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Abstract: Electrochemical CO2 reduction (eCO2R) is an emerging technology that is capable
of producing various organic chemicals from CO2, but its high electricity cost is a big economic
obstacle. One solution to reduce the cumulative electricity cost is demand side management,
i.e., to adjust the power load based on time-variant electricity prices. However, varying the
power load of CO2-electrolyzers often leads to changes in Faraday efficiency towards target
components and thereby influences the product composition. Such deviations from the target
product composition may be undesired for downstream processes. We tackle this challenge
by proposing a flexible operating scheme for a modular eCO2R process. We formulate the
economically optimal operation of an eCO2R process with multiple electrolyzer stacks as a
parallel-machine scheduling problem. Adjusting the power load of each sub-process properly, we
can save electricity costs while the desired product composition is met at any time. We apply
an algorithm based on wavelet transform to solve the resulting large-scale nonlinear scheduling
problem in tractable time. We solve each optimization problem with a deterministic global
optimization software MAiNGO. We examine flexible operation of a modular eCO2R process
for syngas production. The case studies show that the modular structure enables savings in the
cumulative electricity cost of the eCO2R process via flexible operation while deviations in the
syngas composition could be reduced. Also, the maximum ramping speed of the entire process
is found to be a key parameter that strongly influences the cost saving.
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1. INTRODUCTION

Electrochemical carbon dioxide (CO2) reduction (eCO2R)
is an emerging technology that is capable of producing
various organic chemical compounds out of CO2. Being in-
tegrated with renewable energy systems, eCO2R has been
known as a promising alternative to conventional fossil-
based chemical production. Recent research on eCO2R
has focused on synthesis of novel catalysts for the pro-
duction of, e.g., carbon monoxide, formic acid, ethylene,
and ethanol (De Luna et al., 2019). In addition, electrode
and reactor design (Vennekoetter et al., 2019), conceptual
process design (Chae et al., 2020), and techno-economic
and sustainability analysis (Roh et al., 2020) are of interest
as well.

The electricity cost is one of the major cost drivers of
eCO2R technologies (Jouny et al., 2018). A straightfor-
ward solution to the electricity cost reduction is to lower
the overpotential of, particularly, the anode oxygen evo-
lution reaction (Sun et al., 2017). On the other hand,
if an eCO2R process is powered by grid electricity, one
can adjust the plant load to fluctuations in electricity
(spot) prices. This flexible operation, namely demand side
management (DSM) or demand response (DR), leads to

savings in overall electricity costs (Daryanian et al., 1989).
In academia, DSM has been applied to various industrial
plants, such as air separation units, chlor-alkali plants, and
aluminium plants (Mitsos et al., 2018).

A major challenge of flexible operation of eCO2R processes
is that the composition of the effluent stream depends
on the current density (or applied voltage). For exam-
ple, increasing the current density of CO2-electrolyzers
dedicated to syngas (a mixture of hydrogen and carbon
monoxide) production leads to a higher H2/CO ratio due
to the changes in the Faraday efficiencies toward hydrogen
and carbon monoxide (Vennekötter et al., 2019). The devi-
ation of the product composition from the nominal level is
typically undesired for downstream processes. This feature
is distinct from other conventional electrolysis, such as
water electrolysis and chlor-alkali electrolysis, in which
the product concentrations do not significantly change
with respect to the current density. To meet the product
specification, a part of the components should be sepa-
rated, which would complicate the process configuration
and worsen the economic viability as well.

To tackle this challenge, we propose a flexible operation
of modular eCO2R processes. Motivated from the parallel



machine scheduling (Jans, 2009), an eCO2R process con-
sists of N identical sub-processes that can be operated in-
dependently from one another. Adjusting the power load of
each sub-process properly according to the instantaneous
electricity prices rather than keeping the power load fixed,
we can save the overall electricity costs while the desired
product concentration can be met.

We formulate scheduling problems to determine the opti-
mal load profile of each sub-process. In this study, syngas
is chosen as a target product of an eCO2R process. Since
the syngas production rate and power requirement are
represented as nonlinear functions of the current density,
we solve nonlinear scheduling problems. In order to reduce
the computational cost, we apply our recently proposed
algorithm based on wavelet transform (Schäfer et al.,
2020). We conduct a sensitivity analysis that perturbs the
maximum ramping speed of each sub-process to see how
much it influences the electricity cost savings.

