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Abstract: — The widespread use of neural networks to model complex processes requires that a 
parsimonious model of the process be obtained. One of the main variables in neural networks is the number 
of neurons in the hidden layer. Selecting an inappropriate number of neurons can lead to over- or 
underfitting. Therefore, a method is required which determines the appropriate number of neurons in order 
to approximate a defined system response or time function. This paper presents a proposition to determine 
the appropriate number of neurons in a feedforward neural network, based on the number of inflection 
points included in the system response or the time function. The results show that the proposed method has 
marginal approximation errors (no underfitting) and overfitting can never occur because the minimal 
number of neurons for the approximation problem is used. To verify the effectiveness of this method, 
simulations were carried out on a second-order system with and without noise, the Lotka-Volterra 
equations, and the Runge function. 
Keywords: inflection point, number of neurons, feed forward neural network, approximation, hyperbolic 
tangents  

1. INTRODUCTION 

Neural networks have a wide range of applications, for 
example in controlling dynamic systems like electrical motors, 
description and simulation of highly complex dynamic 
systems (Hunter et al., 2012), approximation and prediction of 
time series (Mhaskar et al., 1995), regression (Gronhold et al. 
2005 and Bishop, 1995) and sensor applications (Kadlec, 
et al., 2009). In this paper, we manly deal with approximation 
behavior of neural networks for sensor applications.   

The primary purpose of the sensors is to deliver data for 
process monitoring and control. However, some process 
variables cannot easily be recorded with hardware sensors 
because the process variable is not available (Xu et al., 2018) 
or the hardware sensors are disproportionately expensive 
(Fortuna et al., 2006). Thus, researchers have to use the data 
measured by hardware sensors to build predictive models. In 
the context of the process industry, these predictive models are 
called soft sensors (Kadlec et al., 2009).  

At a very general level, one can differentiate between model- 
and data-based soft sensors. The model-based soft sensor is 
most commonly based on physical equations describing the 
physical principles underlying the process, also called white-
box models because they have full phenomenological 
knowledge about the process background (Shardt, 2015). On 
the other hand, purely data-driven models are called black-box 
models, because the model itself has no knowledge about the 
process and is based on empirical observations of the process. 
One of the most popular methods for modelling data-driven 

soft sensors is using a regression model based on an artificial 
neural network (Kadlec et al., 2009).  

However, there are two major problems in the application of 
neural networks to modelling processes (Mhaskar et al., 1995). 
First, it is necessary to determine the number of neurons 
required to achieve the approximation of the target function 
within a given margin of tolerance. Secondly, it is necessary to 
develop algorithms to actually construct the approximating 
networks. 

Therefore, many papers deal with how the architecture of a 
neural network has to be chosen in order to be able to achieve 
acceptable results. Neural networks with no hidden layers lack 
the capability to approximate nonlinear functions (Scarselli 
et al., 1998). Cybenko (1989) proved, that networks with one 
hidden layer and the sigmoid activation function could be 
universal approximators. Hornik et al. (1989) extended 
Cybenko’s work to feedforward neural networks (FNN) with 
other activation functions. The universal approximation 
property of an FNN has been studied using tools from 
functional analysis (e.g., the Hahn-Banach theorem in 
Rudin (1973)) and real analysis (e.g., the Sprecher-
Kolmogorov theorem in Sprecher (1965) and Kolmogorov 
(1957)). In Lin et al. (2021), the relationship between a 
multilayer perceptron regressor and the piecewise polynomial 
approximator was studied, and based on this relationship, a 
multilayer perceptron construction method was proposed. The 
Radon transform (Carroll, 1989), and the Fourier distribution 
and series (Barron, 1993) have been used for the construction 
of a FNN.  



Thus, this paper proposes and examines a new method by 
which the minimal number of neurons in a FNN can be 
specified based on the number of inflection points in the 
system response or time function. Furthermore, the proposed 
approach is tested on simulated second-order system with and 
without noise, the Lotka-Volterra equations, and the Runge 
function. 

