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Abstract: This paper presents a study of identification and validation of data-driven models for the
description of the acid gas treatment process, a key step of flue gas cleaning in waste-to-energy plants.
The acid gas removal line of an Italian plant, based on the injection of hydrated lime, Ca(OH)2, for
the abatement of hydrogen chloride, HCl, is investigated. The final goal is to minimize the feed rate of
reactant needed to achieve the required HCl removal performance, also reducing as a consequence the
production of solid process residues. Process data are collected during dedicated plant tests carried out by
imposing Generalized Binary Noise (GBN) sequences to the flow rate of Ca(OH)2. Various input-output
and state-space models are identified with success, and related model orders are optimized. The models
are then validated on different datasets of routine plant operation. The proposed modeling approach
appears reliable and promising for control purposes, once implemented into advanced model-based
control structures.
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1. INTRODUCTION

Waste-to-energy (WtE) facilities are characterized by an ex-
treme variability in flue gas composition, mostly given by
the fluctuating content of acid gases such as HCl, SO2, HF.
Methods based on the injection of dry sorbents are nowadays
considered among the best available techniques for acid gas
removal (Dal Pozzo et al., 2018a). However, it is worth not-
ing that industrial control algorithms are typically oriented to
ensure high safety margins in compliance with strict emission
standards rather than properly tracking a set-point of outlet
pollutant concentration (Dal Pozzo et al., 2021). As a conse-
quence, reactants are fed in large excess with respect to the
stoichiometric demand in order to confidently neutralize acid
pollutants and avoid possible overshoot in emissions at stack.

In the face of increasingly stringent emission standards, excess
reactant feed is indeed becoming a major economic burden, as
well as a source of indirect environmental impacts, in terms of
excess production of solid process residues (Biganzoli et al.,
2015; Dal Pozzo et al., 2017). Therefore, a question naturally
arises: are there any margins for optimizing the reactant feed
without affecting the pollutant removal performance? The an-
swer is definitely affirmative, and advance control systems seem
the natural solution for such type of industrial processes.

Dry systems for the removal of acid gases are typically com-
posed of a reactor followed by a filtration unit for the separa-
tion of solid process residues (Dal Pozzo et al., 2016). Several
WtE plants adopt a two-stage architecture, where the first stage
usually employs hydrated lime as reactant, and the second one
injects sodium bicarbonate. In order to maintain the required
overall acid gas abatement efficiency, the first removal stage
may become particularly critical, because the input content of

hydrogen chloride (HCl) can be very fluctuating over time,
depending on the composition of the solid waste entering the
plant. The objective of an optimal operation of the first removal
stage is twofold:

• reduce the consumption of hydrated lime and therefore the
production of solid residues;

• reduce the variability of the output HCl concentration,
which represents an input disturbance for the second stage
with bicarbonate.

In particular, the main objective addressed in this paper is to
develop suitable dynamic models of the gas removal unit, by
using routine industrial input-output data and systems identifi-
cation methods (Ljung, 1999). This task represents the first step
for the design of different types of advanced model-based con-
trollers, as Internal Model (IMC) and Model Predictive (MPC)
solutions, which are supposed to replace the traditional in-
dustrial control architectures typically implemented in DCS of
WtE plants. The paper is thus briefly organized as follows: the
system definition is given in Section 2; while the main aspects
of the proposed methodology, based on systems identification
and validation, are illustrated in Section 3. Finally, Section 4
includes conclusions for the work.

2. SYSTEM DEFINITION

The main features of the system under study are here described.

2.1 The case study

The considered WtE plant is located in Northern Italy and
presents a typical two-stage dry acid gas removal unit, com-
posed of a sequence of reaction and filtration (see Figure 1).



Fig. 1. Simplified flow diagram of the gas treatment line of the
considered WtE plant.

