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Abstract: Population balance models are used to describe systems composed of individual
entities dispersed in a continuous phase. Identification of system dynamics is an essential yet
difficult step in the modeling of population systems. In this paper, Gaussian processes are
utilized to infer kinetics of a population model, including interaction with a continuous phase,
from measurements via non-parametric regression. Under a few conditions, it is shown that
the population kinetics in the process model can be estimated from the moment dynamics,
rather than the entire population distribution. The method is illustrated with a numerical case
study regarding crystallization, in order to infer growth and nucleation rates from varying noise-
induced simulation data.
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1. INTRODUCTION

Systems consisting of multiple discontinuous entities are
generally more difficult to mathematically model and sim-
ulate in comparison to strictly continuous systems. Pop-
ulation balance modeling is a well-known method to pre-
dict the distribution of the discontinuous entities along
individual member properties (Ramkrishna (2000)). This
modeling approach has been applied in a wide variety of
fields, and in particular, in chemical engineering. In this
field, the population balance model is often part of an
overall process model. The intrinsic physical nature of the
system as well as the process conditions are described by
a set of parameters. Those parameter may subsequently
be used in the process model for simulation and control.
This application of population balance models is known
as the solution to the forward problem. A different appli-
cation, known as the inverse problem, is in the case when
population measurements are available (from the physi-
cal process), from which one tries to estimate population
dynamics included in the model. To this end, the inverse
problem is highly relevant in systems identification. Unfor-
tunately, the inverse problem has proven to be ill-posed in
several applications (Ramkrishna (2000); Kostoglou and
Karabelas (2005)).

One particular chemical system where population balance
models are often studied, is in crystallization. In this
process, a dissolved compound aggregates to form a dis-
persed system of crystals. Crystallization is initiated by
a change in temperature and/or medium composition via
addition of anti-solvent. This process can be applied in
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either a batch-wise or a continuous setting. The industri-
ally relevant goal of the crystallization process is either
to produce crystals (e.g. in pharmaceutical industry), or
to remove solute from the medium as separation process
(Myerson (2002)). The intrinsic crystallization dynamics
can be divided into nucleation and growth. The former de-
scribes how new crystals are created from solute, whereas
the latter describes how quickly existing crystals grow in
size. Solving the inverse problem hereto typically relies
on proposing a certain mathematical expression and es-
timating parameters from measurements, see for example
Bari and Pandit (2018) or Savvopoulos et al. (2019). In
addition to growth and nucleation, the population is also
affected by phenomena taking place between crystals, such
as breakage or aggregation.

In this paper, a method is introduced to estimate popula-
tion dynamics in interaction with a continuous phase from
noisy measurement data. To this goal, if a few conditions
are satisfied, then this permits a simplified moment-based
approach. The method is illustrated in a non-steady-state
crystallization example, in which the continuous phase
variable corresponds to dissolved solute. The nucleation
and growth rates are inferred from numerically simulated
measurement data using Gaussian process regression. This
regression method, which has its roots in machine learning,
allows for non-parametric inference which can be adapted
to varying process conditions. Since no prior expression
needs to be imposed, the non-parametric approach has a
wider and more adaptive application range.

The paper is structured as follows. Section 2 covers the
theoretical background required for the method presented
in this paper. The first part of this section covers the basics



of population balance models, and states the conditions
under which a moment-based approach may be taken.
The second part includes a mathematical formulation of
Gaussian process regression. In Section 3, a numerical case
study is discussed to illustrate the inference of crystalliza-
tion dynamics using Gaussian process regression in com-
bination with the reduced moment-based process model.
Finally, Section 4 summarizes the paper.

2. METHODS

In this section, a brief theoretical background on two
relevant concepts is presented. First, the modeling of par-
ticulate systems in combination with continuous phase
dynamics is introduced. To this goal, so-called popula-
tion balance equations are used, following the work of
Ramkrishna (2000). Second, the concept of Gaussian pro-
cess regression is briefly covered, primarily based upon the
work of Rasmussen and Williams (2006). The notion of
linear operators in Gaussian process is also explained.

Notation—Following mathematical notation is used to
distinguish between scalar, vector, and matrix variables.
Scalars are denoted in lowercase, e.g. x. Vectors are written
in lowercase and bold font weighting, e.g., x. Matrices are
written in uppercase and bold font weight, e.g. X.

