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Abstract:
We propose a novel, self-optimizing relay feedback control for a class of second-order systems.
The proposed controller achieves a control performance that is close to that of continuous (e.g.,
PID) control, but it requires only very limited process information, acquired from a two-valued
signal of a simple binary sensor. The smooth output of the proposed controller results in reduced
energy consumption and wear of the actuator.
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1. INTRODUCTION

Relay feedback controllers are used in many applications
ranging from home to industrial automation systems. In
particular, they are used for systems with low accuracy
requirements often found in temperature, pressure, level
and humidity control. Typical applications include heat-
ing, ventilation and air conditioning systems (HVAC) (e.g.
Li and Alleyne, 2010). Methods for auto-tuning controllers
in the process industry (e.g. Levy et al., 2012) and delta-
sigma converters for audio processing (e.g. Ardalan and
Paulos, 1987) are also based on relay feedback. The ability
to stabilize complex systems and the simplicity of the
algorithm allow for easy implementation without requiring
advanced knowledge of the underlying system dynamics or
control theory in general.

Numerous publications concerning stability investigations
(da Silva and Barros, 2019, Feofilov and Kozyr, 2019)
and optimization for common system classes (Hetel et al.,
2015) and specific applications (Kang et al., 2015, Al-
Azba et al., 2020, Elbert et al., 2014) stress the need
for research, while several patents (Dietzel and Bek, 1996,
Juntunen, 2005, Michalek, 1990) show the importance of
relay feedback controllers in practical setups.

The simplicity of relay feedback entails the disadvantages
of partially high-frequent oscillations around the setpoint,
high stress on the actuator as well as an increased energy
consumption. To address these issues we proposed an
adaptive control algorithm in Leonow and Mönnigmann
(2019) and Leonow et al. (2019) suited for first-order
systems. The algorithm uses adapted relay parameters
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to reduce actuator stress and energy consumption to an
extent comparable to a continuous PID-type controller. A
significant limitation of the proposed controller in former
publications is its restriction to first-order systems.

This paper extends the adaptive relay feedback to systems
of second-order by exploiting the second-order system
dynamics and, in particular, their step responses, which
appear naturally during relay feedback control.

2. PRELIMINARIES

The plant of consideration can be modeled with a critically
damped, second-order LTI system

ẋ(t) =

(
0 1

−1/T 2 −2/T

)
︸ ︷︷ ︸

A

x(t) +

(
0

k/T 2

)
︸ ︷︷ ︸

b

u(t), y(t) = (1 0)︸ ︷︷ ︸
cT

x(t)

(1)
with input u(t) and output y(t). The output y(t) is
assumed not to be measured continuously but by a state-
discrete, binary sensor with output s(t), detailed further
below in (2). The plant gain k > 0 and the time constant
T > 0 are assumed to be unknown but constant or slowly
changing (dk/dt, dT/dt � T ). It is easy to show that A
is Hurwitz under the conditions for k and T . In particular,
A−1 exists.

We impose strong constraints on the system class to allow
an autonomous parameter estimation from the very lim-
ited process information obtained with binary measure-
ments. Moreover, these constraints ensure certain class-
wide properties of the resulting limit cycles (see Sec. 3).

The binary sensor is assumed to provide a two-valued
signal s ∈ {0, 1}



s(t) =

{
1 : (y(t) > w + h) ∨ (y(t) > w − h ∧ s(t†) = 1)

0 : (y(t) < w − h) ∨ (y(t) < w + h ∧ s(t†) = 0) .

(2)

Here, w is the sensor setpoint, h > 0 is the sensor hysteresis
and t† denotes a point in time immediately prior to the
actual time t.

3. LIMIT CYCLES

The adaptive binary controller translates the sensor signal
s(t) into the plant input u(t) according to

u(t) =

{
µ+ δ : s = 0

µ− δ : s = 1
, (3)

where µ ∈ R is the mean value and δ ∈ R>0 is the
amplitude. Both parameters will be adjusted with the
proposed self-optimizing algorithm (see Sec. 4.5) until
the optimal parameters for the specific system are found.
The optimal controller parameters µ∗ and δ∗ fulfill the
following properties:

• µ∗ compensates the sensor offset w, i.e.,

u(t) = µ∗ yields y(t→∞)→ w and (4)

• δ∗ is the lowest amplitude that yields

y(t→∞) = w ± h for u(t) = µ∗ ± δ∗. (5)

Closing the loop with plant (1), sensor (2) and controller
(3) leads to a relay feedback system (RFS)

RFS

{
f+(t) : ẋ(t) = Ax(t) + b(µ+ δ)

f−(t) : ẋ(t) = Ax(t) + b(µ− δ) . (6)

We briefly summarize the properties of the resulting limit
cycles for the RFS (6) in the scope of adaptive control here
and refer to the literature where possible.