The first stage adopts hydrated lime Ca(OH)2 fed to a tubu-
lar reactor; the second step uses sodium bicarbonate NaHCO3
injected into a reaction tower. Residual solid chemicals are
separated from two bag filters by reverse pulse jet cleaning,
i.e., calibrated blasts of compressed air. Three different mea-
surement points for the flue gas composition are installed: the
first sensor system is located at the boiler outlet (SMP1), the
second one after the first baghouse (SMP2), the last one at the
stack base (SME). Flue gases are composed of different acid
components; in decreasing order of concentration, the sensors
typically reveal HCl, NO, SO2, HF, NO2.

Among the various acid-base reactions happening within the
first stage of removal, the ones involving hydrogen chloride are
the most frequent. Modeling studies report the following three
gas-solid reactions (Dal Pozzo et al., 2018b):

2HCl(g)+Ca(OH)2(s)→ CaCl2(s)+2H2O(g) (1)
2HCl(g)+Ca(OH)2(s)→ CaCl2 ·2H2O(s) (2)
2HCl(g)+Ca(OH)2(s)→ CaOHCl(s)+H2O(g) (3)

This reaction set generates significant solid residuals - anhy-
drous (CaCl2) and dihydrate (CaCl2·2H2O) calcium chloride,
and calcium hydroxy chloride (CaOHCl) - which get deposited
over the tissue of the bag filters forming an inert cake.

The variables measured online are sent to the control logic im-
plemented in the DCS to regulate the Ca(OH)2 feed rate. Flow
rates and pollutant concentrations are not used as raw data, but
are typically converted into dry fumes values and/or reference
oxygen content. These process variables are then managed by
a feed-forward/feed-back control architecture, which tends to
dose solid sorbent in large excess with respect to the stoichio-
metric to guarantee a strong neutralization and then respect
limits at stack emissions. In addition, an override control logic
is implemented for safety reasons: when HCl concentration
measured at SMP2 overcomes a predetermined threshold, the
maximum flow rate value of sorbent is promptly fed.

Therefore, identifying a suitable process model is the first step
for the design of advanced model-based controllers able to
improve process control and economic performance, since then
sorbent levels can be optimized and solid residuals can be
minimized.

2.2 Variables definition

The following two systems are investigated to describe the first
stage of acid gas removal.

• Case I - 2 inputs, 1 output system:

· inputs (u) are i) the inlet concentration of HCl ex-
pressed in [mg/Nm3] measured at SMP1 (Figure 1);
ii) the input mass flow rate of Ca(OH)2 in [kg/h], eval-
uated from the rotational speed of the dosing screw
feeder;
· output (y) is the outlet concentration of HCl, in

[mg/Nm3], measured at SMP2.
• Case II - 3 inputs, 2 outputs system:

· inputs: the previous i) and ii), plus iii) the pressure
of compressed air injected over the first baghouse
to break and remove the solid cake, expressed as a
binary variable (1 - no air, 0 - air);
· outputs: the previous i), plus ii) the pressure drop

across the first baghouse, in [mbar], at SMP2.

Input-output data are collected with a sampling time Ts = 60 s.

3. SYSTEM IDENTIFICATION AND VALIDATION

To identify reliable dynamic models for the first removal stage
by using input-output data obtained from plant tests, the open-
source Systems Identification Package for PYthon (SIPPY)
(Armenise et al., 2018) was adopted. Different linear model
structures and orders were considered and then compared. Two
datasets (A,B) were used for identification purpose, other two
(C,D) were employed for model validation.

3.1 Input design

While inlet concentration of HCl is a disturbance variable,
which depends on the composition of the waste fractions treated
in the plant, flow rate of Ca(OH)2 is a standard manipulated
variable, which can be actually varied by control room oper-
ators. Therefore, the present control system was partially de-
activated and two different Generalized Binary Noise (GBN)
sequences were imposed as inputs to the plant to build suit-
able tests for the dynamic identification of the system. GBN
sequences are very effective signals for identification purposes,
since they show a sufficiently high power spectrum in mid
and low frequency range, and then have a related appealing
property, known as persistent excitation (Zhu, 2001). On the
opposite, traditional step signals have limited frequency content
and do not always excite the plant significantly.