2. MATHEMATICAL DESCRIPTION OF THE 
FEEDFORWARD NEURAL NETWORK 

Let us consider the propagation through a neuron as shown in 
Fig. 1, where time 𝑡, weight 𝑤, and bias 𝑏 are inputs. With 
these inputs the propagation function 𝑢 can be described by 

𝑢 𝑤𝑡 𝑏. 1  

The activation function 𝑎 𝑢  is equivalent to the output 𝑓 of 
the neuron.  

 
Figure 1: Propagation through one neuron in a FNN 

The nonlinear hyperbolic tangent function, commonly used to 
approximate nonlinear functions (Aggarwal, 2018), given as, 

𝑎 𝑢
2

1 𝑒
1 2  

is chosen here as the activation function. The propagation 
function 𝑢 works as a scaling factor (Silva et al., 2017) that 
horizontally stretches or shrinks 𝑎 𝑢  with the weight 𝑤. The 
bias 𝑏 performs a horizontal translation. If the sign of 𝑤 
changes, 𝑎 𝑢  is reflected over the y-axis.  

As can see from the consideration above, a FNN with one 
neuron can only describe a time behavior with the shape of the 
activation function. With a FNN as shown in Fig. 2, with one 
hidden layer {1} with 𝐾 neurons, and the output layer {2} with 
one neuron with multiple inputs, other time behaviors with  

 
Figure 2: Arrangement of neurons, weights, biases and activation 

functions to describe the FNN 

higher complexity can also be described by superposing. 

The 𝑚 neurons are part of the hidden layer and described by 

their individual weights 𝑤 , biases 𝑏  and propagation 
functions 𝑢 . Therefore, (1) becomes  

𝑢 𝑤 𝑡 𝑏 . 3  

The activation function for each neuron 𝑚 is given by 𝑎 𝑢 . 
The approximation 𝑓  of the nonlinear time functions by a 
FNN with the input 𝑓, with 𝐾 neurons in the hidden layer and 
one neuron in the output layer, including a linear activation 
function gives  

𝑓 𝑤 𝑎 𝑢 𝑏 , 4  

where 𝑤  is the individual weight of each neuron of the 
second layer and 𝑏  is the total bias of the second layer. Both 
can be seen as a vertical scaling factor. The complete structure 
of a FNN as shown in Fig. 2 and used in this paper, describes 
(4). The approximated function 𝑓  is a set of 𝐾 superpose 
hyperbolic tangent functions: 
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To adjust the weights 𝑤  and 𝑤 , the backpropagation 
algorithm is commonly used (Hecht, 1989). Using 𝐽 
optimization steps, the weights 𝑤  and 𝑤  are optimized by 
looping through the following equations: 
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In (6) and (7), the functions 𝑒  and 𝑒  are the error functions 
for each optimization step 𝑖. With the defined gradients for 

each parameter, the weights 𝑤 , , 𝑤 ,  are optimized and 
updated at each step 𝑖  using the gradient descent method 
(Benvenuto et al., (1992), that is,  

𝑤 , 𝑤 , 𝜂
𝜕𝑒

𝜕𝑤 , 

𝑤 , 𝑤 , 𝜂
𝜕𝑒
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, 7

 

where 𝑤 ,  and  𝑤 ,  are the weights of the current 
optimization step 𝑖 for respectively the hidden and the output 

layer, and 𝑤 , , 𝑤 ,  are the weights of the last 
optimization step. The variable learning rate for each 



optimization step 𝑖 is given by 𝜂 . If no further improvement 
of the approximation can be brought about by the algorithm, 
𝑤 ,  converges to the weight 𝑤  and 𝑤 ,  converges to the 

weight 𝑤   and the termination criterion has been reached. 

To adjust the biases 𝑏  and 𝑏 , the same procedure is used. 

