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Abstract: Accurate monitoring of capacity degradation of a lithium-ion battery is important as it enables 

the user to manage its usage for optimal performance/lifetime and also to take preemptive actions against 

any potential explosion or fire. Battery capacity fades gradually through repetitive charging and discharging 

until it reaches the so called ‘knee-point’ after which it goes through rapid and irreversible deterioration to 

reach its end-of-life. It is crucial to forecast the knee-point early and accurately for safe and economic use 

of the battery. Machine learning based methods have been used to predict the knee-point with early cycle 

data. Despite some notable progress made, the existing methods make the unrealistic assumption of constant 

cycle-to-cycle charge/discharge operation. In this study, a deep learning method is developed for online 

knee-point prediction under the more realistic scenario of variable battery usage. A CNN-based model 

extracts temporal features of data across past and current cycles to sort out those cells in an urgent state that 

calls for close monitoring, and then predict the number of cycles left to reach the knee-point. The proposed 

method extracts features from dynamic data and thus the extracted features reflect dynamic changes in 

battery properties, thereby improving the prediction performance under realistic scenarios. 
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1. INTRODUCTION 

As the global markets for electric vehicles and energy storage 

systems grow, the demand for lithium-ion batteries is 

exponentially increasing. Consequently, ensuring stability of 

the battery cells has become a major issue, not only to lengthen 

their lifetime but also to prevent catastrophic explosions. 

Battery capacity degrades with repeated charging and 

discharging until the cell reaches 80% of its initial capacity, 

marking the end of its lifetime. For safety and economic 

reasons, it is important to monitor a battery’s state of health 

(SOH) and predict its remaining lifetime. Particularly, an 

occurrence of sudden capacity degradation can lead to serious 

problems. General Motors issued a recall resulting in a 

significant economic loss due to such a problem in 2017 

(Zhang et al., 2019). In general, battery capacity tends to fade 

gradually before it reaches a critical transition point, called 

‘knee-point’, after which the degradation greatly accelerates. 

Since irreversible deterioration occurs after that, predicting the 

knee point in advance is therefore critical in ensuring safe use 

and prolonging its lifetime. 

There have been few research studies on methods for 

predicting the knee-point; instead most studies have focused 

on predicting remaining useful life (RUL). Accurate RUL 

estimation can certainly be helpful in achieving more 

predictable battery performance. However, more active 

measures would be possible if the nature of battery degradation 

mechanism is better known. Prediction of the knee-point rather 

than the number of cycles left to the end-of-life would make 

enable an earlier detection of accelerated health degradation 

and more timely predictive maintenance. This motivates us to 

address the problem of predicting the knee point. 

Battery SOH prognostics can be broadly grouped into two 

categories: model-based methods and data-driven methods. 

The former category tries to develop an aging model based on 

fundamental electrochemical principles and then fits the model 

parameters to available data. On the other hand, the latter tries 

to extract certain fingerprints from available data that can be 

useful for monitoring and predicting the nature of battery 

degradation. Many stress factors exist that affect a battery’s 

aging process, and it is very difficult to describe all the 

involved mechanisms mathematically. This limitation makes 

the data-driven approach easier and perhaps more practical as 

it can extract patterns which are results of phenomena yet to 

be discovered. Recently, various early prediction models of the 

knee-point based on machine learning have been put forward. 

The quantile regression method was employed for knee-point 

recognition but it cannot be used for advance prediction in 

cases of nonlinear  fade (Zhang et al., 2019). A novel method 

to identify the knee-point and knee-onset was proposed using 

a prediction model of these points based on early-cycle data 

(Fermín-Cueto et al., 2020). Knee-onset, a term newly defined 

in this work, represents the point marking the beginning of 

nonlinear capacity degradation. A convolutional neural 

networks (CNN) model was proposed to predict a full capacity 

fade curve interpolating some key points including the knee-

point and the knee-onset from one cycle data (Strange and Dos 

Reis, 2021). However, the existing models are valid only under 

the restrictive assumption of a constant charge/discharge 

pattern from one cycle to next, which is highly unrealistic. In-

situ alert of an impending reaching of the knee-point to the end 

user is needed, with operating conditions changing from one 

cycle to another.



