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Abstract: Atmospheric residue desulfurization (RDS) is used to treat the invaluable atmo-
spheric residue from crude distillation column before it is sent to the fluid catalytic cracking
(FCC) process. RDS is operated by increasing the operation temperature of catalysts to keep
the desirable conversion as the catalyst aging progresses. To use the catalyst as long as possible
while satisfying the criterion on the impurities in the RDS product, we need to predict the
conversion based on the operation histories. In this study, we propose neural network models
for predicting removal amount of the impurities in RDS. As the temperature, hydrogen flow
rate, and impurities feed flow rates are selected as the features for neural network models.
In addition, an approximated aging factor for the catalyst is considered with the cumulative
amount of treated impurities and trainable parameters. The neural networks are trained in a
moving horizon manner and tested using the real plant data during 123 days. If we train the
neural networks in a general way, the trained model shows unrealistic results that are physically
and chemically unexpected. When we increase the temperature with the other factors fixed, the
catalyst conversion predicted by the trained neural network decreases. This absurd prediction is
because the model is trained using the data where the temperature increases when the conversion
is low with aging catalyst. To address this issue, we use a clipping method that the weights of
neural networks are restricted to positive values. This strategy always ensures the increasing
(decreasing) tendencies of the removal amount with respective to the increase (decrease) of the
temperature and hydrogen flow rate.
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1. INTRODUCTION

Atmospheric residue desulfurization (RDS) process is
widely used to upgrade heavy petroleum oils and residues
to valuable fuels (Hauser et al. (2005); Almutairi et al.
(2007); Chehadeh et al. (2018)). RDS takes the high sul-
fur atmospheric residue (AR) produced from the crude
distillation unit (CDU) as the feed, converts it into a
more valuable substance, and sends it to the fluid cat-
alytic cracking (FCC) process. In the RDS, substances
harmful to the FCC process such as sulfur, nitrogen,
and metals are removed. The addition of hydrogen at
high temperature and pressure is the main method for
this process (Marafi et al. (2006)). The hydrogenation
method helps to produce a higher quality product than
the heat treatment method, and the resulting oil has
lower levels of aromatics, sulfur, nitrogen, and other con-
taminants(Chehadeh et al. (2020)). In the hydrogena-
tion method, multiple reactors with graded catalyst bed
are used for hydrodesulfurization (HDS), hydrodemetal-
lization (HDM), hydrodeconradson-carbon-residue (HD-
CCR), and hydrodenitrogenation (HDN). The catalysts
substantially improve the removal performance of unde-
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sirable impurities. However, the activity of the catalysts
is degraded rapidly by coke and metal (Al-Dalama and
Stanislaus (2006); Furimsky and Massoth (1999)). The
catalysts need to be replaced about once every 6 months,
and this consumes a lot of time and money.

To use the catalysts as long as possible while satisfying
the requirements on the RDS products, it is necessary to
predict the conversion of catalysts depending on the op-
eration duration of the catalysts along with the operation
conditions. If we can predict whether the catalysts provide
a satisfactory conversion under some operation conditions
during the future duration, we can use the catalysts longer
with slightly reduced feed flow rate, increased hydrogen
flow rate, or optimally designed operation temperature
scenario. However, it is not easy to develop mathematical
models that can describe the catalytic kinetics and to
predict the extent of catalyst aging.(Oh et al. (2021)) The
experiments for determining the order of reactions and the
inhibition terms are time consuming, and the properties
should be re-examined each time the supplier changes. In
addition, in the case of carbon compounds, the composi-
tion of saturated and unsaturated carbon compounds is
not separately measured.



(a) (b)

Fig. 1. (a) Simplified block diagram of RDS process. (b) Detailed flow of in the reactor part.

To address the issues, we develop a data-driven neural net-
work model using the real RDS plant data. Several neural
networks are trained to predict the removal amount of each
impurities because the catalysts for each component are
separately located in the reactors. The features for each
neural network are selected accordingly with the position
of catalysts and based on the key operating conditions.

To train the neural networks, we need the data for their
input and output variables. Although temperature, pres-
sure, and flow rate at so many points are measured in
real-time and stored in the PI system, the composition
is not analyzed in real-time and it is analyzed at limited
points. Even with this practical limited situation, we can
specify the composition of reactants and products in the
reactor section by ignoring the section for just separating
the hydrogen and by noticing that the metals are not
evaporated much.

Based on the data, the neural networks are trained in
receding horizon manner to consider the catalytic degrada-
tion effectively. Because the RDS is operated by increasing
the temperature as the catalysts are degraded(Al Bazzaz
et al. (2015); Marafi et al. (2009)), the typical training of
neural network gives contradictory results physically and
chemically. That is, the neural networks learn the trends
where the conversion is reduced with the high tempera-
ture, which is the opposite of the real tendency. We resolve
this issue by restricting the weights of the neural networks
to be positive and introducing the aging model separately.
By restricting the weights as the positive values, the neural
networks show the increase of removal amount as the
temperature and hydrogen flow rate increase.