3. APPROXIMATION OF A SECOND-ORDER SYSTEM 
BY A FEEDFORWARD NEURAL NETWORK 

Let us consider the time series resulting from the simulation of 
a second-order system of the form 

𝑦 2𝐷𝑇
d𝑦
d𝑡

𝑇
d 𝑦
d𝑡

𝑃𝑥, 8  

where the damping constant D = 0.268, the time constant 
T = 0.193, and the gain P = 1. The second-order system is a 
common model for describing damped oscillation, e.g. a mass-
spring-damper systems and RLC circuits. The process will be 
excited using a step of magnitude 1 for the variable x. The 
output variable y describes then the step response of the 
process. 

The approximations 𝑦  of the step response 𝑦 were generated 
with the FNN described above. The results of modelling the 
process using 𝐾  1, 2, and 3 neurons are shown in Fig. 3. 

 
Figure 3: Step response of a second-order system with FNN 

approximations 𝑦 ,  𝑦 , and 𝑦  for different 𝐾  

As is shown by (5), the approximation 𝑦  resembles a 
hyperbolic tangent, which has a form similar to that of the 
integral symbol ( . The backpropagation algorithm adjusts 
𝑦 , that is, the hyperbolic tangent, in such a way that when all 
the deviations between 𝑦 and 𝑦  are added together, the 
smallest sum results. Therefore, 𝑦  approaches the first 
positive edge of 𝑦 until this tends towards a final value that is 
roughly the mean value of the over- and undershoots.  

A better approximation can be achieved by superimposing 
additional hyperbolic tangent functions, as described in (5). 
The first overshoot can be approximated by 𝑦  with 𝐾 2 
neurons, and the subsequent undershoot can also be 
approximated by 𝑦  with a third neuron. It is therefore obvious 
that for every further inflection point in the step response 𝑦, 

another neuron is necessary, in order to guarantee a complete 
approximation over the considered interval.  

Let us consider the step response between two extrema, 
defined by a peak in the overshoot and a peak in the subsequent 
undershoot, then it is noticeable that this area has the shape of 
an integral symbol or its reflection about the y-axis. Since each 
neuron only forms one hyperbolic tangent of the form of an 
integral symbol, the number of neurons must be equal to the 
number of inflection points 𝑊. In this case, 𝑊 5 inflection 
points are present. Thus, the result of the approximation with 
a FNN with 𝐾 5 neurons is shown in Fig. 4. 

 
Figure 4: Step response of a second-order system with FNN 

approximation 𝑦  for 𝐾 5  

A sufficiently good approximation is achieved with 𝐾 5 
neurons (see Fig. 4), where 𝑅 0.999 and the deviation 
between 𝑦 and its approximation 𝑦  is smaller than 1.5%. The 
coefficient of regression 𝑅  measures the correlation between 
𝑦 and 𝑦 , where R = 1 denotes a strong relationship between 
𝑦 and 𝑦 ,  and R = 0 no relationship. The approximation error 
∆ 𝑦 𝑦  is shown in Fig. 5. 

 
Figure 5: Approximation error ∆  produced by the FNN with 

different 𝐾. 

Every approximation error ∆  oscillates between 1.2%. The 
quality of the approximation improves only marginally with a 
further increase in the number of neurons, since the coefficient 
of regression remains at 𝑅 0.999 for 𝐾  5, 7, 8, and 10. 
Furthermore, the approximation error (see Fig. 5) remains 
roughly the same despite an increasing number of neurons. 

 



4. PROPOSITION REGARDING THE APPROXIMATION 
OF OSCILLATING FUNCTIONS 

Based on the experiment above, let us consider a proposition 
that defines the minimum number of neurons required in a 
FNN. Let us divide a time function f in the interval 𝐿,𝑈  into 
𝑀 subintervals ∆𝐿 ,∆𝑈  ∈ 𝐿,𝑈  with the index 𝑚 ∈ 𝑀. If 
every interval boundary is determined by 𝑓 ∆𝐿 0 and 
𝑓 ∆𝑈 0, where 𝑓 d𝑓/d𝑡,  f only monotonically 
increases (d𝑓/d𝑡 0 at each point in ∆𝐿 ,∆𝑈 ) or 
monotonically decreasing (d𝑓/d𝑡 0  at each point in 
∆𝐿 ,∆𝑈  ). Then, 𝑓 has exactly one inflection point in the 

subinterval ∆𝐿 ,∆𝑈  and 𝑓 has the form of an integral 
symbol or its reflection about the y-axes in every subinterval. 

