
On the Implementation of a Preconditioned
Riccati Recursion based Primal-Dual

Interior-Point Algorithm for Input
Constrained Optimal Control Problems ⋆

Morten Ryberg Wahlgreen ∗ John Bagterp Jørgensen ∗

∗ Department of Applied Mathematics and Computer Science,
Technical University of Denmark, DK-2800 Kgs. Lyngby, Denmark.

Abstract:
We present a preconditioned interior-point algorithm tailored for input constrained quadratic
programmings (QPs) arising in optimal control problems (OCPs). The implicit approach to
OCPs results in large sparse QPs, which we utilized by a tailored Riccati recursion algorithm.
The Riccati recursion algorithm requires the solution of a set of small dense linear sub-systems of
equations. The proposed preconditioner is an easily invertible diagonal matrix, which we apply
in every linear sub-system of equations. We solve a target tracking OCP for a linearized modified
quadruple tank system in Matlab. The computational results indicate that ill-conditioning in
the sub-systems are reduced and that the additional CPU time for preconditioning is negligible.
Additionally, the paper presents a detailed description of the proposed algorithm and serves as
an implementation guide for the algorithm.

Keywords: Interior-point method, Quadratic programming, Optimal Control Problem, Riccati
recursion, Preconditioning

1. INTRODUCTION

Interior-point methods have been an integrated part of
optimization since the 1960s (Forsgren et al., 2002; Wright,
2004). In the 1960s, interior-point methods were mainly
applied in problems with nonlinear constraints. Today,
the applications span many different types of problems
including linear programming (LP), quadratic program-
ming (QP), and nonlinear programming (NLP) (Astfalk
et al., 1992; Vanderbei, 1999; Byrd et al., 1999; Nocedal
and Wright, 1999; Gertz and Wright, 2003). Furthermore,
LPs, QPs, and NLPs are an essential component in de-
velopment of advanced control algorithms such as model
predictive control (MPC) (Rawlings et al., 1994). Interior-
point methods suffer from unavoidable ill-conditioning as
the iterations approach the solution (Murray, 1971). Pre-
conditioning approaches are often proposed in relation to
inexact interior-point methods due to the inherent need
of well-conditioned systems in iterative solvers for linear
systems (Bergamaschi et al., 2004; Shahzad et al., 2010;
Cui et al., 2019). However, proposed preconditioning in
relation to exact methods is sparse.
In linear model predictive control (LMPC), QPs arise in
the form of optimal control problems (OCPs) (Borrelli
et al., 2009). Usually either explicit or implicit approaches
are applied to express OCPs as QPs. Explicit approaches
result in small dense QPs, while implicit methods result
in large sparse QPs (Shahzad et al., 2010). In the im-
plicit case, Riccati recursion has been proposed as an
efficient sparse solver with linear complexity in the control
⋆ Corresponding author: J. B. Jørgensen (E-mail: jbjo@dtu.dk).

horizon (Rao et al., 1998; Frison and Jørgensen, 2013).
The Riccati recursion based interior-point method suffers
from unavoidable ill-conditioning as all other interior-point
methods. We propose a diagonal preconditioner for Ric-
cati recursion based interior-point methods at the cost of
negligible additional CPU time. We suggest that precon-
ditioning at the cost of negligible CPU time improve the
overall quality of the algorithm.
In this paper, we propose a preconditioned interior-point
method for input constrained QPs arising in OCPs. We
introduce the well-known Riccati recursion for solution
of structured linear systems and propose a preconditioner
for the Riccati based interior-point method. We present a
detailed description of the proposed interior-point method,
where we emphasize how to exploit the structure of box-
constraints to reduce CPU time. As such, the paper
serves as an implementation guide for a well-conditioned
Riccati recursion based interior-point method for QPs in
OCPs. The results in the paper are based on a Matlab
implementation of the proposed interior-point method.
We demonstrate applications of the implementation on a
target tracking OCP for a linearized modified quadruple
tank system.
The Matlab implementation is an essential building block
in the development of a Riccati recursion based sequential
quadratic programming (SQP) algorithm for NLPs arising
in nonlinear model predictive control (NMPC). Addition-
ally, it serves as a prototype for an C implementation of
a LMPC, which can be applied for parallel Monte Carlo
simulation of closed loop systems (Wahlgreen et al., 2021).