A GBN signal has two only possible values {+a,−a}. Defined
psw ∈ (0,1) as the switching probability, the signal u obeys to:{

P [uk =−uk−1] = psw

P [uk = uk−1] = 1− psw
(4)

where P is the probability and subscript k denotes the k− th
sampling time. Figure 2 shows the input data sequences ob-
tained during the two tests on the plant. The various parameters
of GBN were properly calibrated according to the indications
given by Zhu (2001). In particular:

• test duration was set to 8 hours, that is, around 10 times
the main process settling time (Tset = 50 min), which
was known from previous data analysis and from plant
operators’ experience;

• minimum number of samples and corresponding mini-
mum time period between two consecutive switches - set
to limit operators’ effort - were Nmin

sw = 10 and T min
sw =

Nmin
sw ·Ts = 10 min;



Fig. 2. Time trends of inputs for the two GBN tests: top) dataset
A, Case II; bottom) dataset B, Case I.

GBN Qm Q̄ ∆Q [kg/h] ∆U [%] HClin [mg/Nm3]

A) 100 111.4 ' 70 - 130 18 - 33 905.9
B) 100 81.5 ' 45 - 155 11 - 39 931.7

Table 1. Parameters adopted for the input GBN
sequences of Ca(OH)2.

• Mean Switching Time, that is, the average time period
between two consecutive switches, was imposed as:
ETsw = max(40 min;0.98 Tset

3 );

• Switching probability was thus evaluated as psw =
T min

sw
ETsw

.

Table 1 synthesizes the other parameters adopted for the two
sequences of mass flow rate of Ca(OH)2 fed to the reactor, Qm
and Q̄ are the median and mean values, respectively; ∆Q is the
amplitude (min - max) in terms of flow rate; ∆U is the variation
in the corresponding screw feeder rotational speed (scaled value
in % of max velocity), which is the actual manipulated variable;
HClin is the average value of hydrogen chloride entering the
reactor during the test. Note that amplitudes of GBNs were
arranged with operators to have a compromise between signif-
icant excitation of the output and sustainable perturbation for
the whole plant.

3.2 Identification

As said, the two input-output datasets obtained when apply-
ing the GBN sequences to Ca(OH)2 flow rate were used for
identification scope. Different model structures and various or-
ders were tested and then compared. As input-output models,
the well-known AutoRegressive and AutoRegressive–Moving-
Average with eXogenous inputs models, that is, ARX and AR-
MAX models, were tested. A MISO approach is carried out for
both systems (Case I and II); so that, for ARMAX, it holds:

yk +a1yk−1 + · · ·+anayk−na = b1,1u(1)k−θ1−1 + · · ·

+b1,nb1u(1)k−θ1−nb1
+ · · ·+bm,1u(m)

k−θm−1 + · · ·

+bm,nbm u(m)
k−θm−nbm

+ ek + c1ek−1 + · · ·+ cncek−nc (5)

where na denotes the output order, nbi the order of the i-th input,
θi the delay of the i-th input, nc the error model order, a j the
j-th coefficient of the output, bi, j the j-th coefficient of the i-th
input and c j denotes the j-th coefficient of the error model. ARX
models, with no error model (nc = 0), are identified with simple
linear least-square (LLS) regression by computing the pseudo-
inverse of the regressor matrix. ARMAX models, which instead
require a pseudo-linear regression, are obtained by LLS within
a suitable iterative procedure (Bacci di Capaci et al., 2021).

To identify state-space (SS) models, the innovation form is
employed: {

xk+1 = Axk +Buk +Kek

yk =Cxk +Duk + ek
(6)

where xk ∈Rn, wk ∈Rn, and vk ∈Rp are the system state, state
noise, and output measurement noise, respectively. A ∈ Rn×n,
B ∈Rn×m,C ∈Rp×n, D ∈Rp×m are the system matrices, while
K is the steady-state Kalman filter gain, obtained from Alge-
braic Riccati Equation. As identification method, an established
subspace method with parsimonious algorithm (PARSIM-K)
was adopted (Pannocchia and Calosi, 2010).