The equilibria x+e of f+(t) and x−e of f−(t), where x+e =
A−1(−b)(µ+ δ) and x−e = A−1(−b)(µ− δ), are finite and
asymptotically stable under the conditions stated for (1)
and for arbitrary µ, δ ∈ R. The RFS switches between f−

and f+ when its trajectory x(t) crosses a switching line

S± = {x ∈ R : cTx = w ∓ h} .
When x(t) ∈ S+, the RFS switches from f− to f+ and vice
versa for x(t) ∈ S−. We denote the timespans between the
switching instances by t− and t+, where f− applies during
t− and f+ applies during t+. The amplitude δ from (3) can
be bounded from below as follows.

Lemma 1. (Minimal δ). Consider the RFS in (6) with T ,
k, h, δ ∈ R>0 and w, µ ∈ R. A limit cycle establishes with
µk ≤ w for any δ > (w + h)k−1 − µ and with µk > w for
any δ > (h− w)k−1 + µ.

See Leonow and Mönnigmann (2019) for the proof of
Lemma 1. The lower bound on δ defined by Lemma 1
ensures a repeated switching of the RFS, which is crucial
in order not to lose control of the plant. The lower bound
on δ depends on the choice of µ and is generally larger than
the optimal amplitude δ∗. It follows from Lemma 1 that
for the choice of µ = wk−1, the lower bound on δ becomes
δ ≥ (w + h)k−1 − µ = (w + h)k−1 − wk−1 = hk−1, which
marks the lowest bound on δ with respect to µ that still
ensures the switching at w±h and therefore coincides with
the optimal δ∗ as defined in (5). The choice of µ = wk−1

compensates the sensor offset w and is the desired µ∗ as
defined in (4). It follows that

δ∗ = hk−1 for µ = µ∗ = wk−1 . (7)

Lemma 2. (Offset compensation). Assume u(t) = µ∗ ± δ
with µ∗ = wk−1 and δ > δ∗ is applied to (1). The
RFS then converges to a symmetric limit cycle with equal
switching timespans t+ = t− around the center xµ =
A−1(−b)µ, where yµ = cTxµ = w equals the sensor offset
(see Fig. 1).

See Leonow and Mönnigmann (2019) again for the proof
of Lemma 2.
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Fig. 1. Trajectories of a sample RFS (6) with T = 1.1,
k = 2, w = 0.5, h = 1 and initial condition x0.
Parameter values are µ = 0, δ = 1 for the left diagram
(i.e., arbitrary initial control, satisfying Lemma 1)
and µ = µ∗ = 0.25, δ → δ∗ = 0.5 for the right
diagram (optimal control). The initial trajectory x(t)
is depicted in blue, the limit cycle is highlighted in
green and the free trajectories of f+ and f− (no
switching) are marked with a red dashed line. The
blue dash-dotted line depicts the trajectory for δ = 0
which approaches the (shifted) origin xµ.

With parameters µ∗ and δ∗ from (7), the RFS approaches
a limit cycle defined by the set Ω ⊂ Rn of all values of
the limit cycle trajectory x(t). If Ω is symmetric, it has a
period of 2τ = 2t+ = 2t−. If the limit cycle is unimodal,
i.e., it switches only twice within 2τ , the trajectory starting
at cTx(t) ∈ S+ evolves towards cTx(t+ τ) ∈ S− and then
back to cTx(t + 2τ) = cTx(t) ∈ S+. Lemma 3 establishes
uniqueness and unimodality for Ω.

Lemma 3. (Unique, unimodal limit cycle). Assume that a
limit cycle exists for the RFS (6) by choosing µ∗ and δ∗

as in (7). Then this limit cycle is unique and unimodal.

