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Abstract: Optimal operation of systems subject to constraints can be challenging, especially
when the set of active constraints changes during operation due to disturbances. The use of
traditional model-based real-time optimization strategies has limitations related to model-plant
mismatch and computational effort, and therefore the use of simple feedback strategies in lower
layers is a good alternative to avoid these issues on fast timescales. This work aims to evaluate
the viability of region-based control structures using selectors and the use of a primal-dual
feedback optimizing control framework on this kind of problem, through the study of two process
systems with changing active constraints. While region-based strategies focus on the effective
control in specific active constraint regions, the primal-dual approach allows for control in all
possible regions, with the introduction of intermediate variables that estimate the Lagrange
multiplier values. In the first case study, the traditional region-based strategy could not handle
all constraint regions, and an additional logical switching was necessary to account for the
remaining region. The implementation of primal-dual feedback optimizing control was flexible
enough to control the system in all regions without the need for additional logic. The second
case study presents more constraints than the first and increased nonlinearities, which makes
finding controlled variables for the unconstrained degrees of freedom challenging. The primal-
dual control framework was able to drive the system to the optimum in all considered regions.
Therefore, this framework is deemed as a promising control structure for optimal operation in
the presence of changing active constraints.
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1. INTRODUCTION

Optimal operation is one of the main objectives in process
operation, as it is always desired that losses are minimized
when possible. Optimal operation requires optimization of
economic objectives, i.e. maximization of profit or mini-
mization of costs, subject to constraints related to intrinsic
or external conditions, such as operational capacity, prod-
uct specification, or emission limit values. This is often
formulated as a steady-state optimization problem, which
can be solved through a plethora of methods (Nocedal and
Wright, 2006), given that a full model for the system is
known. While all constraints are satisfied in the solution
of such problems, some constraints influence the location
of the solution, but others do not. The former type of
constraints is typically referred to as active constraints.

The main challenge related to implementation of real-time
optimization (RTO) strategies lies on the lack of knowl-
edge about the system. This can be detected through the
available system measurements, and how far these mea-
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surements are from the model predictions gives a metric of
how inaccurate the model is. If the model is parametrized
by disturbances which cannot be known or measured,
online parameter estimation can be used to fit the model
to the measurements and thus allowing for better predic-
tions (Roberts and Williams, 1981). This translates into
a two-step approach for RTO implementation, consisting
of parameter estimation and reoptimization, which is very
simple, but depends heavily on the structural similarity
between model and plant. If this condition is not met, op-
eration might converge to a suboptimal or even infeasible
point (Marchetti et al., 2009).

Therefore, the use of model-based RTO approaches has
fundamental limitations, as model-plant mismatch is al-
ways present in some degree, and may not be completely
removed even in the presence of measurements. In this
context, an interesting area of research is attempting to
satisfy optimality conditions without solving the model-
based optimization problem, and at the same time re-
quiring the least amount of knowledge of the system.
One particularly useful concept is self-optimizing control
(Skogestad, 2000), which is based on the translation of the



optimization problem into a feedback control problem, and
the focus becomes the selection of variables that, when
kept controlled under a fixed setpoint, allow for optimal
operation. The resulting control structure minimizes the
effect of disturbances by design, based on the available
model, and any model-plant mismatch is dealt by the
upper control layers through setpoint changes. With this,
the magnitude of setpoint changes that the upper lay-
ers must perform is minimized, guaranteeing that near-
optimal operation is attained even in the faster timescales,
when the necessary update is not yet available.

This class of strategies, however, has limitations regard-
ing the treatment of constraints, see Gros et al. (2009);
François et al. (2005). If the set of active constraints is
fixed through operation, a single set of variables can be
controlled for optimal operation. In particular, if there
are no active constraints, the ideal self-optimizing vari-
ables are the gradient of the cost with relation to the
inputs (Jäschke and Skogestad, 2011), and in presence
of active constraints, the ideal self-optimizing variables
become the active constraints themselves and the reduced
cost gradient projected in the unconstrained directions
(Krishnamoorthy and Skogestad, 2019). However, if the
set of active constraints change during operation, these
control objectives no longer apply, and restructuring of
the control system is required.