2. RDS PROCESS

We use the real plant data to construct neural network
models for the conversion prediction. The RDS is designed
to treat 66,000 barrels per day of AR, and the simplified
block diagram is shown in Fig. 1(a). The AR from the
CDU enters the feed surge drum to prevent the surging.
The outlet of the drum then flows into two parallel
trains, each consisting of three reactors. The impurities

are removed through HDM, HDS, HDCCR, and HDN
processes. Hydrogen gas is additionally supplied before
each reactor and it is used to cool down the reactor
properly. Separation part includes Hot High Pressure
Separator(HHPS), Hot Low Pressure Separator(HLPS),
Cold High Pressure Separator(CHPS), Cold Low Pressure
Separator (CLPS). The separation process is to perform
gas-liquid separation by the temperature. In detail, the
impurities treated in the reactor part are absorbed and
discharged, and the hydrogen gas is purified and recycled
to the reaction part. Finally, the stream is distillated
through atmospheric fractionator into treated atmospheric
residue (T-AR), diesel, naphtha, and liquefied petroleum
gas (LPG). The T-AR is fed to the FCC for further
treatment. Note that the impurities are treated at the
reactors; in the separation part, H2S is mainly absorbed
and H2 is separated for recycling.

In this study, the objective is to predict the removal
amount of impurities from AR to T-AR. However, the
composition is analyzed in detail at very few points as
shown in Fig. 1(a); at the outlet from the feed surge drum
and at the T-AR stream. Most of sulfur (S), nitrogen (N),
metals (Ni and V), and Conradson carbon residue (CCR)
are removed in the reactors; thus, we assume that the
removal amount of each component is calculated using the
composition data of the feed surge drum outlet and the T-
AR with associated flow rates. The amount of impurities
contained in the other product of atmospheric fractionator
such as diesel, naphtha, and LPG is negligible. In partic-
ular, most of metals are not evaporated and remain in the
bottom with CCR. Fortunately, temperature, presssure,
and flow rate are measured at many points in real-time
and stored. We use the temperature data of upper and
lower parts in each reactor and the hydrogen flow rate
data before the each reactor.

3. PROPOSED PREDICTION NEURAL NETWORK

3.1 Feature Selection

To select features related to the output to be predicted
is significant especially for the real applications of neural



networks. In the process system engineering, we always
consider the mass and heat balances based on the concen-
trations, temperature, pressure, and flow rate to describe
each equipment. That is, we use the input variables di-
rectly affecting the equipment along with the state vari-
ables. Thus, to construct the neural network models, we
need to only consider those variables as the features. If
not, the feature that actually does not affect the removal
amount can cause a bias or disrupt the training.

The mass flow rates of each component in the feed are
selected as features, because the removal amounts increase
to some extent as the amount of impurities in the inlet
feed increase. The positions of each reaction catalysts are
shown in Table 1, which are the same for the trains 1 and 2.
The temperatures and the hydrogen flow rates associated
for each catalyst are selected as the features. In other
words, for each neural network predicting the removal
amount of each component, the associated temperature
and hydrogen flow rate are selected and summarized
in Table 2. In addition, we used exp(− 1

T ) with each
temperature by domain knowledge that the kinetic rates
are usually proportional to the term.

To consider the aging effects of each catalyst, we used
a exponential decaying function with trainable weights
as Eq. (1). The maximum capacity for each catalyst is
set by assuming that the catalysts can be used at the
most six months with the initial feed composition and the
typical flow rate. When training w1 and w2 in each neural
network, we restrict them greater than and equal to 0.01.
The positive values for them are required to describe the
aging effects and the lower bounds for them are set to
avoid the conversion to be zero.

Aging factor = w1(1 − exp(−(Cmax − Ctreat))) + w2 (1)

Here, Cmax denotes the expected maximum amount of cat-
alyst and Ctreat represents the cumulative treated amount.