2. SYSTEM DESCRIPTION

Figure 1 depicts the block flow diagram of an eCO2R
process, which is modularized and thus capable of running
flexibly. The entire system consists of N identical sub-
processes that are independently operable. Herein, we
consider a moderate size of N (2 „ 8). Carbon dioxide and
water are fed into electrolyzer stacks in each sub-process
and then target chemicals are synthesized at the cathode
chambers via electrochemical CO2 reduction reactions.
Meanwhile, oxygen, a byproduct, is generated in the anode
chambers.

Recent studies on electrochemical CO2 reduction have
reported per-pass conversion of CO2 below 35% (Jouny
et al., 2018). Thus, the significant amount of unreacted
CO2 remains in the cathode effluent streams and has to
be separated by a CO2 separation unit(s). In this study, we
introduce N identical CO2 separation units connected to
N CO2-electrolyzer stacks to treat the respective cathode
effluent. The separated CO2 is then preferably recycled for
reducing the CO2 feed cost.

To enable DSM, the process requires overcapacity, mean-
ing that we install more than the minimum number of elec-
trolyzer cells needed to achieve the target production rate.
In addition, the products from all the stacks are mixed
and stored in a storage tank. This intermediate storage is
mandatory for the constant supply of the product to the
downstream process.

3. MATHEMATICAL FORMULATION

The scheduling model presented below is developed to
determine the optimal operation of each sub-process of
an eCO2R process. The following assumptions are made:

‚ quasi-steady-state model with discrete-time variables;
‚ perfect forecast of electricity prices in the day-ahead

market;
‚ no side-product generated;
‚ unreacted CO2 in the cathode effluent is completely

removed;
‚ considering power demand for electrolysis only.

3.1 Mass balances

The molar amount of a component c produced by stack s
at time step t (ns,c,t) is calculated by

ns,c,t “
FEs,c,t js,tACellNCell

F zc
∆t,

@s P S, c P C, t P T, (1)

where FEs,c,t denotes the Faraday efficiency toward com-
ponent c of stack s, js,t the current density of stack s,
ACell the active electrode area, NCell the number of cells
per stack, ∆t the length of time step, F the Faraday
constant, and zc the number of electrons transferred. Note
that FEs,c,t of CO2-electrolyzers often sharply varies with
respect to js,t. For example, when a silver catalyst is
applied to the cathode, the CO2 reduction reaction that
generates CO is superior at low current density due to its
low onset potential while the hydrogen evolution reaction
becomes dominant at high current density (Vennekoet-
ter et al., 2019). Therefore, this dependency should be
properly represented by exploiting either experiment or
simulation data.

The total amount of each component and the target
product is calculated by

nc,t “
ÿ

s

ns,c,t, @c P C, t P T, (2)

nProd,t “
ÿ

c

nc,t, @t P T. (3)

To maintain the product quality, an additional constraint
is imposed:

Qpnc,tq “ qProd, @t P T. (4)

where Qpnc,tq calculates the product quality as a function
of nc,t, e.g., the H2/CO molar ratio of syngas, and qProd is
the target value.

We consider the amount of the stored product limited to
the maximum storage capacity CProd:

´
CProd n

N
Prod

2 ∆t
ď

t
ÿ

τ“1

pnProd,τ ´ n
N
Prodq ď

CProd n
N
Prod

2 ∆t
,

@t P T, (5)

where nNProd is the nominal production level. Initially, half
of the storage tank is assumed to be filled by the product.

3.2 Power consumption

The power consumption at time step t can be calculated
by

Pt “
ÿ

s

pjs,tAcell Us,tNCellq∆t, @t P T, (6)

where Us,t denotes the cell potential of stack s at time step
t. As the current density js,t increases, the cell potential
Us,t rises due to, for example, the activation and ohmic
overpotentials.

3.3 Ramping constraints

Suitable ramping constraints should be imposed in order
to make the quasi-steady state assumptions adequate for
optimizing the operation of the dynamic systems, such as

´∆j ď js,t ´ js,t´1 ď ∆j, @s P S, t P T, (7)



Figure 1. Block flow diagram of a generalized modular eCO2R process for chemical production

where ∆j denotes the maximal ramping speed. ∆j is
calculated by

∆j “
jmax ´ jmin

TRamp
, (8)

where jmax and jmin denote the maximal and minimal
allowable current density, respectively. TRamp denotes the
minimal ramping duration between the two extreme oper-
ating points.

3.4 Symmetry-breaking constraints

We impose the lexicographic ordering constraints (Sherali
and Smith, 2001) that exclude alternative solutions to
break the symmetry and shorten the computation time
accordingly:

js,t ě js`1,t, @s “ t1...ST ´ 1u, t P T, (9)

where ST is the total number of stacks. This constraint
forces, for example, the current density of Stack 1 to
be higher than those of other stacks over the simulation
horizon.