2.1 Population balance modeling

Population balance equations—A particulate system is
characterized as any system that consists of dispersed
particles which may interact with other particles and a
surrounding continuous medium. Such systems are often
mathematically represented via population balance mod-
els, which arise in different fields with a wide variety of
population types, see for example Ramkrishna and Singh
(2014) for a selection of some applications.

In population balance models, each individual particle
(population member) has an associated particle state,
in this text denoted by an n-dimensional state vector
x(t) ∈ Ω0

x ⊂ Rn. The dynamics of individual particles
are described by a function fx, mathematically expressed
as

dx(t)

dt
= fx(x,y, t). (1)

The expected number of members in the total population
in particle state x is described by the number density
function (NDF) n(t,x) ∈ R+. The expected number
of particles with state x belonging to a region Ωx is
subsequently given by

∫
Ωx

n(t, ξ)dξ. In addition to the

particle state, the system dynamics may be influenced
by the state of one or more continuous phase variables,
denoted by an m-dimensional vector y(t) ∈ Rm. From
conservation principles, a population balance equation
(PBE) in combination with its particle state dynamics,
can be formulated generally as

∂n(t,x)

∂t
+∇x · (fx(x,y, t)n(t,x)) = h(x,y, n, t). (2)

The first term on the left-hand side of the partial differen-
tial equation above represents the accumulation over time,
the second term represents the change following internal
particle dynamics. The right-hand side, h(x,y, n, t), indi-
cates the sum over all source/sink processes. This term

also includes birth (or death) processes; events in which
particles of one state are generated from (or vanish into)
particles of different states. Following boundary fluxes are
imposed on the NDF:

−(fx(x,y, t) · nx)n(t,x) = ṅ0(x,y, t), for x ∈ ∂Ω0
x,

fx(x,y, t)n(t,0) → 0, for ∥x∥ → ∞.
(3)

In equation above, ∂Ω0
x denotes the boundary region of

the domain Ω0
x, and nx is the normal vector at a x ∈ ∂Ω0

x
oriented outside the domain Ω0

x, see Ramkrishna (2000) for
further details. A general formulation of these dynamics is
given by

dy(t)

dt
= −

∫
x

α(x,y, t)n(t,x)dx+ γ(y, t). (4)

The first term on the right-hand side indicates the sum
of interactions with the population via an exchange rate
α, and the second term on the right-hand side equals a
source/sink term, which is irrespective of the population
dynamics.

Moment dynamics—Consider the monovariate case in
which the particle state x ∈ R+ is a scalar. Then, one
may define the kth moment µk(t) as

µk(t) =

∫ ∞

0

xkn(t, x)dx (5)

for k ∈ N. In the case that the particle dynamics fx are
independent of x, it is possible to explicitly derive moment
equations from (2) as

dµ0(t)

dt
= ṅ0(y, t) +

∫ ∞

0

h(x,y, n, t)dx,

dµk(t)

dt
= kfx(y, t)µk−1(t) +

∫ ∞

0

xkh(x,y, n, t)dx.

(6)

for k > 0. In the case that the source/sink terms are
independent of x and linear in n(t, x), then the integral
terms in (6) are functions of µk(t), such that the right-
hand side of the kth moment differential equations does
not depend on higher order moments.

In addition to the assumptions defined above, resulting in
the moment equations, a specific expression of the con-
tinuous dynamics renders the continuous dynamics closed
under the kth moment. This is the case on the condition
that the factor α(x,y, t) in (4) is strictly polynomial in x.
Then, (4) and (6) form a closed system of equations for all
moments µk(t) where k is less than or equal to the poly-
nomial order of α(x,y, t) in x. Initial conditions for the
moment differential equations are obtained via integration
of (5) evaluated with the NDF initial condition.

Example in crystallization—To illustrate the moment dy-
namics as described above, the approach is presented for a
mixed suspension mixed product removal (MSMPR) crys-
tallization model. This example is utilized as case study in
Section 3. Further theoretical background on the mathe-
matical modeling of crystallization processes can be found
in, for example, Porru and Özkan (2017) or Savvopoulos
et al. (2019).

