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Abstract: The economic performance of distillation processes has been always addressed by techniques
supporting and completing Model Predictive Control (MPC), which are known as Real Time Optimiza-
tion (RTO). RTO, via simulation model, has been deeply studied and applied to distillation processes,
nevertheless, the cost associated with the development of such online simulation models is often an
obstacle for industries to change their operations. Hence, this work presents an unconventional RTO
approach, named “analytical RTO”, which calculates the setpoint of manipulated variables according
to operating strategy exploiting an analytical generalized formulation. The proposed RTO is built for
a specific unit, that is a Propane-Propylene super-fractionator producing polymer grade Propylene
(99.5%), and it is based on an offline simulation model developed in UniSim Design. Sensitivities
analysis of the revenue with the manipulated variables is obtained with the simulation model and used to
derive a simple, yet quite effective analytical RTO formulation, taking into account the fluidynamic limit
of the unit studied. Comparing such an approach with the simulations, the results show a satisfactory
match of the analytical estimations with the optimal points calculated by the rigorous model.
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1. INTRODUCTION

Operation excellence represents the primary target of the pro-
cess industries pursued by the application of advanced digital
technologies (Warner and Wäger, 2019). In distillation pro-
cesses, Advanced Process Control (APC) has been part of that
effort for the last two decades through the Model Predictive
Control (MPC) technology (Shin et al., 2020). Other advanced
technologies supporting and completing APC are today avail-
able as Real Time Optimization (RTO) (Darby et al., 2011).
RTO tools enforce the achievement of economic benefits in
different scenarios when managing directly the systems oper-
ability (Vaccari et al., 2019) or assigning optimal economic
targets to MPC (Vaccari et al., 2021). Clearly, the proper design
of an RTO structure that leads to a substantial improvement in
process performance is a critical and complex subject that needs
the right tools and considerations (Câmara et al., 2016).

In this fashion, one of the most studied chemical processes, in
terms of optimizing the operating performance, is distillation.
Different models have been developed in both academic (Zhang
et al., 2019) and industrial (Mendoza et al., 2013) environ-
ments to increase operating profit via RTO. Other distillation
processes have been optimized via RTO in a closed-loop dy-
namic fashion (Pataro et al., 2020) or focused on robustness as-
pects (Haßkerl et al., 2018). Variations of RTO when subject to
plant-model mismatch have been tested on a depropanizer col-
umn (Rodrı́guez-Blanco et al., 2017), and also one-layer MPC-
RTO solutions have been analyzed (Hinojosa et al., 2017).

The Propane-Propylene super-fractionator producing polymer
grade Propylene (99.5%) is the distillation unit where those
advanced technologies have been profitably applied because
of operation peculiarities. The MPC design concerning specif-

ically the required Propylene purity of super-fractionator is
reported in (Pannocchia and Brambilla, 2005). Among the men-
tioned examples for distillation RTO, the common denominator
is model simulation, whose complexity varies upon the pecu-
liarity of the process studied. Process simulation optimization is
a powerful tool that gives the possibility to analyze complex in-
dustrial systems and identify potential improvements (Melouk
et al., 2013) or perform data reconciliation (Vaccari et al., 2020)
in a short time frame (minutes). On the other hand, online
process simulation represents a cost in terms of equipment,
model development, often licensing, and training of personnel.
Thus, this paper describes an unconventional approach adopted
for RTO which calculates the set point of the manipulated
variables of the super-fractionator in Pannocchia and Brambilla
(2005). This approach relies on an offline simulation model and
on an objective function that changes according to operating
strategy and to the online measurement of the feed composition,
generally measured in this application.

The remainder of the paper is organized as follows. Section 2
presents the unit description, generalities, and main problem-
atics. A detailed definition of the RTO strategy based on the
different operating scenarios is illustrated in Section 3. Con-
frontation of the proposed method with optimal data calculated
by the simulation model is shown in Section 4, while Section 5
concludes the paper underlining the main achievements.

2. UNIT DESCRIPTION

The chemical unit operation considered in this paper is the
Propane-Propylene super-fractionator producing polymer grade
Propylene (99.5%). The unit represents a real plant unit that
can be found in most of the petrochemical plants producing
monomers. The distillation unit is often composed of at least



Table 1. Separation characteristics and typical val-
ues of main operation parameters.