Another setback in the implementation of RTO strategies
is related to the computational effort necessary for im-
plementation. As the solution of optimization problems is
computationally expensive, RTO is often performed in a
slow timescale, and operation must always be performed
with the aid of fast controllers that stabilize the process
and control key variables for operation. This means that
rapid changes in active constraints may not be counter-
acted efficiently if changes in active constraints are only
dealt by the RTO layer, even if these RTO strategies have
the capability of completely eliminating the offset in steady
state (Marchetti et al., 2020). There is therefore great
interest in the implementation of fast and feedback-based
approaches to optimal operation of processes with changes
in active constraints.

For this end, a classic approach is analyzing the possible
active constraint regions, and designing a control structure
that is able to switch between the controlled variables
(CVs) (Krishnamoorthy and Skogestad, 2019; Reyes-Lúa
et al., 2018). A limitation of this approach is the necessity
of pairing, which becomes problematic when constraints
are independent and may activate at the same time. In
such cases, the pairing needs to be adaptive, but proposing
adaptive structures may be cumbersome or even infeasible.
In this work, such types of case study are explored, and
we aim to evaluate the viability of region-based control
structures and the use of more general feedback con-
trol structures in the optimal operation of these systems.
Specifically, we propose the use of a primal-dual feedback
optimizing control structure, based on the work presented
in Krishnamoorthy (2021), which can be applied to solve
most steady-state optimal operation problems of interest.
In this structure, the Lagrange multipliers are introduced
as extra degrees of freedom that can be used for constraint
control, and therefore the resulting approach presents both
primal and dual decision variables as manipulated vari-

ables, which enables for tracking of all necessary conditions
of optimality.

2. CONTROL STRUCTURES FOR OPTIMAL
OPERATION

In this section we present the control structures consid-
ered in the present work, which aim to solve a steady-
state optimization problem through feedback. This generic
optimization problem can be defined as:

min
u

J(u, d)

s.t. g(u, d) ≤ 0
(1)

In this definition, u ∈ Rnu represents the manipulated
variables (MVs), d ∈ Rnd represents process disturbances,
J : Rnu × Rnd −→ R represents the objective function, and
g: Rnu × Rnd −→ Rng represents all process inequality
constraints. For this problem, by introducing λ ∈ Rng

as the Lagrange multipliers associated to the inequality
constraints, the Lagrangian function is written as:

L(u, d, λ) = J(u, d) + g(u, d)Tλ (2)

The necessary Karush-Kuhn-Tucker (KKT) conditions for
the optimization problem state that the optimal pair
(u∗, λ∗) satisfies:

∇uL(u∗, d, λ∗) = ∇uJ(u
∗, d) +∇ug(u

∗, d)Tλ∗ = 0 (3a)

g(u∗, d) ≤ 0 (3b)

λ∗ ≥ 0 (3c)

g(u∗, d)Tλ∗ = 0 (3d)

The main challenge in solving this type of problem is
related to the lack of knowledge about the set of active
constraints gA, which is here written as the vector com-
posed of the elements of g such that gA(u

∗, d) = 0. If
this set is known beforehand, the problem is simplified
to an equality-constrained optimization problem, which is
written as:

∇uL(u∗, d, λ∗) = ∇uJ(u
∗, d)+∇ugA(u

∗, d)Tλ∗
A = 0 (4a)

gA(u
∗, d) = 0 (4b)

2.1 Active constraint region-based control using selectors

This strategy can be regarded as a generalization of the
classic approach to designing an advanced supervisory
control layer for optimal operation. In this strategy, each
possible set of active constraints define a set of control
objectives for optimal operation (Krishnamoorthy and
Skogestad, 2019). For a given region defined by the active
set A, controlling gA(u, d) = 0 is the first straightforward
choice of CVs, which fills na degrees of freedom. The re-
maining nu−na unconstrained degrees of freedom are filled
with a projection of the cost gradient NT∇uJ(u, d) such
that N is the nullspace of ∇ugA(u, d). This leads to opti-
mal operation because it automatically satisfies the KKT
condition given in Equation (4a), since NT∇uJ(u, d) =



−NT∇ugA(u, d)
TλA = 0 at the stationary point. There-

fore, the control objectives in this strategy are calculated
from the plant gradients, and fully independent of the
optimal Lagrange multipliers.