Tables 2 and 3 summarize the identification results for the
various model orders in terms of fitting of the output data for
Case I and Case II, respectively. In particular, as performance
index, the Explained Variance, falling into [1,−∞), is reported:

EV = 1−
1
N ∑

N
i=1(ŷi− yi)

2

σ2
y

(7)

where ŷ is the model output sequence, σ2
y = 1

N ∑
N
i=1(ȳ− yi)

2

is the variance of the actual output y, with respect to its mean
value ȳ, being N the number of time samples. Note that EV is
equal to the well-known coefficient of determination R2. Input-
output models show a slightly better performance than state-
space formulation, as higher values of EV are obtained. In
particular, ARMAX models, by describing the error dynamics
with a moving average term, gives the best outcomes.

The identification results obtained on dataset B) for selected
2x1 models (Case I) - ARX[2,(2,2),(1,1)], ARMAX[2,(2,2),
2,(1,1)], and SS[7] - are further discussed. Note that the
order of the SS model is here obtained with the well-known
Akaike Information Criterion (AIC) by setting a threshold on
the underlying singular values. Bacci di Capaci et al. (2021).
Figure 3 shows the different time trends of the output HCl
concentration: measured values at SMP2 are compared with
the ones obtained by the three model structures. Moreover, in
Figure 4 the unit step responses obtained from the two input-
output identified dynamics are reported. In particular, discrete



Case I - 2x1 Models [Orders] Dataset EV Mean EV

ARX [na,(nbi),(θi)]
[1,(1,1),(0,0)] [1,(1,1),(1,1)] [1,(1,1),(2,2)] [2,(2,2),(0,0)] [2,(2,2),(1,1)] [3,(3,3),(0,0)]

A) 95.65 95.72 95.72 97.00 97.07 97.19 96.39
B) 97.60 97.55 97.50 98.27 98.35 98.39 97.61

ARMAX [na,(nbi),nc,(θi)]
[1,(1,1),1,(0,0)] [1,(1,1),1,(1,1)] [1,(1,1),1,(2,2)] [2,(2,2),2,(0,0)] [2,(2,2),2,(1,1)] [3,(3,3),3,(0,0)]

A) 96.77 96.86 96.80 97.14 97.18 97.22 96.99
B) 98.23 98.27 98.17 98.32 98.39 98.41 98.30

SS [n]
[4] [5] [6] [7] [8] AIC [1-9]

A) 96.82 96.74 96.78 96.81 96.89 96.86 [9] 96.82
B) 98.02 97.90 97.93 97.78 97.77 97.78 [7] 97.83

Table 2. Identification stage. Performance results for two datasets with different model orders (Case I).

Case II - 3x2 Models [Orders] EV Mean EV

ARX [na,(nbi),(θi]
[(1,1),(1),(0)] [(1,1),(1),(1)] [(1,1),(1),(2)] [(2,2),(2),(0)] [(2,2),(2),(1)] [(3,3),(3),(0)]

96.67 96.70 96.70 97.72 97.77 97.89 97.24

ARMAX [na,(nbi),nc,(θi)]
[(1,1),(1),(1,1),(0)] [(1,1),(1),(1,1),(1)] [(1,1),(1),(1,1),(2)] [(2,2),(2),(2,2),(0)] [(2,2),(2),(2,2),(1)] [(3,3),(3),(3,3)(0)]

97.52 97.60 97.55 97.83 97.87 97.92 97.71

SS [n]
[5] [6] [7] [8] [9] AIC [1-9]

57.20 68.77 71.32 71.84 58.73 29.43 [4] 59.54

Table 3. Identification stage. Performance results for dataset A with different model orders (Case II).

Fig. 3. Output time trends: real data and selected model re-
sponses (Case I, dataset B).

time transfer functions G1i(z) =
B1i(z)
A1(z)

, being A1(z) and B1i(z)
the corresponding polynomials in z operator for the dynamics
between i-th input and the single output 1, are investigated. As
a matter of fact, similar behaviors are obtained for ARX and
ARMAX models, since values of the static gain (K11 '−3.05;
K12 ' 0.63) and settling times (T11,set ' 30 min; T12,set '
35 min) are pretty close. It also worth noting that expected
steady-state results are obtained: single increases of Ca(OH)2
dosage and of inlet HCl concentration cause a decrease and
an increase of outlet HCl concentration, respectively; that is,
K11 < 0 and K12 > 0.