The remaining part of the paper is organized as follows.
Section 2 introduces the main parts of the primal-dual
interior-point algorithm. Section 3 presents the proposed
preconditioner. Section 4 presents the Riccati recursion al-
gorithm. Section 5 presents an example application of our
interior-point algorithm. Section 6 presents our conclusion.

2. PRIMAL-DUAL INTERIOR-POINT ALGORITHM

This section presents a detailed description of the primal-
dual interior-point algorithm for general box-constrained
QPs. The algorithm is a predictor-corrector with scaled
KKT-violation convergence criterion. We specialize the
algorithm to OCPs in Section 4.

2.1 Quadratic programming

We consider box-constrained QPs on the form,

min
x

f(x) =
1

2
xTHx+ gTx, (1a)

s.t. ATx = b, (1b)
l ≤ x ≤ u, (1c)

where H ∈ Rn×n, g ∈ Rn, A ∈ Rn×me , b ∈ Rme , l ∈ Rn,
u ∈ Rn, and x ∈ Rn are the decision variables.
The Lagrangian function for (1) is,

L(x, y, zl, zu) =
1

2
xTHx+ gTx− yT (ATx− b)

− zTl (x− l)− zTu (u− x),
(2)

where y ∈ Rme , zl ∈ Rn, and zu ∈ Rn are the Lagrange
multipliers for the equality constraints, lower bound con-
straints, and upper bound constraints, respectively.
The first order KKT-conditions for (1) are,

Hx+ g −Ay − zl + zu = 0, (3a)
b−ATx = 0, (3b)

sl + l − x = 0, su + x− u = 0, (3c)
sl,izl,i = 0, su,izu,i = 0, (3d)

(zl, zu, sl, su) ≥ 0, (3e)
where i = 1, ..., n and the slack variables, sl and su, are

sl = x− l ≥ 0, su = u− x ≥ 0. (4)

We write the KKT-conditions, (3), as the nonlinear system
of equations,

rL
rA
rBl

rBu

rSlZl

rSuZu

 =

Hx+ g −Ay − zl + zu

b−ATx
sl + l − x
su + x− u

SlZle
SuZue

 = 0, (5a)

(zl, zu, sl, su) ≥ 0, (5b)

where Zl = diag(zl), Zu = diag(zu), Sl = diag(sl), Su =
diag(su), and e is a vector of ones of proper dimension.
We apply Newton’s method to solve (5), which yields the
following linear system of equations for the Newton search
direction,

H −A −I I 0 0
−AT 0 0 0 0 0
−I 0 0 0 I 0
I 0 0 0 0 I
0 0 Sl 0 Zl 0
0 0 0 Su 0 Zu

∆x
∆y
∆zl
∆zu
∆sl
∆su

 = −

rL
rA
rBl

rBu

rSlZl

rSuZu

 . (6)

We introduce the equivalent system,
H −A −C 0
−AT 0 0 0
−CT 0 0 I
0 0 S Z

∆x
∆y
∆z
∆s

 = −

 rL
rA
rC
rSZ

 , (7)

with C = [I,−I], Z = diag([Zl;Zu]), S = diag([Sl;Su]),
∆z = [∆zl;∆zu], ∆s = [∆sl;∆su], rC = [rBl

; rBu
],

and rSZ = [rSlZl
; rSuZu

]. We point out that (7) only
serves as notation, while (6) is the preferred form for
implementation as it exploits the identity structure of C.
The solution of (7), (∆x,∆y,∆z,∆s), serves as a step
direction for the algorithm. In each iteration, [l], the
algorithm performs the step,

(x, y, z, s)← (x, y, z, s) + ηα(∆x,∆y,∆z,∆s), (8)
where η = 0.995 and the step-size, α, ensures (z, s) ≥ 0.