A scheme of the general control strategy is presented in
Figure 1, where the gradient ∇uJ is considered to be
obtained with the aid of the model and measurements.
The control structure is designed taking into account the
constraints g and all possible gradient projections Ni∇uJ ,
each of them being paired to specific plant inputs, and
logic must be applied to select between the corresponding
control actions ug and u0. This logic serves therefore as
a detection mechanism of the active constraints, which
can rapidly change during operation. In this work, we
attempt to implement the switching logic through the use
of selectors, as it is usually done in practice. However, this
strategy alone is not effective when it is necessary to switch
pairings for different regions. This shall be discussed within
the first case study considered in this work.
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Fig. 1. Region-based control strategy using selectors

2.2 Primal-dual feedback optimizing control

In this strategy, a single control structure is used for all
regions, with controllers arranged in a cascade layout,
according to Figure 2. The components of the Lagrangian
gradient ∇uL are paired to the respective process inputs
u with simple controllers, and each constraint g is con-
trolled in an outer loop by manipulating the estimate of
the respective Lagrange multipliers λ, entailing the use of
nu + ng controllers, labelled as Ku and Kλ in Figure 2.
The constraint controllers must become inactive when the
constraints are not violated (g(u, d) < 0), and a switching
logic to enforce λ ≥ 0 is thus introduced, guaranteeing
steady-state primal feasibility (3b), dual feasibility (3c),
and complementarity conditions (3d). This control struc-
ture is based on the works of Krishnamoorthy (2021);
Dirza et al. (2021), which were written under a distributed
optimization perspective, but it can also be applied to
a generic constrained optimal operation problem (Krish-
namoorthy and Skogestad, 2022).

This structure gives up on tight control of constraints in
fast timescales, as their control is placed in an internal loop
mediated by the Lagrange multiplier estimates. However,
given that the gradient calculations are accurate, and
that integral action is present in all controllers, optimality
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Fig. 2. Primal-dual feedback optimizing control frame-
work, based on the DFRTO framework (Krish-
namoorthy, 2021).

is attained at steady state. The switching logic between
active constraints is mediated by the max blocks, as the
calculated λ shifts the relevant directions for control in
the actuator layer when the constraints are violated, and
zero is selected when the calculated λ value becomes
negative, which happens when the constraint is no longer
being violated. One advantage of this strategy is that
pairing between constraints and MVs is not required, since
this association is done through the Lagrangian gradient
calculation.

3. CASE STUDY 1: HEAT EXCHANGER NETWORK

The first system considered in this work, based on the
work of Jäschke and Skogestad (2014), consists of three
heat exchangers in parallel. The network is fed with
a cold stream, which is split to be heated into each
line by different hot streams. The goal of the process
is therefore to maximize the final temperature of the
heated stream, T , but subject to constraints of maximum
allowed temperature in each branch, Ti ≤ Tmax. For this
system, the available manipulated variables are the splits
for each line, u = α, and the possible disturbances are
d = [T0, w0, Th,i, wh,i, UAi], namely the cold stream inlet
temperature and flow, hot streams inlet temperatures and
flows, and heat transfer coefficients for the exchangers. A
representation of the system is shown in Figure 3, and the
respective optimization problem is written as:

min
u

J = −T

s.t. gi = Ti − Tmax ≤ 0, i = 1, 2, 3
(5)

3.1 Active constraint region-based control

The case study has a total of 23 = 8 possible regions,
but only 7 are feasible regions, as it is not possible to
satisfy all 3 constraints with 2 manipulated variables. In
the case that all constraints are violated, it is acceptable
that one constraint is given up for the operation, but this
is beyond the scope of this analysis. For each region, the
control objectives that allow for optimal operation are
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Fig. 3. Heat exchanger network scheme.

given in Table 1. In this case study, due to the nature
of the constraints, the derivation of linear combinations
of the gradient, NT , for the different regions results in
constant coefficients inside the region.