Quantity Unit Value
Overhead pressure (gauge) kg/cm2 18

Rel. volatility C3=/C3 − 1.07
Total tray number − 200

Propylene distillate spec. %w 99.5
Throughput t/d 270−390

Propylene feed comp. %w 70−80
C2 feed concentration %w max0.1
C4 feed concentration %w 2−3

Reflux ratio − 18
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Fig. 1. Simplified process scheme of Propylene Splitter.

200 trays for the separation and is usually equally split into
two columns. The feed is located at about three-fifths of the
lower section from the bottom and the column internals are
equipped with unconventional multi-downcomers trays. Values
of the main typical operating parameters are reported in Table 1.
From Table 1, we can underline that the most frequent expected
disturbances are Propylene feed concentration and through-
put. Moreover, generally, online analyzers can be available on
feed and product streams updating values every 20 minutes.
However, we underline that only two of the three input-output
streams need to be measured since the third one can be calcu-
lated from the overall mass balance, even if its value could be
affected by the propagation of measurement errors. Thus, in this
work, the two streams considered measured are the distillate,
for product specification purposes, and the throughput feed.

2.1 Regulatory control

The simplified unit scheme of Figure 1 shows the regulatory
control. The overhead drum level controller is on cascade with
reflux flow, the overhead pressure is regulated via the drum by-
pass valve and the column bottom level controller is on cascade
with bottom product flow. The three manipulated variables
(MV) are all on flow control and they are the distillate D (MV1),
steam to reboiler V (MV2), and throughput F (MV3). The
MV strategies adopted by the controller that can be considered
on its tuning parameter are maximizing MV1 and MV3 while
minimizing MV2.
Remark 1. The heat power given to the reboiler is not directly
measured but can be derived from the measurement of V (MV2)
and the mass latent heat of the steam. Hence, in the rest of the
paper V represent the mass flow of the steam to reboiler (t/h).

Then, the distillate and steam to reboiler flow controllers are
the variables adopted for the separation targets. The throughput
flow controller is set based both on planning requirements, and
for optimization. The only drawback of the regulatory control
takes place sometimes at the bottom level due to the low bottom
product flow compared to the liquid flow from the bottom tray
(boil-up ratio > 40), and the low hold-up that often can afflict
this kind of unit. The bottom baffled arrangement reduces the
sump hold-up for the level control but assures the reboiler
stability. However, the reduced bottom volume available for the
level together with the high liquid flow coming from the bottom
tray, boil-up ratio about 60, can cause strong oscillations of the
bottom product flow when vaporization variations occur due to
bottom composition. As a consequence, using a controller of
the bottom product Propylene, a measurement with the analyzer
sample taken on the bottom product line can be problematic
since there could be no sample to be analyzed.

2.2 Column dynamics

Two major problems are associated with the control of distillate
Propylene concentration, xD. The first one is linked to the very
large time constant (more than 15 hours) that produces a very
slow response; the second process criticality is represented by
the nonlinearity of the response gain from MV1 and MV2 to
xD. In particular, the first one would make it difficult for plant
testing and subsequent model identification. This problem has
been overcome by adopting reduced-order integrating models
(pseudo-ramp) with delay (Pannocchia and Brambilla, 2005).
In this regard, rigorous simulation models were used to generate
data for model identification. In the present work, a simulation
model has been developed using the software UniSim Design,
and its details are omitted for the sake of brevity.

2.3 Hydraulic limit

Many test runs have been performed on the plant to detect
the maximum column capacity and they have confirmed that
flooding occurs below the feed location triggered by a down-
comer backup mechanism. The pressure difference between the
bottom and the feed trays is the measured variable that gives
the best indication of incoming flooding. Taking into account
that the approach to flooding conditions is associated with a
reduction of tray efficiency (Brambilla, 2014, chap. 5.2), the
following operating limits have then been set from plant tests:
the maximum throughput is 393 t/d while the maximum steam
flow to reboiler Vmax = 22.7 t/h, that using latent heat of vapor-
ization 2.260 MJ/kg, corresponds to 14.23 MWt.

3. REAL-TIME OPTIMIZATION OPPORTUNITY

The opportunity for an RTO implementation has been consid-
ered due to the economic and process parameters variability.
Feed, products, and energy prices are subjected to the oil price
and Propylene season market, hence quite variable. Moreover,
the throughput planning strategy has to deal with feed and
product storage capacity and feed purchase availability and
dynamics. Following these considerations, the unit revenues
can be written in terms of MVs by the following equation:

REV ENUE = D∆pd−b−F∆p f−b−V pe (1)
where ∆pd−b indicates the cost difference between distillate
and bottom products, ∆p f−b stands for the cost difference



Table 2. Unit streams cost example.