In this MSMPR process, the population consists of crystals
which differ in crystal size x ∈ [0,∞). The state dynamics
only depend on the solute concentration C in the contin-
uous phase. That is, the growth rate G solely depends on
C, i.e., ẋ = G(C). Technically speaking, the growth rate is



typically a function of the supersaturation which is defined
as the ratio of concentration C to Csat. The saturation
concentration Csat is a function of temperature and anti-
solvent content in the medium, which are both assumed
constant in the process operation. The PBE along with
the boundary condition at x = 0 is given as

∂n(t, x)

∂t
+G(C)

∂n(t, x)

∂x
= −dn(t, x),

G(C)n(t, 0) = B(C).
(7)

Here, d represents a constant dilution rate (the fraction
of tank volume being replenished with new medium per
unit of time). B(C) represents a (primary) nucleation rate,
this is, the rate at which new crystals are formed out of
solute concentration. Secondary nucleation is assumed to
be negligible for this application.

The concentration dynamics are defined by the continuous
inflow and outflow of solute, and the solute consumed
during crystal growth, resulting in

dC(t)

dt
= −3kvρC

∫ ∞

0

G(C)x2n(t, x)dx+ d(Cin − C(t)).

(8)
In equation above, kv is a shape factor (equal to 1 in case
of spherical crystals), ρC the material density of crystals.
Cin represents the concentration of the continuous inflow
into the tank.

One can verify that the system described by (7) and
(8) satisfies the conditions described earlier. This allows
to formulate a moment-based reduction of the system,
resulting in

dC(t)

dt
= −3kvρCG(C)µ2(t) + d(Cin − C(t)),

dµ0(t)

dt
= −dµ0(t) +B(C),

dµ1(t)

dt
= −dµ1(t) +G(C)µ0(t),

dµ2(t)

dt
= −dµ2(t) + 2G(C)µ1(t).

(9)

The advantage of this approach, is that a concentration
profile can be derived without solving the PBE simul-
taneously. Furthermore, if one is only interested in the
moments of the NDF, the PBE does not need to be solved.
In fact, using the method of characteristics (see Appendix
A), the NDF can be obtained without numerically solving
the PBE directly.

2.2 Gaussian process regression

Gaussian processes—A Gaussian process is a stochastic
process where each finite subset of random variables is
jointly Gaussian distributed. It can be regarded as a gen-
eralization of the finite dimensional Gaussian probability
distribution over random vectors to an infinite dimensional
vector, which essentially is a function. The concept of
probability distribution over a random function can be
exploited for non-parametric regression, as shown below.
In this text, the theory behind Gaussian process regression
is summarized following the function-space view as given
by Rasmussen and Williams (2006).

Assume an unknown function f(x) defined over its (multi-
dimensional) domain. Then, similar to a Gaussian dis-

tribution, a Gaussian process is fully defined by a mean
function m(x) and a covariance function k(x,x′), where
both x and x′ are within the domain of f(x). Then a
Gaussian process is denoted as

f(x) ∼ GP(m(x), k(x,x′)), (10)

with m(x) and k(x,x′) defined as

m(x) = E[f(x)],
k(x,x′) = E[(f(x)−m(x))(f(x′)−m(x′))].

(11)

Assume N measurements y∗ of f(x) are taken for inputs
within the set X∗. In this case, the measurements y∗ are
estimates of f(X∗) under white noise. Following this, the
Gaussian process can be written as a finite joint distribu-
tion between the unknown function and measurements,(

f(X)
y∗

)
∼ N

((
m(X)
m(X∗)

)
,

(
K(X,X) K(X,X∗)
K(X∗, X) K(X∗, X∗) + σ2

nI

))
∼ N

((
m(X)
m(X∗)

)
,

(
K K∗
K⊺

∗ K∗∗ + σ2
nI

))
.

(12)

Here, X represents a subset of input values in the domain
of f(x) where the Gaussian process is evaluated, while X∗
represents the set of all measurement inputs x∗,i. Then,
K(X,X ′) is a matrix where each element K(X,X ′)i,j =
k(Xi, X

′
j). The value σ

2
n is added to the diagonal elements

of K∗∗ to compensate for measurement noise.