Proof. Lemmas 1 and 2 already established existence and
symmetry of the limit cycle. Colombo et al. (2007) showed
unimodality for the regarded class of RFS (6). It remains
to show the uniqueness of the limit cycle.

Assume µ∗ = w = 0 for simplicity but without loss of
generality. The impact map m+(x−) : S− → S+ maps
from a point x− ∈ S− to a point x+ ∈ S+ via

m+(x−) = eAτ(x
−)x− +

(
eAτ(x) − I

)
A−1bδ

(Åström (1995)), where τ(x−) is the minimal time that
satisfies m+(x−) ∈ S+. The impact map m−(x+) : S+ →
S− is defined analogously. Combining both maps yields



the Poincaré map m(x∓) = m∓(m±(x∓)). Assume that
m(·) has a fixed point and refer to that fixed point by x∗.
τ(x∗) satisfies g(τ(x∗)) = 0, where

g(τ) = cT (eAτ + I)−1(eAτ − I)A−1bδ − h (8)

(Gonçalves et al., 2000, Gonçalves et al., 2003). Inserting
A, b and cT from (1) into (8) yields

g(τ) = −2(Th+ δkτ)eτ/T + T ((h− δk)e2τ/T + h+ δk)

T (eτ/T + 1)2
.

(9)
Setting τ = 0 yields

g(0) = −T (2h+ h− δk + h+ δk)

4T
= −4Th

4T
= −h ,

which implies g(0) < 0 since h > 0 by assumption.

The limit τ → ∞ for g(τ) from (8) can be found with

L’Hospital’s rule and g(τ) = gd(τ)
gn(τ)

. This yields

lim
τ→∞

g(τ) = lim
τ→∞

g
(4)
d

g
(4)
n

= − (h− δk)eτ/T

eτ/T
= −h+ δk ,

which implies lim
τ→∞

g(τ) > 0 for δk > h, which holds

according to Lemma 1.

The gradient

dg(τ)

dτ
=

2δkτ(eτ/T − 1)

T 2(eτ/T + 1)3
> 0 for τ ∈ (0,∞)

g(τ) is continuous and strictly increasing. Since g(0) < 0,
dg(τ)
dτ > 0 for all τ ∈ (0,∞) and lim

τ→∞
g(τ) > 0, there exists

a unique solution to g(τ) = 0 and, consequently, one and
only one limit cycle exists for the RFS (6). 2

4. SELF-OPTIMIZING CONTROLLER

The computation of the optimal controller parameters µ∗

and δ∗ can be fully automated so that only minimal user
interaction is required. The proposed algorithm exploits
the step responses that result naturally when using a
binary controller. The resulting control behavior can be
described by cycles (see Fig. 2), where each cycle starts
at the upper switching point w + h at time t0, which
is detected by the sensor with a binary measurement of
s(t0) = 1 according to (2). The controller applies u(t0) =
µ − δ (cf. (3)) so that y(t) reaches the lower switching
point w − h after the time interval t−. The sensor output
switches to s(t−) = 0 according to (2), which results in
a controller output u(t−) = µ + δ. After the time t+, the
upper switching point is reached again, marking the end
of the cycle.

The step response of (1) with u(t) = δσ(t), where σ(t) is
the Heaviside step function, is given by

y(t) = kδ

(
1− e

−t
T − t

T
e

−t
T

)
+ y(0)

(
e

−t
T +

t

T
e

−t
T

)
+ ẏ(0)te

−t
T

(10)

with initial conditions y(0) and ẏ(0).
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Fig. 2. Definition of one control cycle with descending and
ascending parts highlighted illustrating time spans t−

and t+, respectively

4.1 Computation of µ∗

The mean value µ∗ is computed iteratively using the mean
value of a cycle given by

ỹ =

∫ τ−

t0
y(t)dt+

∫ τ+

τ− y(t)dt

t− + t+
(11)

with τ− = t0 + t− and τ+ = t0 + t− + t+. Inserting the
process model (1) into (11) and solving the integrals yields

ỹ =
k(µ− δ)t− + k(µ+ δ)t+ − T 2 (ẏ(τ+)− ẏ(t0))

t− + t+
. (12)

We assume that ẏ(τ+) ≈ ẏ(t0) for the same cycle, assum-
ing a similar trend of the time derivative of the process
variable at the beginning and the end of one cycle. Divid-
ing (12) by k then leads to

µ̃ =
(µ− δ)t− + (µ+ δ)t+

t− + t+
, (13)

which we claim converges towards µ∗ for repeated evalua-
tion of (13).