Finally, the identification results obtained on dataset A) for
two selected 3x2 models (Case II) are illustrated: we consider
ARX[(2,2),([2]),([1])] and ARMAX[(2,2),([2]),(2,2),([1])].
Note that we did not report results for any SS models since their
performance are lower in this scenario. Figure 5 shows the time
trends of output HCl concentration and of pressure drop across
the first baghouse ∆P: measured values are compared with the
ones obtained by the two input-output models. In Figure 6, the
unit step responses obtained from the two identified dynamics
are reported. One can observe that once a shot of compressed

Fig. 4. Step tests for two selected ARX and ARMAX dynamics
(Case I, dataset B).

Fig. 5. Output time trends: real data and selected model re-
sponses (Case II, dataset A).

air is injected, i.e., when a positive variation of pressure P
is applied: i) an evident inverse response for the outlet HCl
concentration is obtained, i.e., after a transient increase due to
remixing effects, the steady-state effect is beneficial since final
value is significantly smaller (K13 < 0); ii) the pressure drop
across the first baghouse monotonically decreases (K23 < 0),
meaning that the solid cake of chemical residuals is actually
broken and then removed.



Fig. 6. Step tests for two selected ARX and ARMAX dynamics
(Case II, dataset A).

3.3 Validation

Two different routine datasets were used for model validation,
once the original industrial control system was restored. Fig-
ure 7 shows the input data sequences: Ca(OH)2 flow rate reveals
several sharp peaks towards its maximum feed rate value; this
means that the control override logic gets activated as output
HCl concentration overcomes the predetermined safety thresh-
old ('600 mg/Nm3), and this occurs several times (compare
Figure 8). This fact makes the validation datasets very differ-
ent from the GBN sequences and then generates a particularly
challenging scenario for the identified models.

The different model structures previously identified were tested
and then compared. Table 4 and 5 summarize the validation
results for the various model orders, for Case I and II, respec-
tively; output data fitting is again evaluated by computing the
index EV . Note that these results are for standard validation,
that is, when input-output data are used to predict the model
response one-step ahead in the future. For example, for ARX
and ARMAX the following predictor is adopted (Ljung, 1999):

ŷk|k−1 = H−1(z)G(z)uk +(1−H−1(z))yk (8)

where G(z) and H(z) are the identified transfer matrices relat-
ing the output with deterministic input u and stochastic noise
e, respectively. For SS model, the innovation form is again
considered to exploit the identified K matrix. Input-output
models confirm slightly better performance than the state-space
formulation, as higher values of EV are obtained, especially
for Case II. Again, ARMAX models, due to its error model
term, gives the best outcomes. The results obtained on dataset
C) for selected 3x2 models (Case II) are further illustrated:
ARX[(2,2),(2), (1)], ARMAX[(2,2),(2),(2,2), (1)]. Figure 8
shows the different time trends of measured values (output HCl
concentration and pressure drops ∆P) compared with the ones
from the two input-output models.

In addition, for the two input-output models a general r-step
ahead validation is performed, where the following predictor is
computed (Zhao et al., 2014):

ŷk|k−r =Wr(z)G(z)uk +(1−Wr(z))yk (9)

where Wr(z) = H̄r(z)H−1(z), being H̄r(z) = ∑
r−1
j=0 h jz− j a suit-

able discrete time transfer function, where {h j} are the coef-
ficients of the finite impulse response of H(z). Table 6 shows
the validation results for different values of the horizon r
applied to the 2x1 system (Case I). Awaited results are ob-

Fig. 7. Time trends of input data used for validation purpose:
top) dataset C, Case II; bottom) dataset D, Case I.

tained: larger horizons imply lower prediction performance,
and ARMAX models outperforms ARX. Nevertheless, both
input-output models can be considered sufficiently reliable for
control purpose and can be implemented into advanced control
structures to improve the process operation.