 
Fig. 1. Proposed two-step CNN-based online knee-point diagnosis method, which first identifies the cells with less than 100 

cycles left to the knee-point and then predicts the number of cycles left to the knee-point.

In this study, a deep learning method is developed for online 

knee-point prediction under a more realistic scenario of 

variable charge/discharge operation. A CNN-based model 

extracts temporal features across past and current 

charge/discharge cycle data to sort out those cells that are 

likely to reach the knee point early on (i.e., earlier than normal), 

and then predict the number of cycles left to the knee-point in 

real time. The proposed approach is the first of its kind 

enabling online knee-point prediction. 

The paper is structured as follows: Section 2 describes the data 

preparation process and model development based on deep 

layers of CNN. In Section 3, performance of the prediction 

model is analyzed and compared with the method that uses 

manually extracted features.  Section 4 concludes the paper. 

2. MODEL DEVELOPMENT 

2.1 Data preprocessing 

To develop an online knee-point prediction model, raw 

measurement data of voltage, current, and temperature during 

charging and discharging cycles are used as input. Given the 

different lengths of cycle data available to us, interpolation 

was used to fill in missing time points such that each cycle is 

represented by 200 data points.  Outlier removal and noise 

filtering were performed. Data from 3 consecutive cycles is 

collected as a vector and used as the input as patterns seen in 

consecutive cycling data contain time-wise trends of the 

battery degradation. The input data matrix is given as 
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 indicate voltage, current, and 

temperature at the j-th point from the current N-th cycle of the 

i-th battery cell. Since input data includes data collected from 

previous two cycles before the current cycle, 𝑁 can take on a 

value between 3 and the number right before the knee-point. 

The knee-point of each cell was calculated by the Bacon-Watts 

model (Fermín-Cueto et al., 2020), which is shown to be 

effective on data containing a large amount of noise. Capacity 

degradation is represented in a two-piecewise linear function 

with unknown parameters of the slopes and the transition point 

(which represents the knee-point) fitted to the data. Each input 

data is labeled with the number of cycles left to the knee-point, 

Y, defined as 

𝑌 = 𝐶𝑘𝑛𝑒𝑒−𝑝𝑜𝑖𝑛𝑡 − 𝑁 

where 𝐶𝑘𝑛𝑒𝑒−𝑝𝑜𝑖𝑛𝑡 is the cycle number at the knee-point and 𝑁 

is the current cycle index. For the first stage classification task, 

the labels are given to the cells, depending on how early the 

knee-points are reached, as described in a later section. 

Fig. 2. Identifying the knee-point on a capacity degradation 

curve of a sample cell 

2.2 Model architecture 

CNN automatically extract features from data through 

mathematical convolution operations. While CNNs have been 

extensively applied in the field of computer vision, it also has 

huge potential for use in handling time-series data (Jiang and 

Zavala, 2021). Once data are represented in a grid form, they 

can highlight hidden features among them. Therefore, CNN is 

used as a base model architecture to extract temporal features 

across the raw data. A proposed CNN-based deep learning 

method works in two steps: classification of knee-onset state 

and prediction of cycles left to the knee-point. Although 

accurate prediction of the knee-point is critical, it is not 

efficient to build a predictor that performs the prediction at 

every single cycle from the start of cycle life. If we interpret 

the knee-point as the transition point from a gradual 

deterioration to a rapid one, it would be better to notify the end 

user immediately when signs of an accelerated degradation 

appear. Therefore, the classification model first sorts out the 

cell according to the knee-onset state. The knee-onset of each 

cell was calculated by the double Bacon-Watts model (Fermín-



Cueto et al., 2020) and they were about 100 cycles before the 

knee-point on average. When input data are given, the 

classification model determines whether more than 100 cycles 

are left before reaching the knee-point (class 0) or not (class 1) 

starting from the current state. Then, only for those cells 

belonging to class 1, the predictor estimates how many cycles 

are left to the knee-point so as to enable any remedial action to 

prolong its life and prevent catastrophic failures. 