Table 1. Control objectives per region for case
study 1

Active constraints Control objectives

- ∇uJ
g1 g1, [0 1]∇uJ
g2 g2, [1 0]∇uJ
g3 g3, [−1 1]∇uJ

g1, g2 g1, g2
g2, g3 g2, g3
g1, g3 g1, g3

Upon inspection of the control objectives, it is clear that
a single pairing strategy cannot account for all regions,
especially due to the regions with 2 active constraints.
When g1 is paired to u1 and g2 is paired to u2, which is a
natural pairing choice, g3 cannot be attributed to a single
MV if control over all regions is desired. If g3 is paired to a
single MV in this case, a selector strategy can account for 6
regions at most. One pairing example is given at Table 2.
In this case, following a classic approach of pairing and
implementing a switching logic, the region where g1 and g3
are simultaneously active cannot be optimally controlled.

Table 2. Example of classic pairing for region-
based control of case study 1

u1 u2

g1 g2
[1 0]∇uJ [0 1]∇uJ

g3 [−1 1]∇uJ

Figure 4 shows the performance of this control structure
over a disturbance sequence that activates all possible
operation modes. In spite of it being able to handle most
regions correctly, there is steady-state constraint violation
for g3 in the region that cannot be handled, from t = 200
to t = 300.

From these results, it becomes clear that a control struc-
ture that handles all regions must be more flexible. Specif-
ically, g3 must also be controlled using u2 in some cases.
This introduces external conditions on the controllers acti-
vation, since this possibility should only be accessed when
g1 is being controlled by u1. Implementing this logical
statement should guarantee optimal operation over all pos-
sible regions. This adaptive pairing is presented in Table 3.
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Fig. 4. Operation of case study 1 with region-based con-
trol using classic pairing, along with optimal inputs
(dashed).

Table 3. Adaptive pairing for region-based con-
trol of case study 1

u1 u2 (g1 inactive) u2 (g1 active)

g1 g2 g2
[1 0]∇uJ [0 1]∇uJ [0 1]∇uJ

g3 [−1 1]∇uJ g3

The performance of the adaptive region-based control
structure over the same disturbance realization is pre-
sented in Figure 5. In this case, no steady-state constraint
violation is obtained, and the expected peaks that hap-
pen when disturbances change are quickly corrected. At
t = 200, quick oscillations in u2 can be noticed, due to the
changes in the active control structure.
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Fig. 5. Operation of case study 1 with region-based control
using adaptive pairing, along with optimal inputs
(dashed).

3.2 Primal-dual feedback optimizing control

The performance of the primal-dual feedback optimizing
control structure is presented in Figure 6. The steady-state
performance of this structure is the same when compared
to what is attained by selectors, and constraint violation
is efficiently corrected even though it is regulated by an
extra control layer.

In addition, Figure 7 shows the dual variables of the
primal-dual control structure. The combination of layers
leads to slower responses in some disturbance changes,
especially when there are big changes in the values of La-
grange multipliers. Nevertheless, the estimated Lagrange
multipliers smoothly converge to the optimal values in
each region, and spikes due to instantaneous constraint
violation are corrected at steady state.
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Fig. 6. Test of primal-dual control framework over case
study 1, along with optimal inputs (dashed).
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4. CASE STUDY 2: TWO DISTILLATION COLUMNS
IN SEQUENCE