Stream Cost e/t
Distillate product - Bottom product ∆pd−b 196

Feed - Bottom product ∆p f−b 81
Steam pe 18.8

between feed and bottom product, both positive, and, lastly, pe
is the cost of energy considering both steam and cooling.

The condensation unit capacity has been supposed oversized,
i.e. there is spare capacity to condensate, so that the operating
overhead pressure is kept constant. The effect of tray pressure
drop along the two columns is about 0.05 (kg/cm2)/(t/h) of
steam and its effect is not taken into account by the proposed
analytical RTO.

One additional parameter that can be considered as a measured
disturbance is the Propylene concentration in the feed xF , as
it affects indirectly the unit revenue through distillate product
yield, much more as revenue value rather than as optimum
operating parameters. An example of revenue trends with steam
to reboiler is shown in Figure 2 for some typical costs reported
in Table 2 and xF = 79%. The right panel of Figure 2 compares
revenue with different xF . Revenue trends have been obtained
by rigorous simulation with the model validated with plant data.
As it can be seen in Figure 2, by augmenting the throughput,
the revenue augments almost linearly, while its relation with
the steam to reboiler is similar to a reverse parabolic one.
As a matter of fact, for a fixed throughput, the maximum
revenue does not necessarily correspond to maximum steam,
that is, working at the high hydraulic limit (red vertical line in
Figure 2), or very near to it, could mean wasting raw materials.
The right panel of Figure 2 shows instead a practically linear
behavior of the revenue with the Propylene concentration in the
feed, xF .
Remark 2. The analytical RTO model is intended above the
MPC level in the process control hierarchy. Therefore, when
the RTO model calculates the setpoint for the manipulated
variable, the steady-state optimization problem of the MPC is
not performed (functional design). Clearly, this is true if the
RTO operability range is compatible with the MPC one. On the
contrary, the MPC dynamic optimization is always performed,
and it is deputed at controlling the distillate purity by rejecting
unmeasured disturbances while fulfilling process constraints.

3.1 Optimization scenarios

The proposed analytical RTO has to face two operation scenar-
ios: 1) revenue maximization with assigned throughput, and 2)
revenue maximization with the only limit of maximum column
hydraulic load assuming throughput availability.

Scenario 1 Assigned the throughput F , the steam rate to
reboiler V giving the maximum revenue satisfies the following
equations:

∂REV ENUE
∂V

=
∂ [D(∆pd−b)−F(∆p f−b)−V pe]

∂V
= 0 (2)

being F assigned, and therefore constant:∣∣∣∣∂ [D∆pd−b−V pe]

∂V

∣∣∣∣
F
= 0 (3)

then let us define the revenue trend:∣∣∣∣∂D
∂V

∣∣∣∣
F
=

pe

∆pd−b
= RV (4)

The revenue trend is easily explained by the trend of distillate
D (Propylene at 99.5%) with the steam to reboiler V for a given
throughput; both are shown in Figure 3. Increasing the steam to
reboiler, the distillate D increases towards the asymptotic value
D∗ = FxF

99.5 (Propylene recovery=100%). When D is approaching
its asymptotic value, the negative term of the steam to reboiler
V in Eq. (3) begins to reduce the effect of the slow increment
of distillate until it overwhelms. That point corresponds to the
maximum revenue and is located where Eq.(4) is satisfied. The
bottom panel of Figure 3 shows maximum revenue points for
two values of cost parameter RV ; for increasing values of RV ,
the maximum revenue point (the tangent points) moves from
the fluidynamic upper limit to the safer conditions.

Scenario 2 The maximum hydraulic column load, known
from operation, is converted in terms of steam to reboiler Vmax.
That value has been chosen not too close to flooding conditions
to avoid heavy tray efficiency drop (Brambilla, 2014, chap. 5.2).
The red dashed line in Figure 2 shows Vmax at 22.7 t/h.