 

 

Fig. 3. CNN model architecture 

Each input variable has a close correlation within its own 

measurements through repetitive cycles of charging and 

discharging. Therefore, it is important to capture features, i.e., 

fingerprints, embedded in them that can represent current state 

of the cell using all the available data up to that point. In this 

work, dilated CNNs are used to boost up learning, which are 

proven to be efficient when processing long sequences of time-

series data (Oord et al., 2016). A dilated convolution is a 

convolution skipping input values at certain steps and defined 

as 

𝑦[𝑖] = ∑𝑥[𝑖 + 𝑑 ∙ 𝑙]ℎ[𝑙]

𝐿

𝑙=1

, 

where 𝑥[𝑖] and 𝑦[𝑖] is the input and output value at timestep 𝑖, 
ℎ[𝑙] is the filter of length 𝐿, and 𝑑 is the dilation rate. Dilation 

increases the receptive field so that less information is lost 

along long-term data. Deep layers of a dilated CNN enable the 

learning of the patterns hidden in the augmented input data. 

The prediction model is composed of six consecutive CNN 

blocks followed by fully connected (FC) layers (see Fig. 3). 

Batch normalization was used to stabilize the training process 

and max pooling was operated in the first two CNN blocks. 

Detailed configuration of the model is described in Table 1. To 

train the classification model, the binary cross entropy (BCE) 

term is used as the loss function. 

𝐵𝐶𝐸 = −𝜔𝑛[𝑦𝑛 log 𝑥𝑛 + (1 − 𝑦𝑛) log(1 − 𝑥𝑛)], 

where 𝜔𝑛 is the class weight, 𝑦𝑛 and 𝑥𝑛 are the ground-truth 

and the score for class 0 and (1 − 𝑦𝑛) and (1 − 𝑥𝑛) are for 

class 1. Due to the imbalance in data amount between the two 

classes, class weight 𝜔𝑛  is manually calculated from the 

number of samples in each class and added on the loss term to 

improve the model performance. To train the regression model 

to predict the knee-point, the mean square error (MSE) loss 

function is used: 

𝑀𝑆𝐸 =
1

𝑛
∑(𝑌𝑖 − �̂�𝑖)

2

𝑛

𝑖=1

, 

where 𝑛  is the number of training samples, 𝑌𝑖  is prediction 

output of the model, and �̂�𝑖 is the ground-truth of the sample. 

Table 1. Configuration of the model 

Layer name Filter size Number of kernels Dilation 

Input 3 × 600 - - 

Conv.1 15 16 2 

Maxpooling1 2 16 - 

Conv.2 15 32 2 

Maxpooling2 2 32 - 

Conv.3 15 32 2 

Conv.4 15 32 2 

Conv.5 15 32 2 

Conv.6 1 1 - 

FC1 16 - - 

FC2 output size - - 

3. MODEL EVALUATION 

3.1 Data description 

The dataset provided by Severson et al. (2019) was used in this 

study. The dataset is generated from 124 commercial Li-ion 

phosphate (LFP)/graphite cells cycled until end-of-life, at 

which capacity degrades to 80% of the nominal capacity. The 

cells have a nominal capacity of 1.1 Ah and a nominal voltage 

of 3.3 V. Each cell was cycled under different one-step or two-

step fast-charging policies ranging from 3C to 8C but was 

discharged with an identical 4C discharging condition. 

Measurement data of the voltage, current, temperature, and 

internal resistance are recorded over every cycle. 

3.2 Knee-point prediction result 

The dataset was randomly split into three sets: 104 cells for 

training, 10 cells for validation, and another 10 cells for testing. 

Adam optimizer was used for training 200 epochs with a batch 

size of 1024. Training stopped when the validation loss 

showed no improvement after 6 epochs. 

The prediction result of the model is given in Table 2. It 

achieved 91% of accuracy for classifying class 0 and class 1. 

According to the confusion matrix in Fig. 3 (a), recall for class 

1 was 99% implying that the model is accurate in terms of 

classifying cells in an urgent state. The case that should be 

avoided most in terms of safety is to misclassify the dangerous 

class 1 cells as class 0. Fortunately, such case represented only 

1%. For those cells with 100 cycles left to the knee-point, the  



       

Fig. 3. (a) Confusion matrix for the classification model. (b) Error in predicting how many cycles are left to the knee point vs  

different input lengths used.  The results are averages over 100 random seeds. (c) Training time per epoch overdifferent input 

lengths.  Also averaged over 100 random seeds. Total training time was divided by the number of epochs for an easy comparison 

because each random seed resulted in a different epoch number where the training stopped. 

model predicted the number of cycles left with an average 

error of 14.60 cycles. 