Another system studied in this work has been described
by Jacobsen and Skogestad (2012), and it consists of two
distillation columns in series, as presented in Figure 8.
The inlet stream, composed of three components A, B,
and C, is fed into the first column, with the goal of
separating the most volatile component with minimal
purity specification xA. The bottom product is then fed
into the second column, which generates distillate and
bottom products with minimal purity specifications xB

and xC , respectively. In addition, there are constraints
related to maximum boilup of the columns, V1 and V2.
The operational goal is to optimize plant economics, with
costs related to feed and vapor consumption, and profit
from selling the products. The steady-state optimization
problem can then be written as:

min
u

J = pFF + pV (V1 + V2)− pAD1 − pBD2 − pCB2

s.t. g1 = xA,min − xA ≤ 0

g2 = xB,min − xB ≤ 0

g3 = xC,min − xC ≤ 0

g4 = V1 − V1,max ≤ 0

g5 = V2 − V2,max ≤ 0
(6)

The vector of manipulated variables for operation are the
internal flows of the columns u = [L1, L2, V1, V2], and the
possible disturbances are d = [F, pV ], namely the feed
to the first column and the steam generation price. The

F

B1 B2

D1 D2

xA xB 

xC 

L1

V1 V2

L2

Fig. 8. Scheme of two distillation columns in sequence,
based on Jacobsen and Skogestad (2012)

system is considered to be at steady state at all times,
meaning that all changes in the operating conditions are
quickly accommodated by the system. This assumption
imposes the limitation that this control structure operates
in a slower timescale than that of the process, which is a
common practice when dealing with supervisory control.

In the considered operating range, there are 8 possible
active constraint regions. These regions are described
in Table 4. Unlike case study 1, calculating gradient
projections for each region becomes more complicated, as
the system constraints have a nonlinear relationship with
the inputs. Therefore, even though constraint control can
be achieved by using a selector-based logic, control of the
unconstrained degrees of freedom requires an elaborate
and interconnected logic, and is therefore deemed outside
of the scope of this paper.

Table 4. Active constraints per region for case
study 2

Region number Active constraints

I xB

II xB , xA

III xB , V1

IV xB , xA, xC

V xB , xA, V1

VI xB , V1, V2

VII xB , xA, V1, V2

VIII xB , xA, xC , V1

The performance of primal-dual optimizing control in this
system is presented in Figure 9, and the corresponding
Lagrange multiplier estimates are shown in Figure 10. As
in the previous case study, the optimal values for the plant
inputs and estimated Lagrange multipliers are attained at
steady state, and any constraint violation is corrected.

5. CONCLUSION

The presented case studies illustrate the complexity of
optimal operation problems when there is switching of
active constraint regions. We explore the concept of ideal
controlled variables for optimal operation, and the close
link between steady-state plant gradients and optimal op-
eration. It is assumed that these gradients are available for
the control structure, which can be burdensome especially
in cases where these depend on the plant states. However,
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as this layer is meant to operate in the slower timescales,
it can be assumed that the system is settled, and gradient
estimation is possible. This can be done by using a model,
with further correction by the plant data. In this case,
the use of an incorrect model is not detrimental, as the
inclusion of biases in the gradients do not impose hard
constraints on the control problem. The performance of
this control structure may be improved even further by
making use of optimization results, as one can retrieve
estimated gradients and Lagrange multipliers from these
calculations.

The implementation of simple feedback structures that
deal with constraints and allow for optimal operation was
accomplished. The choice of which structure is favored
lies in the nature of the system at hand. If there is a
low number of constraints, and pairing can be done to
contemplate all regions, a simple structure consisting of
selectors is to be considered, as in this case constraints are
kept more effectively under control. However, no big loss
was noticed with the implementation of indirect constraint
control mediated by the control of the KKT conditions.
The latter is also not affected by the combinatorial nature
of the number of active constraint regions, and by the
concern of adequate pairing between variables. The use
of primal-dual feedback optimizing control is therefore
deemed promising in the handling of constrained systems,
and further evaluation of this strategy is encouraged,
especially in terms of controller tuning and accounting for
process dynamics. The further study of control structures
that deal with active constraint switching in fast timescales
remains relevant, bearing in mind that the studied primal-

dual framework requires a timescale separation between
the primal and dual control layers.
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