At the highest hydraulic limit (Vmax), the throughput F giving
the maximum revenue occurs when:

∂REV ENUE
∂F

=
∂ [D(∆pd−b)−F(∆p f−b)−V pe]

∂F
= 0 (5)

as V =Vmax is constant,∣∣∣∣∂ [D∆pd−b−F∆p f−b]

∂F

∣∣∣∣
V
= 0 (6)

and then: ∣∣∣∣∂D
∂F

∣∣∣∣
V
=

∆p f−b

∆pd−b
= RF (7)

As for Scenario 1, the revenue trend is easily explained by
the distillate D trend (Propylene at 99.5%) with throughput
F for the given steam flow to reboiler Vmax; both trends are
shown in Figure 4. Increasing the throughput F , the distillate
D increases to a maximum and then decreases. When D is
approaching its maximum value, the negative term of the feed
rate in Eq. (6) begins to reduce the effect of the slow increment
of distillate until it overwhelms. That point corresponds to the
maximum revenue and should satisfy Eq. (7). The bottom panel
of Figure 4 shows maximum revenue points for two values of
the cost parameter RF .

4. GENERALIZED OPTIMIZATION APPROACH

On-spec distillate trends are the base for the detection of max-
imum revenue operating points, hence, using the rigorous sim-
ulation model, different sensitivity analyses have been per-
formed. Figure 5 shows these analyses with operating param-
eters. For Scenario 1, the left panel of Figure 5 shows distil-
late trends with steam to reboiler V for different throughput
F , while, for Scenario 2, in the right panel of Figure 5 the
throughput F is varied and the steam to reboiler V is used as
a parameter; in both cases, also different possible values of the
Propylene feed concentration xF have been tested. From this
analysis, on-spec distillate trends seem to share similar values
when xF is maintained fixed until a limit value that is dependent
on the specific V or F selected. On the other hand, the effect of
varying xF results in a translation of the curve: the lower is xF
the lower is the resulting D.

To find a generalized approach for the estimation of maximum
revenue condition, new coordinates are adopted so that only one
curve could represent, adequately, all operating conditions. The



Fig. 2. Revenue trends with steam to reboiler V for different throughputs for which cost parameters are in Table 2. On the left
panel xF = 79% is fixed while on the right one two different value of xF are tested; the red dash-dotted vertical line represents
flooding conditions limit.

Fig. 3. On-spec distillate flow and revenue trend with V (top)
and a close-up with tangent lines representing two cost
parameters RV indicating the maximum revenue V (bot-
tom). Throughput F = 360 t/d and xF = 79%; the red dash-
dotted vertical line represents flooding conditions limit.

distillate D is normalized with the asymptotic value D∗ = FxF
99.5

and is reported as function of the ratio V/F as in Figure 6.
Although the curve that best fits the data displayed in Fig-
ure 6 is a “hyperbola-like”, a simpler function can be used in
the operating range of interest. The D/D∗ data between the
asymptotes can also be analytically expressed by a 2nd (or
3rd order) polynomial function, i.e. D/D∗ = f (z) with z = V

F .
Figure 7 shows a close-up of the curve D/D∗ in this interval.
In particular, the trending line in Figure 7 represents the 2nd
order polynomial function chosen in this paper to interpolate
the data obtained for two different values of xF . The polynomial
function is the following:

f (z) =−2.0169z2 +6.0702z−3.5722 (8)

Fig. 4. On-spec distillate and revenue trend for V = 22.7 t/h
and cost parameter RF = 0.7 (top) and a close-up with
tangent lines representing two cost parameters indicating
the maximum revenue throughputs (bottom).

and it interpolates the data with sufficient accuracy (R2 =
0.9912). Note that the data interpolated with the function in
Eq. (8) span almost the complete range of the typical values
for the Propylene feed concentration listed in Table 1. From
the generalized on-spec distillate polynomial in Eq (8), the
maximum revenue conditions set by Eq. (4) and Eq. (7) are
derived, respectively for the two scenarios considered.

Scenario 1 To calculate the maximum of the distillate nor-
malized curve for Scenario 1, the first derivative of f (z) is
calculated as follows:

f ′(z)=

∣∣∣∣∣∂
D
D∗

∂ z

∣∣∣∣∣
F

=
1

D∗

∣∣∣∣∂D
∂V

∣∣∣∣
F

∣∣∣∣∂V
∂ z

∣∣∣∣
F
=

1
D∗

∣∣∣∣∂D
∂V

∣∣∣∣
F

F = a
∣∣∣∣∂D
∂V

∣∣∣∣
F

(9)



Fig. 5. On-spec distillate trends with steam to reboiler (on the left) and throughput F (on the right). Where not specified, xF = 79%;
the red dash-dotted vertical line represents flooding conditions limit.

Fig. 6. Normalized on-spec distillate trend with ratio steam to
reboiler - throughput

(V
F

)
. Throughput data in the range

290−400 t/d and xF = 79%.