2.2 Predictor-corrector

Our algorithm applies the Mehtrotra predictor-corrector
method (Mehrotra, 1992). The method considers the fol-
lowing form of (7),

H −A −C 0
−AT 0 0 0
−CT 0 0 I
0 0 S Z

∆x
∆y
∆z
∆s

 = −

 rL
rA
rC
r̄SZ

 , (9)

where r̄SZ varies in the predictor and corrector phase.
In the predictor phase, we set r̄SZ = rSZ and denote
the solution to (9), (∆xaff ,∆yaff ,∆zaff ,∆saff). This
direction is called the affine direction. In the corrector
phase, we set r̄SZ = rSZ+∆Saff∆Zaff −σµe and denote
the solution (∆x,∆y,∆z,∆s). We compute the duality
gap, µ, and centering parameter, σ, as,

µaff =
(z + αaff∆z)T (s+ αaff∆saff)

m
,

µ =
sT z

m
, σ =

(
µaff

µ

)3

,

(10)

where m = 2n for box-constrained QPs (1).

2.3 Augmented form

We write (9), i.e., (6), in the augmented form,[
H̄ −A
−AT 0

] [
∆x
∆y

]
= −

[
−r̄L
rA

]
, (11)

where
H̄ = H +Dl +Du, (12)
r̄L =− rL + (S−1

l Zl)(rBl
− Z−1

l r̄SlZl
)

− (S−1
u Zu)(rBu − Z−1

u r̄SuZu),
(13)

with Dl = diag(zl/sl) and Du = diag(zu/su). The
variables r̄SlZl

and r̄SuZu
are,

Predictor: r̄SlZl
= rSlZl

,
r̄SuZu

= rSuZu
,

(14)

Corrector: r̄SlZl
= rSlZl

+∆Saff
l ∆Zaff

l − σµe,
r̄SuZu

= rSuZu
+∆Saff

u ∆Zaff
u − σµe,

(15)

where ∆Zaff
l = diag(∆zaffl), ∆Zaff

u = diag(∆zaffu),
∆Saff

l = diag(∆saffl), and ∆Saff
u = diag(∆saffu).

We compute ∆zl, ∆zu, ∆sl, and ∆su as,
∆zl = (S−1

l Zl)(rB,l − Z−1
l r̄SlZl

)− (S−1
l Zl)∆x, (16a)

∆zu = (S−1
u Zu)(rB,u − Z−1

u r̄SuZu) + (S−1
u Zu)∆x, (16b)

∆sl = −Z−1
l r̄SlZl

− Z−1
l Sl∆zl, (16c)

∆su = −Z−1
u r̄SuZu − Z−1

u Su∆zu. (16d)
We point out that the structure of box-constraints result

in cheap diagonal matrix operations exploited as element-
wise vector-vector operations.

2.4 Fraction-to-the-boundary

We compute the step size, 0 < α ≤ 1, after solution of (11)
in both the predictor and corrector phase. We apply the
fraction-to-the-boundary rule,[

z
s

]
+ α

[
∆z
∆s

]
≥ κ

[
z
s

]
, (17)

for 0 ≤ κ << 1 and κ → 0 as the iteration number, [l],
increases. For κ = 0, the fraction-to-boundary rule ensures
(z, s) ≥ 0. With κ > 0, the rule (17) strictly satisfies
(z, s) > 0 with a z or s proportional step-back from the
boundary. The rule, (17), is similar to the rule applied in
IPOPT (Wächter and Biegler, 2006).
In the predictor phase, we set κ = 0 to get maximum
information from the affine step direction. In the corrector
phase, we set κ = min(1 − η, µaff), which ensures that
κ→ 0 as the algorithm reaches the solution.

2.5 Convergence criterion

The algorithm converges once the first order KKT-
conditions, (3), are satisfied. Numerically, we consider the
scaled KKT-violation, ξ,

ξ = max
(
r̃L||rL||∞, r̃A||rA||∞, r̃B ||rBl

||∞,

r̃B ||rBu
||∞, ||rSlZl

||∞, ||rSuZu
||∞

)
,

(18)

where
r̃L = max(1, ||H||∞, ||g||∞, ||A||∞)−1, (19a)
r̃A = max(1, ||AT ||∞, ||b||∞)−1, (19b)
r̃B = max(1, ||l||∞, ||u||∞)−1. (19c)

Convergence is achieved when ξ < ϵ, where ϵ > 0 is the
tolerance.