If the activation function has the form of the integral symbol 
or its reflection about the y-axis, this is strictly monotonically 
increasing or decreasing like the hyperbolic tangent function. 
This can only approximate one interval ∆𝐿 ,∆𝑈   in f, in 
which these is also a strict monotonic increase or decrease. 
This means that the hidden layer of a FNN must have as many 
neurons 𝐾 as there are inflection points 𝑊 in f, since a neuron 
can only generate a single, monotonically increasing or 
decreasing function. 

The number of inflection points 𝑊 in the function 𝑓 is given 
by the number of subintervals, i.e. 

𝐾 𝑊 1 . 9  

If the number of neurons corresponds to the number of 
inflection points in f, in the interval 𝐿,𝑈  we are considering, 
the slope and the position of the inflection point of the function 
𝑎 𝑢  can be adjusted with 𝑢  for each inflection point in f. 
The minimal number of neurons that have to be contained in 
the hidden layer in a FNN, in order to be able to approximate 
𝑓, is described by 𝐾. 

5. VERIFICATION OF THE PROPOSITION  

The proposition verified using the Lotka-Volterra equations, 
the Runge function, and a noisy step response of a second-
order system. The Lotka-Volterra equations describe the 
interaction between predator and prey populations, consisting 
of two nonlinear, coupled first-order differential equations, 
that is, 

d𝑛
d𝑡

𝑛 𝐶 1
𝑛
𝐺

𝐷𝑝

d𝑝
d𝑡

𝑝 𝐵𝑛 𝐴 , 10

 

where n is the number of prey, p the number of predators, and 
A = 5, B = 0.05, C = 8, D = 0.3 and G = 300 are user-defined 
parameters.  

Based on the proposition, both FNNs for the approximation of 
𝑛 and 𝑝 are implemented with 𝐾 5 neurons, because 𝑊 5 
inflection points can be seen in the simulation of the Lotka-
Volterra equations, for the give parameters. A change in the 

parameters leads to a different behavior. In Fig. 6, 𝑛, 𝑝 and 
their approximations 𝑛, 𝑝 are shown. 

 
Figure 6: Results of the simulation of 𝑛 and 𝑝 and their 

approximation 𝑛,𝑝 

Both approximations have small deviations with a maximum 
error |∆ | 0.2%. The proposed method to choose the 
number 𝐾 of neurons with the number 𝑊 of inflection points 
also applies to nonlinear systems like Lotka-Volterra. 

The Runge function is very difficult to approximate with a 
polynomial function because of Runge’s phenomenon, where 
higher-order polynomials oscillate at the edges of an interval 
if the step size between the interpolation points is constant. 
Therefore, let us consider how well a FNN can approximate 
this function. The Runge function is given by 

𝑓
1

1 𝑡
11  

Based on the proposition, one FNN for the approximation 𝑓  
of the Runge function 𝑓 is implemented with 𝐾 2 neurons, 
because 𝑊 2 inflection points can be seen in the simulation 
of the Runge function and another FNN implemented with 
𝐾 8 neurons. The results are shown in Fig. 7. 

 
Figure 7: Results arising from approximating the Runge function 

with two and eight neurons 

The approximation 𝑓  with 𝐾 2 neurons has a smaller 
amplitude than the Runge function and for 𝑡 1.5 s a different 



shape occurs. Between the approximation 𝑓  and the Runge 
function, no different are visible. In Fig. 8 the approximation 
error ∆ 𝑓 𝑓  is shown.  