Fig. 7. Close-up of Figure 6 between the asymptotes with two
different values of xF . The trending line is the green dash-
dotted one.

with a = 99.5
xF

. Then, according to Eq. (4), the value of the steam
to reboiler that gives the maximum revenue is V ? = z?F where
z? is the consistent root of the following second order equation:

f ′(z?)−a
∣∣∣∣∂D
∂V

∣∣∣∣
F
= f ′(z?)−aRV = 0 (10)

Fig. 8. Analytical RTO and rigorous simulation results com-
parison. Cost parameter RV = 0.0328; xF = 79%; the red
dash-dotted horizontal line represents flooding conditions
limit.

In Eq. (10), the parameter RV is the one most affecting the
root value z?, that is, when the throughput is fixed the major
impact is given by the energy price and the price gap between
top and bottom products. The accuracy of the analytical RTO
estimations from Eq. (10) is shown in Figure 8 where they are
compared with those obtained by the rigorous simulation model
for RV = 0.0328 and xF = 79%. As can be seen, all the points
calculated from the rigorous simulation model are matched by
the analytical RTO model developed.

Scenario 2 As for Scenario 1, we calculate the maximum
of the distillate normalized curve for Scenario 2 using the
following equation:

f ′(z) =

∣∣∣∣∣∂
D
D∗

∂ z

∣∣∣∣∣
V

= a

∣∣∣∣∣∂
D
F

∂F

∣∣∣∣∣
V

∣∣∣∣ ∂ z
∂F

∣∣∣∣−1

V
=

−a
F

(
D
F
−
∣∣∣∣∂D
∂F

∣∣∣∣
V

)(
− V

F2

)−1

=
F
V

(
D
D∗
−a

∣∣∣∣∂D
∂F

∣∣∣∣
V

)
=

−1
z

(
a
∣∣∣∣∂D
∂F

∣∣∣∣
V
− f (z)

)
(11)

Then, according to Eq. (7), the throughput that gives the max-
imum revenue is F◦ = Vmax/z◦ where z◦ is the positive root of
the following Equation:



Fig. 9. Analytical RTO maximum revenue throughput with
cost parameter RF , xF = 79%, and V = Vmax = 22.7 t/h
compared with rigorous simulation results.

f (z◦)− z◦ f ′(z◦)−aRF = 0 (12)
In Eq. (12), the largest effect on the root value z◦ is given by the
parameter RF , that is, the ratio between price difference among
the feed and the product streams is determinant with respect to
the cost of energy (see Eq. (7)). The accuracy of the estimations
calculated via Eq. (12) is shown in Figure 9 where estimations
are compared with those obtained by rigorous simulation for
Vmax = 22.7 t/h and xF = 79%. The effect of propylene feed
concentration xF on optimum throughput at Vmax = 22.7 t/h has
confirmed a weak effect compared to the cost parameter RF . In
fact, another simulation run with RF = 0.537 has returned an
increase of 0.53% in the obtained maximum revenue through-
put with a linear trend between xF = 73% and xF = 79%, but,
for the sake of brevity, it is not shown.

5. CONCLUSION

RTO has become a crucial instrument to optimize the eco-
nomic aspects of chemical processes. Usually, such techniques
need an online simulation model of the process which is of-
ten costly to implement. Hence, in this paper, the problem
of optimizing the operation of a critical distillation unit, a
Propane-Propylene super-fractionator, has been addressed. Two
operative optimization scenarios implemented in the distilla-
tion process have been discussed and each of them has been
reformulated to obtain the optimal setpoints analytically, as
a function of the feed composition and price change distur-
bances. Such a procedure has been generalized and the obtained
estimations have been compared with results calculated by a
rigorous simulation model of the process developed offline in
UniSim Design, matching them satisfactorily. We underline
how the measurement of the Propylene feed concentration is
a key parameter in the development of such procedure, hence,
extending the same approach to general distillation processes
where this measurement can be impractical is the real chal-
lenge to be explored in future works. In addition, it is assumed
that the developed analytical RTO is operated in accordance
with operation constraints that need to be handled in indus-
trial practice. On the other hand, the MPC level is supposed
to address unmeasured disturbances or plant-model mismatch
accordingly, while eventually getting as close as possible to the
RTO setpoint. Finally, compared with the common approach
adopted in RTO where the rigorous model is used online, i.e.,
with regard to uncertainties on feed composition, the proposed

one shows a simplicity of implementation also within the MPC
itself that has to be remarked.
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