝑓 d𝑓/d𝑡, f only monotonically
increases (d𝑓/d𝑡 0 at each point in ∆𝐿 ,∆𝑈) or
monotonically decreasing (d𝑓/d𝑡 0 at each point in
∆𝐿 ,∆𝑈). Then, 𝑓 has exactly one inflection point in the

subinterval ∆𝐿 ,∆𝑈 and 𝑓 has the form of an integral
symbol or its reflection about the y-axes in every subinterval.

If the activation function has the form of the integral symbol
or its reflection about the y-axis, this is strictly monotonically
increasing or decreasing like the hyperbolic tangent function.
This can only approximate one interval ∆𝐿 ,∆𝑈 in f, in
which these is also a strict monotonic increase or decrease.
This means that the hidden layer of a FNN must have as many
neurons 𝐾 as there are inflection points 𝑊 in f, since a neuron
can only generate a single, monotonically increasing or
decreasing function.

The number of inflection points 𝑊 in the function 𝑓 is given
by the number of subintervals, i.e.

𝐾 𝑊 1 . 9

If the number of neurons corresponds to the number of
inflection points in f, in the interval 𝐿,𝑈 we are considering,
the slope and the position of the inflection point of the function
𝑎 𝑢 can be adjusted with 𝑢 for each inflection point in f.
The minimal number of neurons that have to be contained in
the hidden layer in a FNN, in order to be able to approximate
𝑓, is described by 𝐾.

5. VERIFICATION OF THE PROPOSITION

The proposition verified using the Lotka-Volterra equations,
the Runge function, and a noisy step response of a second-
order system. The Lotka-Volterra equations describe the
interaction between predator and prey populations, consisting
of two nonlinear, coupled first-order differential equations,
that is,

d𝑛
d𝑡

𝑛 𝐶 1
𝑛
𝐺

𝐷𝑝

d𝑝
d𝑡

𝑝 𝐵𝑛 𝐴 , 10

where n is the number of prey, p the number of predators, and
A = 5, B = 0.05, C = 8, D = 0.3 and G = 300 are user-defined
parameters.

Based on the proposition, both FNNs for the approximation of
𝑛 and 𝑝 are implemented with 𝐾 5 neurons, because 𝑊 5
inflection points can be seen in the simulation of the Lotka-
Volterra equations, for the give parameters. A change in the

parameters leads to a different behavior. In Fig. 6, 𝑛, 𝑝 and
their approximations 𝑛, 𝑝 are shown.

Figure 6: Results of the simulation of 𝑛 and 𝑝 and their

approximation 𝑛,𝑝

Both approximations have small deviations with a maximum
error |∆ | 0.2%. The proposed method to choose the
number 𝐾 of neurons with the number 𝑊 of inflection points
also applies to nonlinear systems like Lotka-Volterra.

The Runge function is very difficult to approximate with a
polynomial function because of Runge’s phenomenon, where
higher-order polynomials oscillate at the edges of an interval
if the step size between the interpolation points is constant.
Therefore, let us consider how well a FNN can approximate
this function. The Runge function is given by

𝑓
1

1 𝑡
11

Based on the proposition, one FNN for the approximation 𝑓
of the Runge function 𝑓 is implemented with 𝐾 2 neurons,
because 𝑊 2 inflection points can be seen in the simulation
of the Runge function and another FNN implemented with
𝐾 8 neurons. The results are shown in Fig. 7.

Figure 7: Results arising from approximating the Runge function

with two and eight neurons

The approximation 𝑓 with 𝐾 2 neurons has a smaller
amplitude than the Runge function and for 𝑡 1.5 s a different

shape occurs. Between the approximation 𝑓 and the Runge
function, no different are visible. In Fig. 8 the approximation
error ∆ 𝑓 𝑓 is shown.

Figure 8: Approximation errors produced by the FNN with a

different number K of neurons in the hidden layer

Since the approximation error between the Runge function and
the approximation 𝑓 is almost zero, the statement is confirmed
that no differences can be seen between both functions. The
approximation error between the approximation 𝑓 and the
Runge function oscillates, because the Runge function
intersects the approximation. The approximation error is
minimized using the FNN with the higher number of neurons.

However, it cannot simply be assumed, that by increasing the
number of neurons, the quality of the approximation increases.
This becomes particularly problematic, when dealing with data
corrupted by noise.

To simulate these, noise is added to y in Equation (8). In
Simulink, the band-limited white noise block is used for this
with a noise power 𝑃 0.00015 and a sample time 𝑇
 0.01 s. This generates normally distributed random numbers
around the step response 𝑦. The simulation results of the noisy
step response 𝑦 and their approximations 𝑦 , and
𝑦 , are shown in Fig. 9 and 10.

Figure 9: Simulation results of noisy step response 𝑦 of the

second-order system with its approximation 𝑦 ,

The approximation 𝑦 , corresponds to a smoothed signal
that has the characteristic of the unnoisy step response of the
second-order system 𝑦.

Figure 10: Simulation results of noisy step response 𝑦 of the

second-order system with its approximation 𝑦

The approximation 𝑦 , also contains higher frequency
components as can be seen in Fig. 10, so that it can be assumed
that the neural network becomes more sensitive to higher
frequencies by increasing the number of neurons. Conversely,
this means that this method to choose the number of neurons
also suppresses unwanted noise, when approximating a system
response. If the FNN described here, is designed with the
minimum number of required neurons, it can also act as a filter.
It is easy to see that the approximation 𝑦 , is closer to the
true step response (see Fig. 4) than the approximation
𝑦 , . Fig. 11 shows 𝑦 and the approximation 𝑦 , .