Regression from measured data is achieved via formulating
the conditional distribution for f(X) based on the known
measurements y∗ at X∗. A property of the Gaussian
distribution, is that the conditional remains a Gaussian
distribution, with known mean and covariance (see for
example Chapter 6 in Deisenroth et al. (2020)), resulting
in

f(X)|y∗, X∗ ∼ N (m(X) +K∗(K∗∗ + σ2
nI)−1(y∗ −m(X∗)),

K−K∗(K∗∗ + σ2
nI)−1K⊺

∗).
(13)

Covariance kernel—One aspect which has not been dis-
cussed so far, is what functions to select for m(x) and
k(x,x′). Direct derivation from their definition in (11) is
not possible since f(x) is unknown. In most cases, m(x)
can be taken as the zero function. The selection of the
covariance function k(x,x′), also called the kernel of the
Gaussian process, determines the properties of the regres-
sion result. The kernel k(x,x′) needs to be chosen such
that the covariance matrix in the Gaussian distribution
(12) is positive semidefinite. See Rasmussen and Williams
(2006) for details on valid kernel selection.

A commonly implemented kernel is the so-called Squared
Exponential (SE) kernel. This is an isotropic kernel, mean-
ing the covariance is a function only of the distance be-
tween x and x′. In the case of a 1-dimensional input x,
the SE kernel is expressed as

k(x, x′;σ, l) = σ2 exp

(
−1

2

(x− x′)2

l2

)
. (14)

Here, σ and l are hyperparameters with readily inter-
pretable meaning. The hyperparameter σ2 indicates an
uncertainty variance, while l is a lengthscale that indicates
how quickly the covariance decreases the further x′ is
located from x. The estimated measurement noise variance
σ2
n can also be regarded as a hyperparameter.



The selection of hyperparameter values follows from an
optimization procedure using measurement data, such
as cross-validation or maximization of the (logarithm of
the) marginal likelihood, see Chapter 5 of Rasmussen
and Williams (2006) for further details. Maximization of
the log marginal likelihood corresponds to finding the
hyperparameters that result in the least uncertainty on the
model prediction of the N measurements y∗ in X∗. The
log marginal likelihood (with zero mean function m(x)) is
expressed as

log p(y∗|X∗; l,σ, σn) = −1

2
y⊺
∗(K∗∗ + σ2

nI)−1y∗

− 1

2
log |K∗∗ + σ2

nI| −
N

2
log(2π).

(15)

The gradient of the log marginal likelihood with respect
to hyperparameters may be calculated relatively efficiently
(Rasmussen and Williams (2006)), such that optimization
using a gradient-descent method is beneficial. It is possible
though that there are multiple local maxima of (15). As
consequence, attention should be paid to possible non-
global maxima 1 , which is attempted via locally optimizing
for multiple random initial guesses generated using latin
hypercube sampling. Local optimization is performed us-
ing the minimize function from Rasmussen and Williams
(2006), which is available online.

Linear operators—An additional advantage of using Gaus-
sian process regression, is that it is possible to regress over
multiple functions that relate to each other by a linear
operator, see Särkkä (2011). For example, given a function
f(x) and any linear operator Lx over x, a function g(x)
can be defined as

g(x) = Lxf(x). (16)

Following from definition (11), the joint Gaussian process
between f(x) and g(x) is formulated as(

f(x)
g(x)

)
∼ GP

((
m(x)

Lxm(x)

)
,

(
k(x,x′) k(x,x′)Lx′

Lxk(x,x
′) Lxk(x,x

′)Lx′

))
. (17)

In other words, the Gaussian process over functions related
via a linear operator Lx is determined by applying of the
linear operator to the mean and covariance functions. For
further regression purposes, (17) can be treated similar to
what was discussed earlier.

One particular example — which is implemented within
the numerical case study discussed in Section 3 — is where
the linear operator corresponding to a derivative w.r.t. x,

this is, Lx = d
dx . Then, the derivative

df(x)
dx = g(x) may be

estimated from measured function values f(x∗) evaluated
at x∗. In this case, interpolation of the derivative between
the measurements x∗ is possible.

3. NUMERICAL CASE STUDY

In this section, the inference of growth and nucleation
rate in the setup of a MSMPR crystallizer is presented.
In Subsection 3.1, an overview is given on the conditions
under which numerical training data are generated induced
with artificial noise. In Subsection 3.2, results from growth
and nucleation rate inference using artificial training data
under varying noise levels are given.