 
Figure 8: Approximation errors produced by the FNN with a 

different number K of neurons in the hidden layer 

Since the approximation error between the Runge function and 
the approximation 𝑓  is almost zero, the statement is confirmed 
that no differences can be seen between both functions. The 
approximation error between the approximation 𝑓  and the 
Runge function oscillates, because the Runge function 
intersects the approximation. The approximation error is 
minimized using the FNN with the higher number of neurons.  

However, it cannot simply be assumed, that by increasing the 
number of neurons, the quality of the approximation increases. 
This becomes particularly problematic, when dealing with data 
corrupted by noise. 

To simulate these, noise is added to y in Equation (8). In 
Simulink, the band-limited white noise block is used for this 
with a noise power 𝑃  0.00015  and a sample time 𝑇
 0.01 s. This generates normally distributed random numbers 
around the step response 𝑦. The simulation results of the noisy 
step response 𝑦  and their approximations 𝑦 ,  and 
𝑦 ,  are shown in Fig. 9 and 10. 

  
Figure 9: Simulation results of noisy step response 𝑦  of the 

second-order system with its approximation 𝑦 ,   

The approximation 𝑦 ,  corresponds to a smoothed signal 
that has the characteristic of the unnoisy step response of the 
second-order system 𝑦. 

 
Figure 10: Simulation results of noisy step response 𝑦  of the 

second-order system with its approximation 𝑦    

The approximation 𝑦 ,  also contains higher frequency 
components as can be seen in Fig. 10, so that it can be assumed 
that the neural network becomes more sensitive to higher 
frequencies by increasing the number of neurons. Conversely, 
this means that this method to choose the number of neurons 
also suppresses unwanted noise, when approximating a system 
response. If the FNN described here, is designed with the 
minimum number of required neurons, it can also act as a filter. 
It is easy to see that the approximation 𝑦 ,  is closer to the 
true step response (see Fig. 4) than the approximation 
𝑦 , .  Fig. 11 shows 𝑦 and the approximation 𝑦 , .  

 
Figure 11: Comparison between the approximation of the noisy 

step response 𝑦 ,  and the step response 𝑦 

If we compare the approximations 𝑦5,𝑛𝑜𝑖𝑠𝑦 and 𝑦5 with the step 

response 𝑦 (see Fig. 11 and Fig. 4), it can be retained that both 
approximations 𝑦5,𝑛𝑜𝑖𝑠𝑦, and 𝑦5, which the FNN delivers, have 

the same characteristics, despite different input signals. Thus, 
an FFN designed with this method can find the true function 
in a noisy signal if the characteristics of a system response are 
known. In practice, this can be a helpful tool for system 
identification, since measured values are usually noisy.  



6. CONCLUSIONS 

In this paper, a new method for designing a neural network for 
approximating a data set was presented. This method uses 
inflection point analysis to determine the number of neurons 
in a feedforward neural network with one hidden layer and a 
hyperbolic tangent activation. The advantage of the method is 
that no regularization is required since the smallest number of 
neurons is used automatically. 

Simulations have shown that the method can define the 
minimal number of neurons, and hence, approximate linear 
and nonlinear functions with small error. It can be used for a 
large group of linear and nonlinear systems, with the 
assumption that the function has derivatives on the domain, 
where the approximation is desired. In summary, by using the 
hyperbolic tangent as activation function, a FNN with one 
neuron in the hidden layer can only approximate the time 
behavior of nonoscillating system responses, which are 
typically the solutions of linear and nonlinear first-order 
differential equations. To approximate linear or nonlinear 
differential equations of higher order, especially with 
oscillating behavior, two or more neurons are needed. It should 
be noted that other types of activation functions will produce 
different results. 

Future work will clarify, whether this method can be only used 
for a special class of functions, especially for differential 
equations, which have the exponential function as a solution 
or whether this method can also be used for any nonlinear 
differential equations. In addition, it must be verified, whether 
an automated creation of a neural network is possible on the 
basis of this method, which then works as a regression model 
in a soft sensor. Moreover, it will be checked in further works, 
whether the proposed method is applicable to deep neural 
networks with more than one hidden layer. 
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