3. DIAGONAL PRECONDITIONING

We consider the system matrix in augmented form, (11),

M =

[
H̄ −A
−AT 0

]
, (20)

where we recall that H̄ = H +Dl +Du. The elements of
Dl and Du approach either 0 or ∞ as the interior-point

algorithm approaches the solution. As such, M becomes
increasing ill-conditioned towards later iterations of the
algorithm.
We propose a diagonal preconditioning matrix to improve
conditioning of the system matrix, M . Consider the pre-
condition matrix,

Pi,j(A) =

{
Ai,i + γi i = j

0 otherwise , (21)

related to an arbitrary matrix, A ∈ Rn×n, where γi ≥ 0.
The preconditioner, P (A), is easily invertible by inverting
each diagonal element. Additionally, it includes a regu-
lation parameter, γi, intended to avoid 0-division when
inverting P (A). We let P = P (M) denote the precondi-
tioner for M in (20) and choose γi = 1.0 for all i. The
preconditioned system becomes,(

P−1M
) [∆x

∆y

]
= −P−1

[
−r̄L
rA

]
. (22)

4. OPTIMAL CONTROL

In this section, we introduce the Riccati recursion algo-
rithm for solution of structured linear systems of equa-
tions. We apply the preconditioner, (21), to the sub-
systems of equations solved in the Riccati recursion based
solver.

4.1 Optimal Control Problem

We consider the input box-constrained OCP on the form,

min
{u,x}

ϕ = l0(u0) +

N−1∑
k=1

lk(xk, uk) + lN (xN), (23a)

s.t. x0 = x̂0, (23b)
xk+1 = AT

k xk +BT
k uk + bk, (23c)

umin,k ≤ uk ≤ umax,k, (23d)
where {u, x} = {uk, xk+1}N−1

k=0 and

l0(u0) =
1

2
uT
0 R0u0 + rT0 u0 + ρ0, (24)

lk(xk, uk) =
1

2

[
xk

uk

]T [
Qk Mk

MT
k Rk

] [
xk

uk

]
+

[
qk
rk

]T [
xk

uk

]
+ ρk,

(25)

lN (xN) =
1

2
xT
NPNxN + pTNxN + ρN . (26)

The OCP (23) is a QP of the form (1) with,
x = [u0 x1 u1 x2 · · · uN−1 xN]

T
, (27a)

H =

R0

Q1 M1

MT
1 R1

. . .
QN−1 MN−1

MT
N−1 RN−1

PN

, (27b)

g = [r0 q1 r1 · · · qN−1 rN−1 qN]
T
, (27c)

A =

−BT

0 I
−AT

1 −BT
1 I

.
−AT

N−1 −BT
N−1 I

T

, (27d)

b =
[
b̃0 b1 · · · bN−1

]T
, (27e)

l = [umin,0 −∞ umin,1 · · · umin,N−1 −∞]
T
, (27f)

u = [umax,0 ∞ umax,1 · · · umax,N−1 ∞]
T
, (27g)

where b̃0 = b0 +AT
0 x0.

4.2 Riccati recursion based interior-point method for
OCPs

We consider the augmented system, (11), in the interior-
point algorithm for the OCP (23) (for N = 3),

R̄0 B0

Q1 M1 −I A1

MT
1 R̄1 B1

Q2 M2 −I A2

MT
2 R̄2 B2

P3 −I

BT
0 −I

AT
1 BT

1 −I

AT
2 BT

2 −I

∆u0

∆x1

∆u1

∆x2

∆u2

∆x3

∆y0
∆y1
∆y2

= −

r̄0
q1
r̄1
q2
r̄2
p3

b̃0
b1
b2

,

(28)

where R̄k = Rk+Dl,k+Du,k, due to (12), (27f), and (27g).
We compute the right hand side of the KKT system, (28),
exactly as the right hand side of (11).
We exploit the sparse structure of (28) with a Riccati re-
cursion based linear equation solver with linear complexity
in the horizon, N (Rao et al., 1998). Algorithm 1 and 2
presents the factorization and solution phase of the Riccati
recursion algorithm (Jørgensen, 2004). Notice that Riccati
recursion requires solution of a set of small dense sub-
systems of linear equations.

4.3 Preconditioned Riccati recursion

Unavoidable ill-conditioning of the interior-point method
arises in R̄k. Consequently, Re,k, becomes increasing ill-
conditioned. We propose to apply the diagonal precondi-
tioner, (21), to improve conditioning of the sub-systems
containing Re,k. Consequently, the preconditioned systems
are,

Kk = −R̃−1
e,k

[
P̃−1
k (MT

k +BkPk+1A
T
k)

]
, (29a)

ak = −R̃−1
e,k

[
P̃−1
k (rk +Bk(Pk+1bk + pk+1))

]
, (29b)

a0 = −R̃−1
e,0

[
P̃−1
0 (r0 +B0(P1b0 + p1))

]
, (29c)

where R̃e,k = P̃−1
k Re,k and P̃k = P (Re,k).