1 Non-global local maxima correspond with a certain interpretation
of the regression (Rasmussen and Williams (2006)), e.g. overfitting.

Table 1. Overview of used process and kinetic
parameters, adapted from Savvopoulos et al.
(2019) using the conditions of Case 1 and

isothermal process operation.

Parameter Value Units

kG1 3.21 · 10−4 m/s
kG2 2.58 · 102 J/mol
kB1 1.15 · 10−7 #/m3/s
kB2 7.67 · 104 J/mol
kB3 1.60 · 10−1 —
T 298.15 K
R 8.314 J/K/mol

Csat 23.375 kg/m3

d 7.96 · 10−3 1/s
kv 1 —
ρC 1.4 · 103 kg/m3

3.1 Simulation model

To generate training data, the PBE (7) and concentration
equation (8) need to be solved over time. Hereto, the
system of four ODE’s in (9) is solved first, after which
the solution C(t) is substituted into the PBE (7) via the
method of characteristics (see Appendix A) to determine
the solution of the NDF. Although the NDF is not used
directly in the kinetics inference, it is used to calculate
the population moments. The process is simulated under
dynamical conditions based on a step signal in inlet
concentration Cin at t = 0; the initial conditions C0 and
n0(x) are obtained from the steady-state solutions of (7)
and (8) for constant Cin = 35 kg/m3. The dynamical
system described by the ODE’s (9) is solved using constant
input Cin = 90 kg/m3.

The parameters used in the numerical case study are based
on the study performed by Savvopoulos et al. (2019),
who investigate the crystallization of aspirin in a tubular
crystallizer with ultrasound assistance. In that paper, the
following expressions are modeled for growth and primary
nucleation rate:

G(C) = kG1 exp

(
−kG2

RT

)
(C − Csat),

B(C) = kB1 exp

(
kB2

RT

)
exp

(
− kB3

log2(C/Csat)

)
,

(18)

with R representing the universal gas constant. Note that
nucleation can only occur when C > Csat, whereas the
growth rate G(C) is negative when C < Csat, which
corresponds with crystals dissolving instead of growing.
Parameter values are adopted, from Case 1 in Savvopoulos
et al. (2019). See Table 1 for the list of constant parameter
values used in this numerical case study. The effect of
secondary nucleation has been ignored in this case. The
simulated concentration and NDF are sampled every 15
seconds.

Next, noise is intentionally applied to the simulation
results to recreate measurements conditions encountered
in physical systems. To this end, white zero-mean Gaussian
noise is assumed on the concentration measurement. Noise
on the population measurement is applied indirectly, since
one only requires the zeroth to second moments. Regarding
the zeroth moment, Gaussian noise is applied to the exact
zeroth moment following from integration of the NDF
over the particle size for a fixed time, which relies on the
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Fig. 1. Measurement example (red solid line) sampled
from the simulated process (black dashed line) with
following noise parameters: σC = 0.5 kg/m3, σµ0

= 5·
106#/m3 and Ns = 1000. A) concentration C, B)
zeroth moment µ0, C) first moment µ1 and D) second
moment µ2.

moment definition from the NDF in (5). Noise on the first
and second moment is induced by sampling Ns particle
sizes uniformly according to the cumulative NDF. This
way, noise is introduced by sampling randomness. The
following measurement model is implemented:

Cmeas(t) = C(t) + ϵC(t) with ϵC(t) ∼ N
(
0, σ2

C

)
,

µ0,meas(t) =

∫ ∞

0

n(t, x)dx+ ϵµ0
(t)

with ϵµ0
(t) ∼ N

(
0, σ2

µ0

)
,

µ1,meas(t) =
1

Ns

Ns∑
i=1

xi · µ0,meas(t),

µ2,meas(t) =
1

Ns

Ns∑
i=1

x2
i · µ0,meas(t).

(19)

Figure 1 displays an example of the exact simulation
results for concentration and zeroth to second moments,
along with a simulated measurement for a given set of noise
parameters. Note that the system operates in transient
conditions.

3.2 Growth and nucleation rate inference

The general outline of crystallization kinetics inference
starts as follows. The growth rate G(C) and nucleation
rate B(C) are assumed as separate zero-mean Gaussian
processes given by

G(C) ∼ GP (0, kG(C,C
′);σG, lG, σn,G) ,

B(C) ∼ GP (0, kB(C,C
′);σB , lB , σn,B) ,

(20)

where both covariance kernels kG(C,C
′) and kB(C,C

′) are
SE kernels as in (14).