4.2 Computation of δ∗

If the optimal mean value µ∗ and sensor setpoint w are
known, the plant gain results from

k =
w

µ∗
, (14)

which can be used further to compute δ∗ from (7) with
given sensor hysteresis h.

4.3 Computation of T

The time constant of the process is needed for determining
the expected time to reach the next sensor switching point.
Two subsequent half-cycles with constant µ = µ∗ but two
different amplitudes δr+1 and δr+2 with δr+2 < δr+1 are
evaluated for the identification of T (see Sec. 4.5 for r).
We assume that µ∗ has already been found to ensure a
symmetric oscillation around the setpoint w according to
(4) and (5). We can therefore shift the origin to w to only
consider deviations from w and µ∗ by choosing w = 0



without restriction. Substituting t+ and t− into (10) yields

y(t+) = kδr+1

(
1− e

−t+

T − t+

T
e

−t+

T

)
+ y+(0)

(
e

−t+

T +
t+

T
e

−t+

T

)
+ ẏ+(0)t+e

−t+

T

(15a)

y(t−) = kδr+2

(
1− e

−t−
T − t−

T
e

−t−
T

)
+ y−(0)

(
e

−t−
T +

t−

T
e

−t−
T

)
+ ẏ−(0)t−e

−t−
T

(15b)

with y+(0) and y−(0) being the starting conditions for the
rising and falling trajectory, respectively. The definition of
a cycle as depicted in Fig. 2 for w = 0 yields

y−(0) = y(t+) = h (16)

y+(0) = y(t−) = −h. (17)

Since we use two consecutive step responses resulting from
different amplitudes δr+1 and δr+2, the initial condition for
the second step response equals the final condition of the
first step response. Since δr+2 did not affect the control
cycle yet, both initial conditions ẏ−(0) and ẏ+(0) only
result from the control with δr+1. Due to the symmetry of
the limit cycle (with µ∗ established), the initial conditions
for ẏ are of the same size with opposite sign, i.e.,

ẏ−(0) ≈ −ẏ+(0). (18)

By substituting (18) in (15a) and (15b) both equations can
be transformed to ẏ−(0) or ẏ+(0), respectively. Equating
(15a) and (15b) and combining them with relations (16)
and (17) then leads to

1

t+e
−t+

T

[
h− kδr+1

(
1− e

−t+

T − t+

T
e

−t+

T

)

+ h

(
e

−t+

T +
t+

T
e

−t+

T

)]

=
1

t−e
−t−
T

[
h− kδr+2

(
1− e

−t−
T − t−

T
e

−t−
T

)

+ h

(
e

−t−
T +

t−

T
e

−t−
T

)]
,

(19)

which can be solved for T numerically.

4.4 Computation of tp

The predicted timespan tp for the next control cycle with
updated parameters µ and δ results from the step response
(10). Substituting tp for t yields

y(tp) = kδ∗
(

1− e
−tp
T − tp

T
e

−tp
T

)
+ y(0)

(
e

−tp
T +

tp
T
e

−tp
T

)
+ ẏ(0)tpe

−tp
T

with known relations y(tp) = ±h, y(0) = ∓h for y(0)
starting at the lower or upper sensor switching point,
respectively. Moreover ẏ(0) ≈ 0 if the optimal amplitude
δ∗ is used for control. The resulting equation

±h = kδ∗
(

1− e
−tp
T − tp

T
e

−tp
T

)
∓ h

(
e

−tp
T +

tp
T
e

−tp
T

)
(20)

can be numerically solved for tp with known T from (19).
The proposed algorithm (see Sec. 4.5) uses the predicted
time tp to identify and reject plant disturbances.

4.5 Autonomous parameter identification

The identification of µ∗ and δ∗ requires r+2 control cycles,
where r ∈ N>0 is the number of cycles needed to establish a
symmetric oscillation by finding µ∗. Two additional cycles
are then required to compute δ∗.