4.4 Algorithm

Algorithm 3 presents an implementation guide of the pre-
conditioned Riccati recursion based interior-point method.

5. RESULTS

This section presents our results based on an example
application. We implement the proposed Riccati recursion

Algorithm 1: Riccati factorization
Input: {R̄k, Qk,Mk, Ak, Bk}N−1

k=0 , PN .
1. Compute,

Re,k = R̄k +BkPk+1B
T
k , (30a)

Kk =−R−1
e,k(M

T
k +BkPk+1A

T
k), (30b)

Pk = Qk +AkPk+1A
T
k −KT

k Re,kKk, (30c)
for k = N − 1, N − 2, ..., 1 and

Re,0 = R̄0 +B0P1B
T
0 . (31)

Return: {Re,k, Pk+1}N−1
k=0 , {Kk}N−1

k=1 .

Algorithm 2: Riccati solution
Input: {Qk,Mk, Ak, Bk, Re,k, Pk+1}N−1

k=0 , {Kk}N−1
k=1 .

1. Compute,
ak = −R−1

e,k(r̄k +Bk(Pk+1bk + pk+1)), (32a)
pk = qk +Ak(Pk+1bk + pk+1)

+KT
k (r̄k +Bk(Pk+1bk + pk+1)),

(32b)

for k = N − 1, N − 2, ..., 1 and
a0 = −R−1

e,0(r̄0 +B0(P1b̃0 + p1)). (33)
2. Compute the solution, {∆uk,∆xk+1}N−1

k=0 ,
∆u0 = a0, (34a)
∆x1 = BT

0 ∆u0 + b̃0, (34b)
and

∆uk = Kk∆xk + ak, (35a)
∆xk+1 = AT

k∆xk +BT
k ∆uk + bk, (35b)

for k = 1, 2, ..., N − 1.
3. Compute the Lagrange multipliers, {∆yk}N−1

k=0 ,
∆yN−1 = PN∆xN + pN , (36a)
∆yk−1 = Ak∆yk +Qk∆xk +Mk∆uk + qk, (36b)

for k = N − 1, N − 2, ..., 1.
Return: {∆uk,∆xk+1,∆yk}N−1

k=0 .

based primal-dual interior-point algorithm in Matlab and
consider a linearized modified quadruple tank system.

5.1 Modified quadruple tank system

We apply a deterministic nonlinear model for the mass
balances of the quadruple tank system of the form (Azam
and Jørgensen, 2015),

ẋ(t) = f(t, x(t), u(t), d(t), p), (37a)
z(t) = h(x(t)), (37b)

where x ∈ R4 is the four masses, u ∈ R2 is the two flow
rates, d ∈ R2 is the two disturbance flows in the top tanks,
p are the parameters, and z ∈ R2 is the heights in the
bottom tanks. We linearize the model at the steady state,
xs = [2110.2; 1761.2; 680.6; 394.0] [g], achieved for us =
[250; 325] [cm3/s] and ds = [100; 100] [cm3/s]. The output
steady state is zs = [55.51; 46.33] [cm]. Additionally, we
compute the exact discretization of the linear model with
sampling time, Ts = 15 [s]. The result is a linear state
space model,

xk+1 = Akxk +Bkuk + Ekdk, (38a)
zk = Cz,kxk, (38b)

Algorithm 3: Preconditioned Riccati recursion based
primal-dual interior-point algorithm
Input: H, g, A, b, l, u (as in (27)), x0, ϵ.
• Initialize: y = 0, zl = 1, zu = 1, sl = 1, su = 1.
• Calculate the scaled KKT-violation, ξ, in (18).

while ξ > ϵ do
1. Predictor phase:

• Setup augmented system (11) with (14).
• Compute factorization, {Re,k, Pk+1}N−1

k=0

and {Kk}N−1
k=1 , with Algorithm 1.

• Solve the augmented system, (11), with
Algorithm 2 for ∆xaff and ∆yaff .