Table 1. Embedded position of catalysts for
each reaction

HDS HDN HDM HDCCR

1st reactor
Upper ©
Lower ©

2nd reactor
Upper ©
Lower © © ©

3rd reactor
Upper © © © ©
Lower © © © ©

Table 2. Selected features for prediction of each
component removal amount

S N Metal CCR

Feed flow rate © © © ©

Hydrogen
flow rate

1st reactor ©
2nd reactor © © ©
3rd reactor © © © ©

Temperature

1st reactor
Upper ©
Lower ©

2nd reactor
Upper ©
Lower © © ©

3rd reactor
Upper © © © ©
Lower © © © ©

3.2 Prediction model structure

The AR stream is divided to each train almost in the
same amount, and each feed is treated by the three
reactors having the same catalysts embedding. Thus, we
introduce two neural networks for the prediction of each
component removal amount. In other words, total eight
neural networks are trained to predict the removal amount
of S, N, metals, and CCR. The simplified structure of
the neural network for a component is shown in Fig. 2.
Two fully connected neural networks (FCNN) are used to
calculate the removal amount in each train. The outputs
from the FCNNs are multiplied with each aging factor,
and then the summation of them is regarded as the total
removal amount from the reaction part for the component.
The final value is the model prediction value and this is
compared with the real plant data to train the weights in
neural networks and aging factors.

Fig. 2. Prediction model structure of removal amount for
a component.

Table 3. Hyperparameters setting

The number of hidden layers 2

The number of node for each hidden layer 17, 17

Training epochs 3000

Learning rate

1st 0.0001
2nd 0.00005
3rd 0.00003
4th 0.00001

Batch size 33

Optimizer Adam

Regularization L2, 0.0005

3.3 Training strategies

The objective function for training is the mean squared
errors for the removal amount of each component. To
address overfitting issue, we add L2 regularization term
to the objective function. The hyperparameters are shown
in Table 3.

To ensure physical and chemical compatibility and to
train the neural networks with time series data, we use
two strategies. First, we need to ensure that the removal
amount increases as the temperature, hydrogen flow rate,
and the impurities amount in the feed increase. In ad-
dition, the removal amount and the exp(− 1

T ) also have
the positive correlation. To this end, the weights in the
neural networks are restricted to the positive values. If
some updated weights are negative after updated in a
general way, the weights are clipped to zero. As will be
shown in results section, if we do not use the clipping
strategy, unreasonable cases happen with the trained neu-
ral network. For example, the removal amount is increased



as the temperature increases. This is because the plant is
operated by increasing the temperature when the conver-
sion is not satisfied with the lower temperature due to
the catalyst aging (Seki and Yoshimoto (2001); Forzatti
and Lietti (1999); Chandrasekaran and Sharma (2019)).
If we train the neural network without any guidance,
the neural network learn the wrong correlation that the
removal amount decreases as the temperature increases.
To address this issue, it is not sufficient to provide and
learn the aging factor separately from the neural network.
Similarly, the increase of the hydrogen flow rate and the
feed amount affects the removal amount in the direction of
increasing. The positive correlations from the features to
the removal amount are enforced by the clipping strategy.

Second, we train the FCNNs in a moving horizon man-
ner instead of using recurrent neural network (RNN) or
long short-term memory (LSTM). To apply the clipping
method, the correlations from the inputs to the outputs
can be interpretable. RNN or LSTN includes hidden states
storing the past data implicitly, which is difficult to extract
any consistent tendency of hidden states to the removal
amount. Thus, we use FCNNs in the moving horizon
manner to describe the time series effects with keeping the
interpretability. We have the operation data of 123 days
(Dec. 17, 2020 – Apr. 18, 2021). The training is conducted
based on the data of the first 67 days. Then, the trained
FCNNs are used to test the data of 14 days after the first 67
days. Because the catalysts keep aged, we need to update
the FCNNs periodically using the latest data. After the 14
days, we update the FCNNs using the data of the latest
67 days. Then, the removal amount of another 14 days are
tested with this updated FCNNs. The train data and test
data are clearly shown in Fig. 3. We have 123 days so that
we train FCNNs four times. The learning rate for the first
training is set as 0.0001 and the learning rate is reduced for
the next pieces of training as shown in Table 3. After the
first training, we only need to update the FCNNs slightly
to describe the aging effects and time-varying effects and
to reflect the past data to some extent.

Fig. 3. Train and test data in a moving horizon manner.
For the first training, the data of the first 67 days is
used. The first trained FCNNs are used to test the
14 days after the duration. For the second training,
the data from 15 day to 81 day is used to update the
FCNNs slightly. Then, the data from 82 day to 96 day
is tested by these second trained set of FCNNs. The
rest of data is tested with the FCNNs trained in the
moving horizon manner.

4. RESULTS AND DISCUSSION

4.1 Prediction accuracy for test data

Predicted removal amount and the real plant data are
compared. In Fig. 4.1, the percent errors between them
are shown for the test data. From 68 day to 81 day, 14
days, the first trained FCNNs are used to calculate the
predicted values. For each next 14 days, the second, third,
and fourth trained FCNNs are used, respectively. The
results without weight clipping strategy and with weight
clipping are shown in Figs. 4.1(a) and (b), respectively. In
addition, after taking the absolutes on the error percents,
the average, maximum value, and minimum values are
shown in Table 4.