Cycle 0: Initialization The initial cycle controls the plant
towards the upper switching point so that y(t) = w + h
with u(t) = µ0+δ0 (see Sec. 4.6 for the choice of the initial
parameters µ0 and δ0).

Cycles 1 to r: Synchronization The computation of µ∗

by (13) is repeated until the time intervals t− and t+ are
equal, i.e., symmetry of the limit cycle is established.

Cycle r+ 1: First step response Cycle r+ 1 uses µ∗ and
the current amplitude, here denoted by δr+1.

Cycle r + 2: Second step response Cycle r + 2 uses µ∗

and a reduced δr+2 = ρ · δr+1 with 0 < ρ < 1 to measure
a second step response (see Sec. 4.6 for the choice of ρ).
After cycle r + 2 is complete, δ∗ is computed using (14)
and (7). Subsequently, T is determined by solving (19). T
is then used to compute tp according to (20).

Following cycles: Disturbance rejection The controller
updates µ∗ at the end of every cycle to compensate minor
disturbances. Larger disturbances that prevent the process
variable from reaching the sensor switching points result in
growing time spans t− or t+. The controller continuously
evaluates t− < 2tp and t+ < 2tp and resets its parameters
to their initial values µ0 and δ0 when 2tp is exceeded to
reestablish control of the plant. We update tp by tp =
t−+t+

2 after the first full cycle with optimal δ∗ to mitigate
the effect of inaccuracies in the tp prediction by (20).

4.6 Notes on the practical implementation

Assuming the optimal parameters µ∗ and δ∗ are applied
to the plant, we can use ẏ(0) ≈ 0. Simplifying (10) by
choosing y(0) = 0, u(t) = µ∗ ± δ∗ yields

y(t) = k(µ∗ ± δ∗)
(

1− e
−t
T − t

T
e

−t
T

)
.

For t → ∞ a control with optimal parameters µ∗ and
δ∗ yields y(t) = w ± h. Due to the aperiodic behavior of
the plant (1), the switching times approach infinity. This
effect is typically mitigated through the process noise. We
nevertheless introduce a relaxation factor κ > 1 according
to

δ = κδ∗

to ensure a proper termination of the algorithm also in
low noise applications. We found κ = 1.1 appropriate in a
range of applications.

We found that for the second tuning parameter ρ, required
for the reduction of δ in cycle r + 2 as described in Sec.
4.5.4, a choice of ρ = 0.7 is appropriate. However, a small
gain margin, with δk only marginally greater than h, could



require a larger ρ to prevent δr+2 from being smaller than
the minimal amplitude δ∗, thus violating Lemma 1.

A valid choice for the initial controller parameters µ0 and
δ0 involves spanning the admissible input range of u(t)
by applying (3). In many practical applications actuator
signals span from 0V to 10V, which leads to µ0 = δ0 = 5V.

5. RESULTS

The proposed controller is demonstrated with the hy-
draulic test stand depicted in Fig. 3. We used a centrifugal
pump (KSB Etanorm G32-125.1) to transfer water from a
reservoir (tank 1 in Fig. 3) to an overhead water tank (tank
2 in Fig. 3). The pump features a variable speed drive, the
drive speed is proportional to the controller output u(t).
An adjustable discharge valve is used to simulate changing
process parameters and is set to 80% opening by default.

tank 1

valve
tank 2

z(t)

q(t) = y(t)

sensor

PC Matlab/Simulink

controller
s(t)u(t)

y(t)

pump

motor

inverter

Fig. 3. Test stand used for the evaluation of the adaptive
binary controller

The process variable y(t) equals the measured flow q(t)
in the hydraulic system. We stress that y(t) is measured
continuously only for validation. The adaptive controller is
implemented in Matlab/Simulink and receives the binary
information s(t) only, here with w = 40 L/min and
h = 2 L/min. After a time of 120 seconds, an external
disturbance is introduced by closing the discharge valve to
60%, causing an increased hydraulic resistance. The inputs
and outputs of the system are recorded and shown in Fig.
4.

The resulting upper and lower sensor switching points
are highlighted by dashed lines in Fig. 4. Furthermore,
the upper diagram includes the process variable y(t).
The lower diagram shows the controller output 0% <
u(t) < 100% (corresponding to 600 rpm to 1500 rpm
pump speed), which is composed of the mean value µ(t)
and the amplitude δ(t) according to (3).