• Compute ∆zaffl , ∆zaffu , ∆saffl , and ∆saffu
in (16).

• Compute the affine step size, αaff , with (17).
• Compute the duality gap and centering

parameter in (10).
2. Corrector phase:

• Setup right-hand side of (11) with (15).
• Solve the augmented system (11) with

Algorithm 2 for ∆x and ∆y.
• Compute ∆zl, ∆zu, ∆sl, and ∆su in (16).
• Compute the step size, α, with (17).

3. Update (x, y, zl, zu, sl, su) according to (8).
4. Calculate the scaled KKT-violation, ξ, in (18).

Return: x, y, zl, zu, sl, su.

where

Ak =

0.8659 0 0.1246 0
0 0.8659 0 0.1246
0 0 0.8659 0
0 0 0 0.8659

 , (39a)

Bk =

9.7793 0.3926
0.2944 8.3822

0 5.5882
4.1911 0

 , Ek =

0.9814 0
0 0.9814

13.970 0
0 13.970

 , (39b)

Cz,k =

[
0.0026 0 0 0

0 0.0026 0 0

]
, (39c)

for all k.
We consider the target tracking OCP,

min
x,u

ϕ =
1

2

N∑
k=1

||zk − z̄k||2Qz
+

1

2

N−1∑
k=0

||uk − ūk||2Qu
,

(40a)
s.t. x0 = x̂0, (40b)

xk+1 = Akxk +Bkuk + Ekdk, (40c)
zk = Czxk, (40d)
umin,k ≤ uk ≤ umax,k, (40e)

where k = 0, ..., N − 1. In the general form, (23), we have
Qk = CT

z,kQzCz,k, Mk = 0, Rk = Qu, PN = CT
z,NQzCz,N ,

qk = −(QzCz)
T z̄k, pN = −(QzCz)

T z̄N , rk = −Quūk, and
bk = Ekdk for all k. Additionally, we use Qz = I, Qu = 0,
umin,k = [0; 0], umax,k = [500; 500], and dk = [100; 100] for
all k, with initial condition, x0 = xs, discrete horizon, N =
200, and a variable target, z̄k, over the horizon. We state
the OCP in deviation variables due to the linearization.
Figure 1 shows the solution to the OCP, (40). The OCP
is solved with the proposed interior-point algorithm.

Fig. 1. Solution to target tracking OCP for linearized
modified quadruple tank system with N = 200 and
a variable target, z̄. The controller is able to track
the target in tank 1 and 2 (black line).

Fig. 2. Condition number of the system matrix in each
iteration of the interior-point algorithm with four
modes.

5.2 Condition number

We consider the interior-point algorithm in four modes,
• Baseline, • Preconditioned Baseline,
• Riccati, • Preconditioned Riccati,

where baseline means dense solution of the augmented
system, (11). We compare the condition number of the
system matrix with and without preconditioning at each
iteration. For the Riccati solver, we consider the worst
case condition number of the sub-system matrices. Fig.
2 presents the results. It is evident that the preconditioner
improves the conditioning of the system matrices in both
the baseline and Riccati recursion based interior-point
algorithm.

5.3 CPU time

We apply the interior-point algorithm to solve the OCP
for increasing control horizon, N . Fig. 3 presents the CPU

Fig. 3. CPU time for quadprog and interior-point algo-
rithm. Top: Baseline and Riccati. Bottom: Riccati.

time for the interior-point method and quadprog. We
observe that the Riccati based algorithm scales linearly in
N and it is evident that the Riccati based algorithm out-
performs the other algorithms for large N as expected. Ad-
ditionally, the preconditioning does not increase CPU time
rather it decreases the CPU time in these experiments.
We point out that the implicit approach to the OCP
results in a large sparse QP. Dense solvers like quadprog
benefit from explicit approaches that produce small dense
QPs. Thus, a fair CPU time comparison would require an
explicit approach for quadprog. Such comparison is out of
scope of this paper.

6. CONCLUSION

The paper presents a preconditioned Riccati recursion
based interior-point algorithm tailored for QPs arising in
input constrained OCPs. We implement the interior-point
algorithm in Matlab and solve an OCP for target tracking
of a linearized modified quadruple tank system. The results
show that the diagonal preconditioner improves condition-
ing of the linear sub-systems of equations in the Riccati
recursion.
This paper contains a detailed description of the proposed
algorithm and serves as an implementation guide.