Next, regression is achieved by defining a conditional dis-
tribution from training data. The training data is ob-

Table 2. Varying σC , with σµ0
= 5 · 106 #/m3

and Ns = 1000. Median from 50 runs.

σC Growth rate RMSE Nucleation rate RMSE(
kg/m3

) (
10−7m/s

) (
104#/m3/s

)
0 1.59 10.77

0.25 1.47 11.08
0.5 1.71 11.90
1 2.26 14.01
2 3.75 19.74

Table 3. Varying σµ0
, with σC = 0.5 kg/m3

and Ns = 1000. Median from 50 runs.

σµ0 Growth rate RMSE Nucleation rate RMSE(
106#/m3

) (
10−7m/s

) (
104#/m3/s

)
0 1.28 4.99
2.5 1.36 8.97
5 1.71 11.90
7.5 2.01 16.33
10 2.61 28.64

Table 4. Varying Ns, with σC = 0.5 kg/m3 and
σµ0

= 5 · 106 #/m3. Median from 50 runs.

Ns Growth rate RMSE Nucleation rate RMSE

(—)
(
10−7m/s

) (
104#/m3/s

)
100 1.74 12.81
500 1.80 12.36
1000 1.71 11.90
5000 1.78 12.09
10000 1.68 12.24

tained by transformation of the fundamental equations in
(9), which results in following training data equations for
G(C),

y1(C(t)) =
d(Cin − C(t))− Ċ(t)

3kvρCµ2(t)
= G(C),

y2(C(t)) =
dµ1(t) + µ̇1(t)

µ0(t)
= G(C),

y3(C(t)) =
dµ2(t) + µ̇2(t)

2µ1(t)
= G(C),

(21)

and for B(C),

y4(C(t)) = dµ0(t) + µ̇0(t) = B(C). (22)

In equations above, the time derivatives are estimated
from Gaussian process regression with linear operators,
as described in Subsection 2.2. It is observed that using
Gaussian process regression for calculating the derivative
results in less approximation error compared to discretiza-
tion using the central difference method (with the exact
derivative as evaluation the right-hand sides of (9) as ref-
erence). Training data is generated by evaluating (21) and
(22) using noise-induced measurements from (19) sampled
at inputs C∗. This training data is used to formulate a
conditional Gaussian distribution of the Gaussian pro-
cesses (20) for growth rate G(C) and nucleation rate B(C)
evaluated in C, resulting in

G(C)|y1,∗,y2,∗,y3,∗,C∗ ∼ N (mG,KG) ,

B(C)|y4,∗,C∗ ∼ N (mB ,KB) ,
(23)

where the means, mG and mB , and covariances, KG

and KB , in each Gaussian process, calculated as in (13),
depend on the concentration C where the kinetics are
evaluated.
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(c) High noise

Fig. 2. Gaussian process regression (GPR) result for different (relative) levels of noise. Results for both inference of
growth rate G(C) inference (top) and nucleation rate B(C) (bottom) are shown. The green band around the
regression curve represents a 95% confidence bound from the Gaussian process.
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Fig. 3. Median RMSE over 50 runs of regression result
for growth rate G(C) (top) and nucleation rate B(C)
(bottom) under different sampling times. Lower and
upper bounds represent the 25% and 75% quantile,
respectively.

The regression is applied to measurements with varying
noise levels, this is, for different values of σC , σµ0

and Ns.
The performance of the inference results for the growth
rate G(C) and nucleation rate B(C), is quantified by
the root mean squared error (RMSE), where the mean
squared error is obtained via numerical integration of the
squared error between the modeled dynamics (18) and the
inference result (23), evaluated between the concentration
bounds from the noiseless simulation data (in other words,
without extrapolating the inference results outside the
bounds of the simulated concentration range). Tables 2, 3
and 4 show estimates of the RMSE under varying levels of
σC , σµ0 and Ns, respectively, while keeping the two other
noise parameters constant. The values are generated by

taking the median RMSE’s over 50 regressions for different
measurement realizations using constant noise parameters.
Note that, in some cases, regression seemed to fail, likely
due to non-global maxima in hyperparameter optimization
(see Subsection 2.2).