Table 2. Result of online knee-point diagnosis framework 

Classification result 

 Precision Recall F1-Score Support 

Class 0 1.00 0.89 0.94 4115 

Class 1 0.69 0.99 0.81 1000 

Accuracy 0.91 5115 

 

Prediction result 

MAE (cycle) 14.60 

 

In addition, model performance with different input cycle 

lengths was compared (Fig. 3 (b)) to evaluate the sensitivity of 

the model to the amount of input data used. 1 to 10 cycle long 

data were tested as the input vector. As the cycle length 

increased, the error decreased since the model can potentially 

extract more information from the longer historical data. 

However, the computational load also increases with the data 

length, so a proper cycle length should be selected (Fig. 3 (c)). 

3.3 Comparison with model using manually selected features 

To demonstrate the effectiveness of the proposed method, the 

knee-point prediction model with manually selected features 

based on Severson et al. (2019) is compared. Several features 

are extracted to predict cycle life based on expert knowledge. 

We take these features to build a prediction model based on 

multilayer perceptron (denoted as MLP model) which can 

validate automatic feature extraction of CNN model. The MLP 

model is establish by removing the CNN blocks in charge of 

feature extraction (Fig. 1) and feeding the manually selected 

features as input to the latter FC layers. 

Table 3. 7 manually selected features for knee-point prediction. 

All features are extracted from the same raw input data used in 

the CNN model for fair comparisons. 𝑁 is the current cycle 

number and 𝑘 represents the input cycle length, ranging from 

3 to 10. 

Corresponding  

raw data 
Features 

V, I 

(Discharging) 

Variance of discharge voltage curve difference 

between cycle 𝑁 − 𝑘 + 1 and cycle 𝑁 

Minimum of discharge voltage curve difference 

between cycle 𝑁 − 𝑘 + 1 and cycle 𝑁 

Slope of linear fit to the capacity fade curve, 

cycles 𝑁 − 𝑘 + 1 to cycle 𝑁 

Intercept of linear fit to the capacity fade curve, 

cycles 𝑁 − 𝑘 + 1 to cycle 𝑁 

Discharge capacity at current cycle 

V, I 

(Charging) 
Average charge-time during 𝑘 cycles 

T 
Integral of temperature over time, cycles 𝑁 −
𝑘 + 1 to cycle 𝑁 

7 features that can be constructed from the charge/discharge V, 

I, T data are chosen and modified to fit to the online prediction 

model (see Table 3). These features are then fed into the 

shallow MLP model replacing the automatically extracted 

features by CNN. 

 

Fig. 4. Comparison between the proposed CNN model and the 

MLP model with manually selected features (Severson et al., 

2019) 

(c) (b) (a) 



According to Fig. 4, our CNN model outperforms the MLP 

model when input information of less than 5 cycle length is 

used.  This implies that it is able to extract key fingerprints for 

the capacity degradation from unrefined measurement data. As 

more information is given, the MLP model shows slightly 

better performance. However, it has a critical limitation that 

features can be extracted only after a full cycle is finished. The 

statistical features of the discharge voltage curve and capacity 

fade curve become available after discharging is completed to 

the end. On the contrary, the CNN model using raw data is free 

from those constraints, making itself more suitable for online 

prediction. Moreover, regarding the essence of battery 

management system, longer input data length might be 

burdening and sometimes infeasible due to memory 

management issues. 

4. CONCLUSIONS 

As monitoring the status of battery degradation is becoming 

crucial, efficient early on-line prediction of the knee-point has 

become important. The unrealistic assumption of constant 

cycle-to-cycle charge/discharge operation has been relaxed in 

the proposed CNN-based deep learning method, which 

diagnoses a battery cell’s health and predicts the number of 

cycles left to the knee-point in real-time. The method extracts 

the relevant patterns in the dynamic charging/discharging 

profiles to enable more accurate and flexible prediction of the 

knee point. The framework has well-classified the cells about 

to be on the knee-point, which then needs to be watched 

closely. For those cells, accurate prediction of knee-point was 

possible thanks to the CNN model’s capability to extract key 

degradation fingerprints hidden in measurement data. Its 

effectiveness was demonstrated by comparison with the MLP 

model which replaced the automatically extracted features 

with manually selected features in the published literature. 
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