REFERENCES
Astfalk, G., Lustig, I., Marsten, R., and Shanno, D. (1992).

The Interior-Point Method for Linear-Programming.
IEEE Software, 9(4), 61–68.

Azam, S.N.M. and Jørgensen, J.B. (2015). Modeling
and simulation of a modified quadruple tank system.
IEEE International Conference on Control Systems,
Computing and Engineering (ICCSCE), 365–370.

Bergamaschi, L., Gondzio, J., and Zilli, G. (2004). Precon-
ditioning Indefinite Systems in Interior Point Methods
for Optimization. Computational Optimization and Ap-
plications, 28(2), 149–171.

Borrelli, F., Pekar, J., Baotić, M., and Stewart, G. (2009).
On the Computation of Linear Model Predictive Control
laws. IEEE Conference on Decision and Control (CDC).

Byrd, R.H., Hribar, M.E., and Nocedal, J. (1999). An
Interior Point Algorithm for Large-scale Nonlinear Pro-
gramming. SIAM Journal on Optimization, 9(4), 877–
900.

Cui, Y., Morikuni, K., Tsuchiya, T., and Hayami, K.
(2019). Implementation of Interior-point Methods for
LP based on Krylov Subspace Iterative Solvers with
Inner-iteration Preconditioning. Computational Opti-
mization and Applications, 74(1), 143–176.

Forsgren, A., Gill, P.E., and Wright, M.H. (2002). Interior
Methods for Nonlinear Optimization. SIAM Review,
44(4), 525–597.

Frison, G. and Jørgensen, J.B. (2013). Efficient Imple-
mentation of the Riccati Recursion for Solving Linear-
Quadratic Control Problems. IEEE International Con-
ference on Control Applications (CCA), Hyderabad, In-
dia, 1117–1122.

Gertz, E.M. and Wright, S.J. (2003). Object-Oriented
Software for Quadratic Programming. ACM Transac-
tions on Mathematical Software, 29(1), 58–81.

Jørgensen, J.B. (2004). Moving Horizon Estimation and
Control. Ph.D. thesis, Technical University of Denmark.

Mehrotra, S. (1992). On The Implementation of a Primal-
dual Interior Point Method. SIAM Journal on Opti-
mization, 2(4), 575–601.

Murray, W. (1971). Analytical expressions for the eigen-
values and eigenvectors of the Hessian matrices of bar-
rier and penalty functions. Journal of Optimization
Theory and Applications, 7(3), 189–196.

Nocedal, J. and Wright, S.J. (1999). Numerical Optimiza-
tion. Springer.

Rao, C.V., Wright, S.J., and Rawlings, J.B. (1998). Ap-
plication of Interior-Point Methods to Model Predictive
Control. Journal of Optimization Theory and Applica-
tions, 99(3), 723–757.

Rawlings, J., Meadows, E., and Muske, K. (1994). Non-
linear Model Predictive Control: A Tutorial and Survey.
IFAC Advanced Control and Chemical Processes, Kyoto,
Japan.

Shahzad, A., Kerrigan, E.C., and Constantinides, G.A.
(2010). A Fast Well-conditioned Interior Point Method
for Predictive Control. IEEE Conference on Decision
and Control (CDC), Atlanta, USA.

Vanderbei, R.J. (1999). LOQO:an interior point code
for quadratic programming. Optimization Methods and
Software, 11(1-4), 451–484.

Wahlgreen, M.R., Reenberg, A.T., Nielsen, M.K., Rydahl,
A., Ritschel, T.K.S., Dammann, B., and Jørgensen, J.B.
(2021). A High-Performance Monte Carlo Simulation
Toolbox for Uncertainty Quantification of Closed-loop
Systems. IEEE Conference on Decision and Control
(CDC), Accepted.

Wright, M.H. (2004). The interior-point revolution in
optimization: history, recent developments, and lasting
consequences. American Mathematical Society, 42, 39–
56.

Wächter, A. and Biegler, L.T. (2006). On the Implemen-
tation of an Interior-Point Filter Line-Search Algorithm
for Large-Scale Nonlinear Programming. Mathematical
Programming, 106(1), 25–57.