4. CONCLUSIONS

Regulation of acid gas treatment units within waste-to-energy
plants represents a relevant and challenging control problem, as
the amplitude and volatility of process disturbances destabilize
traditional control schemes. In this paper, different data-driven
models were tested and compared as a first and necessary step
in the design of advanced control systems for WtE acid gas
removal. A two-stage acid gas treatment line of an Italian plant
was taken as case study. GBN tests of varying reactant flow
rate were carried out to produce datasets for system identi-
fication. Different input-output and state-space models were
identified, optimized and then cross-validated on data of normal
plant operation. ARMAX, ARX, and also SS models offered
acceptable results in terms of prediction, with a slightly higher
performance for the former. Having proved the suitability of
the proposed models, future work will be focused on their



Case I - 2x1 Models [Orders] Dataset EV Mean EV

ARX [na,(nbi),(θi)]
[1,(1,1),(0,0)] [1,(1,1),(1,1)] [1,(1,1),(2,2)] [2,(2,2),(0,0)] [2,(2,2),(1,1)] [3,(3,3),(0,0)]

C) 89.62 89.81 89.56 90.02 90.35 89.83 89.86
D) 82.57 82.65 82.70 83.07 83.38 83.51 82.98

ARMAX [na,(nbi),nc,(θi)]
[1,(1,1),1,(0,0)] [1,(1,1),1,(1,1)] [1,(1,1),1,(2,2)] [2,(2,2),2,(0,0)] [2,(2,2),2,(1,1)] [3,(3,3),3,(0,0)]

C) 90.05 90.58 91.07 90.28 91.06 90.39 90.57
D) 83.62 83.64 84.90 85.17 86.36 86.57 85.04

SS [n]
[4] [5] [6] [7] [8] AIC [1-9]

C) 90.03 90.49 89.53 89.63 89.90 89.48 [9] 89.84
D) 83.13 83.67 84.25 84.41 83.41 84.41 [7] 82.92

Table 4. Validation stage. Performance results for two datasets for different model orders (Case I).

Case II - 3x2 Models [Orders] EV Mean EV

ARX [na,(nbi),(θi]
[(1,1),(1),(0)] [(1,1),(1),(1)] [(1,1),(1),(2)] [(2,2),(2),(0)] [(2,2),(2),(1)] [(3,3),(3),(0)]

96.07 96.15 96.28 96.54 96.73 96.85 96.43

ARMAX [na,(nbi),nc,(θi)]
[(1,1),(1),(1,1),(0)] [(1,1),(1),(1,1),(1)] [(1,1),(1),(1,1),(2)] [(2,2),(2),(2,2),(0)] [(2,2),(2),(2,2),(1)] [(3,3),(3),(3,3)(0)]

97.09 97.23 97.39 97.21 97.37 97.21 97.25

SS [n]
[5] [6] [7] [8] [9] AIC [1-9]

78.94 83.59 85.97 85.91 79.46 66.9 [4] 80.13

Table 5. Validation stage. Performance results for dataset C with different model orders (Case II).

Fig. 8. Output time trends in validation: real data and selected
model responses (Case II, dataset C).

Model [Orders] Dataset EV

ARX r = 2 3 4 5 7 10
[2,(2,2),(1,1)] C) 70.51 57.83 48.03 40.81 27.95 21.25

D) 59.24 33.45 22.88 17.63 3.81 2.75

ARMAX r = 2 3 4 5 7 10
[2,(2,2),2,(1,1)] C) 76.22 60.94 50.59 42.54 30.06 23.14

D) 61.54 36.14 25.28 19.08 5.98 4.63

Table 6. r-step ahead validation: performance re-
sults for different prediction horizons (Case I).

integration in advanced control structures. In particular, model-
based architectures (IMC and MPC) will be derived and tested
on simulation and industrial data, and then compared with the
current suboptimal control logic in order to increase the process
performance.
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