Figure 11: Comparison between the approximation of the noisy

step response 𝑦 , and the step response 𝑦

If we compare the approximations 𝑦5,𝑛𝑜𝑖𝑠𝑦 and 𝑦5 with the step

response 𝑦 (see Fig. 11 and Fig. 4), it can be retained that both
approximations 𝑦5,𝑛𝑜𝑖𝑠𝑦, and 𝑦5, which the FNN delivers, have

the same characteristics, despite different input signals. Thus,
an FFN designed with this method can find the true function
in a noisy signal if the characteristics of a system response are
known. In practice, this can be a helpful tool for system
identification, since measured values are usually noisy.

6. CONCLUSIONS

In this paper, a new method for designing a neural network for
approximating a data set was presented. This method uses
inflection point analysis to determine the number of neurons
in a feedforward neural network with one hidden layer and a
hyperbolic tangent activation. The advantage of the method is
that no regularization is required since the smallest number of
neurons is used automatically.

Simulations have shown that the method can define the
minimal number of neurons, and hence, approximate linear
and nonlinear functions with small error. It can be used for a
large group of linear and nonlinear systems, with the
assumption that the function has derivatives on the domain,
where the approximation is desired. In summary, by using the
hyperbolic tangent as activation function, a FNN with one
neuron in the hidden layer can only approximate the time
behavior of nonoscillating system responses, which are
typically the solutions of linear and nonlinear first-order
differential equations. To approximate linear or nonlinear
differential equations of higher order, especially with
oscillating behavior, two or more neurons are needed. It should
be noted that other types of activation functions will produce
different results.

Future work will clarify, whether this method can be only used
for a special class of functions, especially for differential
equations, which have the exponential function as a solution
or whether this method can also be used for any nonlinear
differential equations. In addition, it must be verified, whether
an automated creation of a neural network is possible on the
basis of this method, which then works as a regression model
in a soft sensor. Moreover, it will be checked in further works,
whether the proposed method is applicable to deep neural
networks with more than one hidden layer.

REFERENCES

Aggarwal, C.C. (2018). Neural Networks and Deep Learning.
Springer International Publishing.

Barron A.R. (1993). Universal approximation bounds for
superpositions of a sigmoidal function. IEEE Trans. Inf.
theory, 39(3), 930-945.

Benvenuto N. and F. Piazza (1992). On the complex
backpropagation algorithm. IEEE Transactions on
Signal Processing, 40(4), 967-969.

Bishop, C.M. (1995). Neural Networks for Pattern
Recognition. Oxford University Press.

Carroll S. (1989). Construction of neural networks using the
radon transform. Proc. IEEE Int. Conf. Neural Network,
1, 607-611.

Cybenko G. (1989). Approximation by superpositions of a
sigmoidal function. Math. Control, Signals Syst, 2(4),
303-314.

Fortuna L., Graziani S., Rizzo A., Xibilia M.G. (2006). Soft
Sensor for Monitoring and Control of Industrial
Processes. Springer-Verlag, London.

Gronholdt, L. and Martensen, A. (2005). Analysing customer
satisfaction data: acomparison of regression and artificial
neural networks. International Journal of Market
Research, 47(2), 121-130.

Hecht-Nielsen R. (1989). Theory of the backpropagation
neural network. International 1989 Joint Conference on
Neural Networks, 1, 593-605.

Hornik K., Stinchcombe M., and White H. (1989). Multilayer
feedforward networks are universal approximators.
Neural Netw., 2(5), 359-366.

Hunter D., Yu H., Pukish M.S, Kolbusz J. and Wilamowski
B.M. (2012). Selection of Proper Neural Network Sizes
and Architectures - A Comparative Study. IEEE
Transactions on Industrial Informatics, 8(2), 228-240.

Kadlec, P., Gabrys, B. and Strandt, S. (2009). Data-driven Soft
Sensors in the Process Industry. Computers and
Chemical Engineering, 33(4), 795-814.

Kolmogorov A.N. (1957). On the representation of continuous
functions of many variables by superposition of
continuous functions of one variable and addition.
Doklady Akademii Nauk, Russian Acad. Sci., 114(5),
953-956.

Lin R., You S., Rao R. and Kuo C.-C. J. (2021). On
Relationship of Multilayer Perceptrons and Piecewise
Polynomial Approximators. IEEE Signal Processing
Letters, 28, 1813-1817.

Mhaskar H.N. and Khachikyan L. (1995). Neural networks for
function approximation. Proceedings of 1995 IEEE
Workshop on Neural Networks for Signal Processing,
21-29.

Rudin W. (1973). Functional Analysis. McGraw Hill, New
York.

 Scarselli F. and Tsoi A.C. (1998). Universal approximation
using feedforward neural networks: A survey of some
existing methods, and some new results, Neural Netw.,
11(1), 15-37.

 Shardt, Y. A.W. (2015). Statistics for Chemical and Process
Engineers: A Modern Approach. Springer International
Publishing, Switzerland.

 Silva I.N., Spatti D.H., Flauzino R.A., Liboni L. H.B., and
Reis-Alves, S.F. (2017). Artificial Neural Networks: A
Practical Course. Springer International Publishing,
Switzerland.

Sprecher D.A. (1965). On the structure of continuous functions
of several variables. Trans. Amer. Math. Soc., 115, 340-
355.

Xu D., Wang B., Zhang G., Wang G. and Yu Y. (2018) A
review of sensorless control methods for AC motor
drives. CES Transactions on Electrical Machines and
Systems, 2(1), 104-115.