As seen from Tables 2 to 4, an increase in σC and
σµ0 generally increases the RMSE for both growth and
nucleation rate estimate, although in a slightly different
manner. Noise on concentration measurement does not
only result in inaccuracy on training data y1, but it affects
the covariance kernel input as well. The issue of input noise
has been addressed by McHutchon and Rasmussen (2011),
who propose a correction by increasing the variance where
the output gradient is large. Noise on the zeroth moment
from the NDF measurements directly affects the training
data y2 for the nucleation rate inference, and indirectly
affects the estimates for the first and second moment used
in all training data for the growth rate. Finally, variation
on the sampling rate Ns slightly affects growth rate
inference, although not as much as variation on the other
parameters. For reference, in the case of noiseless data,
the RMSE for growth and nucleation rate are respectively
2.25 · 10−10 m/s and 8.29 · 103 #/m3/s. Inference in this
case is nearly perfect, and the non-zero RMSE’s are due to
the approximation of the derivatives used in the training
data.

For illustration, an example of the regression results is
visualized in Figure 2 for different degrees of measurement
noise. A higher degree of noise, such as in Figure 2c, results
in less accurate inference of both growth and nucleation
rate. In case of higher noise levels, the training data is more
spread out around the modeled curve compared to cases
with lower noise parameters. Note that this phenomena
shows up regarding the width of the 95% confidence bands,
which is a measure for the optimized hyperparameters σG

and σB .
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Fig. 4. Model simulation using kinetics from (18) (black
dashed line) compared with simulation using regres-
sion results (23), with low/medium/high noise levels
as in Figure 2 (solid lines). Initial conditions are
determined as the steady-state condition with input
Cin = 35 kg/m3 using modified kinetics. For illustra-
tion, measurement data (blue crosses) and simulation
with sampled kinetics (transparant blue lines) under
relative high noise levels are shown, a. A) concentra-
tion C, B) zeroth moment µ0, C) first moment µ1 and
D) second moment µ2.

Naturally, the performance of the inference depends on
the time interval at which measurements are sampled. As
mentioned, the case study uses a uniform sampling time
of 15 seconds. The performance under different sampling
times is evaluated and characterized by the RMSE. Figure
3 summarizes RMSE values from 50 runs each visually for
uniform sampling times between 1 to 100 seconds. Up to
around a sampling time of 40 seconds, the performance
is more or less accurate and generally precise. In physical
experiments, sampling rates are often limited by the avail-
able measurement techniques, this in contrast to numerical
experiments. In the former, the sampling time should still
be sufficiently low in order to get reasonable estimates for
the time derivatives in (21) and (22). The Gaussian process
framework allows for training data of different experiments
to be combined for inference. In case the possible sampling
time is too restrictive, multiple experiments at steady-
state conditions could be utilized to generate training data.

In addition, the solution of the concentration and moments
equations (9) (and by extension also the NDF) can be
determined using the regression results for growth rate
G(C) and nucleation rate B(C) instead of the expressions
in (18). Using the mean of the Gaussian process regression
results under different noise levels shown in Figure 2,
the reduced process model is solved, see Figure 4. The
inference under low and medium noise levels results in
quite similar behaviour to the original simulation. Un-
der higher noise, the simulation is still reasonably well,
although less accurate compared to the kinetics from (18).
The uncertainty on the inference result (see the 95% confi-

dence bands in Figure 2) is illustrated by simulations with
samples from the growth and nucleation rate regression.
Samples are drawn jointly according to the conditional
Gaussian distribution as in (23). In Figure 4, ten random
samples are drawn from the regression under the highest
noise level from Figure 2, and used for simulation. Notably,
regarding the zeroth moment, a rather broad distribution
around the simulation using the mean of the Gaussian
process regression is visible.

4. CONCLUSION AND OUTLOOK

In this paper, the concept of using Gaussian process re-
gression for the inverse problem of population balance
models is illustrated. In Section 2, a general introduction
to population balance models in interaction with a contin-
uous phase is given. It is shown, that under some model
assumptions, one can derive a process model based on the
moment dynamics. This significantly reduces the problem
complexity, since only a few ordinary differential equations
are obtained, instead of both partial and ordinary differen-
tial equations. Next, an introduction to Gaussian process
regression is given, and it is shown how linear operators
can be combined in Gaussian processes, which is later used
to estimate derivatives from noise-induced measurements.
In Section 3, the use of Gaussian process regression on
a numerical example related to crystallization of aspirin
based on Savvopoulos et al. (2019). It is shown that at
all noise levels, a reasonable estimate is mostly obtained,
although overall less accurate for higher degrees of noise.