The initial cycle is performed with parameters µ0 = 50%
and δ0 = 50% in order to bring the process variable
into the sensor range. At about 5 seconds, the first cycle
starts with µ1 = µ0, δ1 = δ0 and applies u = µ1 − δ1
until y(t) reaches the lower switching point w − h. The
controller then applies u = µ1 + δ1 and the first cycle
ends at about 15 seconds with y(t) = w + h crossing the

upper switching point. The controller recorded the time
spans t− and t+ and uses them to compute an updated
µ2, which is closer to µ∗ than µ1. Due to plant-model-
mismatch, further cycles are required to find µ∗. The
amplitude δ1 is updated to δ2 to prevent a violation of the
input constraints µ± δ ∈ (0, 100) due to the new µ2 6= µ0.
The synchronization cycle is repeated until µ has reached
µ∗, which is indicated by t+ = t−. In the timeseries in
Fig. 4, µ∗ is found after cycle r = 5, i.e., after about 45
seconds. Cycle r+1 is then performed with the previously
computed µ∗ and the current δ = δr+1. Cycle r+1 ends at
about 55 seconds. Cycle r + 2 uses µ∗ and δr+2 = ρ · δr+1

and ends at about 65 seconds. At the end of cycle r + 2,
the optimal amplitude δ∗ is computed as described in Sec.
4.5.4 and applied for the following cycles. The controller
now operates in its optimal setting and compensates minor
disturbances (e.g., process noise) by updating µ∗ at the
end of every cycle.

At 120 seconds, the forced external disturbance with re-
duced discharge valve opening prevents y(t) from reaching
the switching point w + h. At about 130 seconds (right
edge of the first grey area in Fig. 4), the disturbance is
detected as the timespan t+ exceeds 2tp and a reset of
the parameters to µ0 and δ0 is performed. The algorithm
restarts in cycle 0 and converges to the optimal setting
after about 200 seconds, now with increased µ∗, since
the discharge valve has a lower opening. It should be
stressed that in long-term control applications a reset is
only needed if a major disturbance occurs.
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Fig. 4. Time series of test stand data. Grey areas highlight
the time intervals the optimal δ∗ is used for control.
The red vertical line indicates the point in time when
the disturbance was introduced.

We compared a simple on/off controller to the proposed
adaptive controller and a PID controller in terms of energy
demand. The PID controller serves as benchmark here,
but requires a more complex continuous measurement of



y(t) in contrast to the binary controllers. The energy
demand was evaluated at the described test stand by
measuring the electrical power through the inverter. The
lower diagram in Fig. 5 shows the accumulated power
demand

∫
P (t)dt = E(t) for all three controllers for 250

seconds (same measurement run as in Fig. 4). Since the
initial parameters µ0 and δ0 of the adaptive controller
result in an on/off behavior, both controllers show a similar
power consumption for the first 20 seconds. As soon as
the optimal parameters are computed, the growth of E(t)
of the adaptive controller becomes significantly less steep
and the gradient of E(t) becomes similar to the one of the
PID control. The energy demand of the adaptive controller
is reduced by about 30%, compared to the simple on/off
controller in the lower diagram. Extrapolating the data
to one day of operation (without larger disturbances that
would require a reset of the adaptive controller) in the
upper diagram of Fig. 5 highlights that the adaptive
controller possesses a similar energy efficiency as the PID
controller and reduces the energy demand compared to the
simple on/off controller even by 50%.
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Fig. 5. Comparison of the energy consumption of an on-off,
PID and the adaptive controller. The lower diagram
correlates with the measurement run from Fig. 4,
while the upper diagram depicts an extrapolated
operation of the different controllers.

6. CONCLUSION

We proposed a self-optimizing relay feedback controller
for an energy efficient control of critically damped second-
order systems. Simple binary sensors are sufficient for
the proposed algorithm to compute the optimal control
parameters in order to minimize the oscillations of the
process variable to a minimum. Apart from easy to acquire
sensor setpoint and hysteresis, no additional information
about the process is needed for the proposed controller to
optimize energy consumption and reduce actuator stress.
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