3.5 Objective function

We minimize the sum of the electricity costs over the time
horizon:

min
js,t

ÿ

t

pt Pt, (10)

where pt denotes an electricity spot price.

4. CASE STUDY

We demonstrate the proposed operation concept on a
syngas production system based on co-electrolysis of CO2
and H2O. Four identical and independently operable sub-
processes produce syngas via the following electrochemical
reactions over Ag catalysts:

2 H` ` 2 e´ ÝÝÑ H2

CO2 ` 2 H` ` 2 e´ ÝÝÑ CO`H2O.

We choose a desired H2/CO molar ratio of 1, which is suit-
able for liquid fuel synthesis via the Fisher-Tropsch process
with iron-based catalysts (de Smit and Weckhuysen, 2008)

and oxo-synthesis for isomeric aldehydes production (Billig
and Bryant, 2005). Therefore,

nH2,t
{nCO,t “ qSyn, @t P T, (11)

where qSyn “ 1 and nH2,t
and nCO,t are the total molar

amount of H2 and CO produced at time step t. Each
sub-process comprises one CO2-electrolyzer stack and one
CO2 separation unit. Each stack consists of 30 electrolyzer
cells, so the total number of electrolyzer cells is 120. The
total syngas production rate is 5.87 kmol{h, which can be
manufactured by 100 electrolyzer cells operated at the
nominal current density (117 mA/cm2) determined by
Brée et al. (2020). The effective area of one electrolyzer
cell is assumed to be 2.7 m2, which is the size of the
typical chlor-alkali electrolyzer cell (O’Brien et al., 2005).
The syngas storage is capable of supplying syngas to a
downstream for maximum of six hours (CSyn). The time
step size is an hour.

The design of the electrochemical reactor (f) in Ven-
nekötter et al. (2019) is adapted to the electrolyzers
considered in this case study. It is a proton exchange
membrane (PEM) reactor with zero-gap configuration at
the anode and a silver gas diffusion electrode (GDE)
at the cathode. Brée et al. (2020) developed a dynamic
model, which was validated to the experimental data of the
aforementioned reactor setup. Using the developed model,
we generate the Faraday efficiency and cell potential at
different current density as plotted in Figure 2-(a) and
(c).

The original dynamic model for calculation of Faraday
efficiency and cell potential are highly nonlinear, so they
are not suitable to the scheduling model. We derive the

cubic polynomial functions fFEs,c,t and fU-j
s,t as the surrogate

functions of FEs,c,t js,t (effective current density) in (1)
and Us,t js,t (power density) in (6) as follows:

fFEs,c,t “ FEs,c,t js,t “ αFE,c j
3
s,t ` βFE,c j

2
s,t ` γFE,c js,t

` δFE,c, @s P S, c P tH2,COu, t P T, (12)

fU-j
s,t “ Us,t js,t “ αP j

2
s,t ` βP js,t ` γP , @s P S, t P T,

(13)
where α, β, γ, and δ are the coefficients of the surrogate
functions. The underlying and surrogate functions are
plotted in Figure 2-(b) and -(d). Note that, in Vennekötter
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Figure 2. Faraday efficiency (a) and cell potential (c) of the CO2-electrolyzer; and the underlying and surrogate functions
of fFE (b) and fU-j (d). The simulation results and underlying functions are taken from Brée et al. (2020). The
errors of the surrogate functions are below 1%.

et al. (2019), the current density is measured up to
100 mA/cm2. In this study, we extrapolate the Faraday
efficiency and cell potential at the current density of 100
to 150 mA/cm2 with the rigours dynamic model of Brée
et al. (2020).

Regarding the removal of bulk CO2 from syngas, several
technical candidates are available, such as chemical ab-
sorption, adsorption and membrane gas separation. These
options differ in energy demand, operating and capital
expenses, and dynamic responses. In this study, we assume
that the unreacted CO2 is separated via an arbitrary
separation technology. As mentioned in Section 3, we ex-
clude the energy demand for CO2 separation because it
is much smaller than the energy demand for electrolysis.
For example, CO2 is assumed to be separated by pres-
sure swing adsorption (PSA) that demands approximately
1.75 GJelec{tCO2

(Bui et al., 2018). This amounts to only
11.5% of the power demand of co2-electrolysis at the
nominal current density (assuming 30 % of CO2 per-pass
conversion). Note that the energy demand of PSA given in
Bui et al. (2018) is required for capturing CO2 from flue
gases, of which the CO2 concentration is below 20 mol.%.
As the CO2 concentration of the cathode effluent of the
CO2-electrolyzer stack would be much higher (up to 50
mol.%), the specific energy demand for the CO2 separation
would be even lower (see Hasan et al. 2014).