The main advantages of this method are a non-parametric
model which is applicable (and could be adaptive) un-
der different process conditions. This could allow for on-
line use in process control. In addition, one only requires
information up to a few moments instead of the entire
population distribution, which is possible due to the closed
moment equations. Overcoming this closure issue might
allow to include influence of particle size on crystal growth.
Furthermore, the method as presented in this paper could
be extended. For example, in secondary nucleation, it is
known that the second moment also affects the total nucle-
ation dynamics, which could be included by extending the
covariance kernel kB for 2-dimensional input accordingly.
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Appendix A. METHOD OF CHARACTERISTICS

The PBE in (7) describes the NDF as function of time
t and particle size x. Once (9) is solved, one obtains the
concentration C(t) as function of time which permits the
PBE to be solved using the method of characteristics.

In this method, the NDF is solved along a characteristic
trajectory (t(s), x(s)) as function of a parameter s, where
the trajectory starts at some location θ positioned either
on the initial condition, IC with t = t0, or on the
boundary condition, BC with x = 0. The solution along
the characteristic trajectory is described by

dñ(s, θ)

ds
=

∂n(t, x)

∂t

dt

ds
+

∂n(t, x)

∂x

dx

ds
= −dñ(s, θ), (A.1)

with ñ(s, θ) = n(t, x). This equation holds if

dt(s)

ds
= 1 and

dx(s)

ds
= G(C(t(s))). (A.2)

The solution of the NDF ñ(s, θ) in terms of characteristic
parameters has a simple analytical solution, from solving
the ODE in (A.1),

ñ(s, θ) = ñ(0, θ) exp(−ds). (A.3)

The problem is now to obtain an inverse expression for
s and θ as function of t and x, or in other words,
describe the shape of the characteristic trajectories in the
t − x plane. For this purpose, one needs to distinguish
solutions originating from the IC, and solutions starting
from the BC. Figure A.1 offers a visual interpretation of
the characteristic trajectories.

First consider a solution starting from the IC, then for
s = 0, one has t = t0 and x = θ ≥ 0. Integration of (A.2)
results in

s = t− t0,

θ = x−
∫ t

t0

G(C(τ))dτ,

ñ(0, θ) = n0(θ).

(A.4)
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Fig. A.1. Graphical representation of characteristic trajec-
tories starting at IC (blue) and BC (red), alongside
with the parametrization in the points (t, x) at IC and
(t′, x′) at BC.

Second, consider solutions starting from the BC, in which
case t = θ ≥ t0 and x = 0 for s = 0. Similarly as to (A.4),
one obtains from integration of (A.2)

s = σ

θ = t− σ,

ñ(0, θ) = ṅ0(θ) =
B(C(θ))

G(C(θ))
,

(A.5)

where σ is the solution of the Volterra integral equation

x =

∫ t

t−σ

G(C(τ))dτ. (A.6)

Although not encountered in this paper, in case G(C)
switches sign during the integration interval (which would
indicate a switch between crystals growing/dissolving),
multiple solutions for σ exist. In this case, the largest
solution for σ should be chosen for which the characteristic
trajectory is confined within the boundary of x for all
s ≤ σ. In other words, the trajectory must not cross the
boundary condition x = 0.

The equations in (A.4) and (A.5) provide an inverse trans-
formation for the characteristic trajectories, which can
be substituted into (A.3). What remains, is formulating
a condition to determine whether a pair (t, x) lies on a
characteristic trajectory starting from the IC or BC. In
case that ∫ t

t0

G(C(τ))dτ < x, (A.7)

then the IC should be considered, otherwise the BC. An
exception is in the case the two sides in (A.7) are strictly
equal. This corresponds with the trajectory starting from
(t0, 0), such that both IC and BC apply. In this case,
the solution along this trajectory may be ill-defined if
the IC and BC differ; the trajectory lies at the edge of
a discontinuity.