(a) Training without weight clipping

(b) Training with weight clipping

Fig. 4. Percent error for test data set (a) without weight
clipping and (b) with weight clipping

The prediction accuracy is similar for both without the
weight clipping and with the weight clipping. Even with-
out the clipping method, the maximum percent error is
11.19%, and the average values are 1.63% – 3.78% for the
components. With weight clipping, the maximum percent
error is 13.98%, and the average values are 1.87% – 5.84%.
However, as discussed in the next subsection, the consis-
tency problem occurs without the clipping.

4.2 Validation of consistency to physical and chemical
tendencies

To validate the physical and chemical compatibility, we
increase or decrease each one of the features by 2% and
then calculate the percent change in the removal amount.
In other words, at each time, only one feature is changed
by 2% and the other features are kept the same. Here,



(b) Perturbing hydrogen flow rate (CCR, Trained with clipping)(a) Perturbing hydrogen flow rate (CCR, Trained without clipping)

(c) Perturbing temperature of the 3rd reactor (S, Trained without clipping) (d) Perturbing temperature of the 3rd reactor (S, Trained with clipping)

(g) Perturbing temperature of the 3rd reactor (N, Trained without clipping) (h) Perturbing temperature of the 3rd reactor (N, Trained with clipping)

(e) Perturbing temperature of the 3rd reactor

(Metals, Trained without clipping)

(f) Perturbing temperature of the 3rd reactor

(Metals, Trained with clipping)

Fig. 5. Percent change in removal amount of (a) CCR, (c) S, (e) Metals, (g) N predicted by FCNNs trained without
clipping method. Percent change in removal amount of (b) CCR, (d) S, (f) Metals, (h) N predicted by FCNNs
trained with the proposed clipping strategy.

Table 4. Maximum, minimum, and average
values of the absolute values of percent errors
[%] when testing the FCNNs trained without

clipping method and with clipping method.

Training without weight clipping

S N Metals CCR

Max 7.23 8.71 10.88 11.19

Min 0.001 0.16 0.04 0.04

Mean 1.63 3.50 3.33 3.78

Training with weight clipping

S N Metals CCR

Max 8.06 13.98 12.56 11.36

Min 0.012 0.58 0.24 0.067

Mean 1.87 5.84 3.90 3.91

we conduct the calculations for the first 14 days test data
using the first trained FCNNs.

As shown with blue lines in Figs. 5(b), (d), (f), and (h),
the trained FCNNs with the clipping method always show
the decrease in the removal amount when decreasing the
temperature or hydrogen flow rate. In addition, as shown
with red lines in the same figures, the removal amount
increases with the increase of temperature or hydrogen
flow rate. However, as shown in Figs. 5(a), (c), (e), and
(g), the incompatible results are obtained by the FCNNs
trained without clipping method. In addition, we test
the consistency validation for all the temperature and
hydrogen flow rate features, respectively. As shown in
Table 4.1, the removal amount predicted by the FCNNs
trained without clipping method changes in contrast to
the physical and chemical fact when perturbing several



Table 5. Unrealistic tendencies occur in removal amount prediction when the checked feature is
perturbed and the removal amount is calculated by FCNNs trained without clipping strategy.

Train 1 Train 2

S N Metals CCR S N Metals CCR

1st reactor
Upper temperature X X
Lower temperature X X
Hydrogen flow rate X

2nd reactor
Upper temperature X
Lower temperature X X X
Hydrogen flow rate

3rd reactor
Upper temperature X X X X X
Lower temperature X X X X
Hydrogen flow rate X

features respectively. However, the FCNNs obtained with
the clipping method always ensure the compatibility to
the physical and chemical fact. Because all the weights are
positive, the outputs of the FCNNs are always increasing
with the input feature increase.

5. CONCLUSIONS

In this study, neural network models was constructed
based on the real plant data of the RDS process. Based
on the catalysts position, the features for the removal
reactions of each impurity are selected. The associated
temperature, hydrogen flow rate, and each component feed
flow rate are used as the inputs of the neural networks,
in addition to the general term in the kinetic rate con-
stant. We trained the neural networks multiplied with the
aging factors in the moving horizon manner, which can
capture the time series effects and has the interpretibility.
In addition, the weights of the neural networks are clipped
to the positive values to ensure the compatibility to the
physical and chemical facts; the removal amounts increase
(decrease) with the operating temperature or hydrogen
flow rate increases (decreases). The percent errors in the
predicted removal amount for the test data are smaller
than 6% on average. Furthermore, we validated the agree-
ment with physical and chemical facts by checking the
percent change in the removal amount of each component
with perturbing the features, temperature and hydrogen
flow rate. In future works, we will integrate the neural
networks with a process simulator to describe the whole
RDS process and the hybrid models will be used to design
the optimal operation.
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