Dynamic responses of electrochemical reactions are gen-
erally fast, e.g., water electrolysis (Buttler and Spliethoff,
2018), so the CO2 separation unit is likely to limit the
ramping speed of the sub-processes (TRamp). Possible tech-
nologies for CO2 separation would differ in the ramping
speed. For instance, membrane gas separation and PSA
allow fast ramping (DiMartino et al., 1988; Sinha and
Padhiyar, 2019) while chemical absorption (Jung et al.,

2020) takes longer time to change the operation level. In
order to investigate how much the maximal ramping speed
affects the optimal operation as well as the cost savings,
we assume different values of TRamp (one to three hours).

An hourly electricity spot price profile (Figure 3) for three
days is taken from the German EPEX SPOT market,
recorded end of May in 2018 (Agora Energiewende, 2019).

Our optimization problem is a nonlinear program due to

the nonlinear surrogate functions fFEs,c,t and fU-j
s,t . Nonlinear

scheduling problems are rarely solved because they are
computationally challenging to obtain global solutions.
To tackle this challenge, linear approximation is usually
applied to reformulate the problem into mixed-integer
linear programs, e.g., Zhang et al. (2016), however, such an
approximation could generate inaccurate results. Instead,
we apply the wavelet-based grid adaptation algorithm
(Schäfer et al., 2020). We can find near-optimal solutions
of (nonlinear) scheduling problems in a tractable time
by using a few optimization variables only. Moreover,
this algorithm always creates feasible schedule as the
correct nonlinear models can be used. Herein, the current
density js,t are the optimization variables. The entire
horizon (144 h) comprises two time intervals (128 and 16
steps) concatenated. As a result, the number of degrees
of freedom is greatly reduced compared to 574 (144 ˆ
4) in the original problem. The mathematical models
are implemented in our in-house open-source software
for deterministic global optimization MAiNGO (Bongartz
et al., 2018) based on McCormik relaxation (McCormick,
1976; Mitsos et al., 2009).

The simulation results are illustrated in Figure 3. The
results show that the optimal current density of each
stack is adjusted to the time-variable electricity prices



while at anytime meeting the H2/CO ratio of the mixed
syngas stream entering the syngas storage. Because of
the symmetry-breaking constraints (9) imposed, Stack 1
and Stack 4 always operate at the highest and lowest
current densities, respectively. Interestingly, more than
two stacks occasionally follow the same trajectory, e.g.,
Stack 2 and 3 in the case of 2 hr of the maximal ramping
duration. This kind of optimal trajectories would facilitate
the process control in practice. During the period of low
electricity prices, some stacks are operated at relatively
high current density, which results in not only the higher
syngas production rate but also the higher H2/CO ratio
than the nominal levels (see Figure 2-(a)). Other stacks,
however, run at below the nominal current density due to
the syngas ratio constraint (11).

As shown in Figure 3, the shorter the maximal ramping
duration, the more dynamical the operation of the sub-
processes. As a result, more dynamic operation ends up
with higher savings in the cumulative electricity cost
compared to the steady operation at the nominal current
density. It indicates that employing a CO2 separation
unit that allows fast changes in the operation level will
considerably improve the overall economics of the modular
eCO2R system by DSM.

5. CONCLUSION

We proposed the modularization of an electrochemical
CO2 reduction process for the purpose of reducing the
electricity costs by demand side management. The mod-
ularization is an effective operation strategy to meet a
certain product quality while properly shifting the power
demand of individual sub-processes. We formulated a non-
linear scheduling problem to minimize the cumulative
electricity costs of an electrochemical system while opti-
mizing the operation of each sub-process. The case study
demonstrated our operation idea on co-electrolysis of CO2-
H2O for the production of syngas. The entire system is
made of four sub-processes, each of which produces syngas
and separates unreacted CO2 independently. We used the
wavelet-based grid adaptation algorithm to obtain near-
optimal solutions in a reasonable computation time. The
simulation results suggest that the flexible operation of
the modular process can reduce the electricity costs while
maintaining the syngas ratio. Moreover, the maximum
ramping speed of the sub-process, which is likely to be
determined by the CO2 separation unit, is found to be a
key factor that has a considerable impact on cost savings.

For future research, we should investigate the influences of
other parameters, e.g., the degree of modularization (i.e.,
the number of sub-processes) and the strength of elec-
tricity price fluctuation, on cost savings. Also, additional
capital costs required for employing flexible operation and
modular configuration should be analyzed. Particularly,
installing a fewer number of large CO2 separation units is
worth investigating because of benefits from economies-of-
scale.
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