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Abstract: Digitalization is undoubtedly going to play a very important role in revolutionizing the future 
outlook of process industries. Data-driven models using process data can have diverse applications. The 

objective of this article is to develop a surrogate assisted framework that can aid in fault detection. In this 

context, we first develop a surrogate model that captures the dynamics of a process and then use the 
dynamic surrogate model in conjunction with a binary classification model to perform fault detection for 

a process. We have implemented a multivariate kriging-based approach to develop the surrogate for a 

dynamic process and the binary classifier is developed using the support vector machine (SVM) 

algorithm. We have applied this methodology to a three tank benchmark system. The process data 

required to train the models are obtained by simulating the three tank system in MATLAB. We have 

considered both process faults like leakage and plugging of tanks as well as sensor faults. To evaluate the 

performance and robustness of the methodology, we have tested the framework on different sets of 

process inputs, types of faults, sequences of faults, and varying magnitudes of faults as compared to those 

used during the training of these models. Results obtained indicate a minimum fault detection rate of 

97.3% and a maximum false alarm rate of 4%. Thus, it is evident that the surrogate-assisted fault 

detection framework resulted in satisfactory performance. 

Keywords: Dynamic surrogate, Kriging, Fault detection, Process faults, Sensor faults, Binary 
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1. INTRODUCTION 

With an increasing need towards industrial digitalization, the 

concept of surrogate modelling has become extremely 

relevant in today’s world. Surrogate models that can mimic a 

process effectively can have several applications. One of the 

most important applications of a surrogate model can be to 

aid in fault detection. A process can be subjected to different 

types of faults that may arise from malfunctioning of 

equipment, sensor failure, etc. A faulty process can not only 

result in significant economic loss but also hamper process 

safety leading to catastrophic consequences (Abid et al., 

2021; Shokry et al., 2017, 2020; Venkatasubramanian, 
Rengaswamy, Yin, et al., 2003b). Thus, if an efficient fault 

detection framework is implemented then it can help the plant 

personnel to take necessary actions in case of any faulty 

process scenarios. 

Fault detection frameworks can broadly be classified into 

three categories: model-based, knowledge-based, and data-

driven models (Abid et al., 2021; Venkatasubramanian, 

Rengaswamy, Kavuri, et al., 2003; Venkatasubramanian, 

Rengaswamy, Yin, et al., 2003a). Model-based frameworks 

typically rely on the first principle equations. Although first 

principle equations can accurately capture the dynamics of 

the process however, it is often not possible to accurately 

formulate the first principle-based models for complex 

chemical engineering systems. The knowledge-based method 

is based on rule of thumbs, which requires extensive 

knowledge of the entire process. On the other hand, data-
based models are developed based on the available historical 

data. Data-driven models leverage on the historical process 

data corresponding to different scenarios that the process has 

encountered. Thus, data driven modeling techniques do not 

require accurate first principle equations describing the entire 

process or extensive prior knowledge of the process. Owing 

to their ease of construction and implementation, data-driven 

models have been used in different domains like car crash 

analysis, mineral ores identification, process monitoring, 

optimization studies, stability analysis, soft sensing (Duddeck 

and Wehrle, 2015; Klebanov and Georgakis, 2016; Du et al., 

2018), etc.  

The objective of this study is to develop a data-driven 

framework that can aid in fault detection. In this context, we 

rely on process data to develop a surrogate model for a 
dynamic process under investigation. Surrogates for a process 

can be developed using various techniques like polynomial 

response surface methodology (Klebanov & Georgakis, 

2016), artificial neural network, kriging (Shokry et al., 2017, 

2020), etc. Kriging has become immensely popular in the 

context of developing surrogate models. The multivariate 

dynamic kriging approach can be used to develop a surrogate 

for dynamic systems (Shokry et al., 2017). Besides surrogates 

that mimic the dynamic system it is also necessary to develop 

classifier models that can help in classifying whether the 

process is under normal or faulty state. Machine learning 



algorithms like decision tree, logistic neural network, support 

vector machine (SVM), (Mahadevan & Shah, 2009; Ajagekar 

& You, 2020) etc. are some of the most popular techniques 

that can be embedded to develop the classification model.  

In this article we propose a data-driven framework to develop 

a kriging-based surrogate model for a dynamic process. A 

SVM-based classification model is then developed for 

detecting whether the process is at a normal or faulty state. 

The proposed SVM-based classification model is solely 

based on the residuals i.e., the deviation of the output from 

the kriging model and the actual plant. The framework takes 

into consideration not only the presence of a single fault but 

also multiple faults simultaneously. The framework also 

considers various sequences of faults with different 

magnitudes as well as sensor faults. The article is organized 
as follows: in section 2 we present the methodology to 

develop the proposed framework; in section 3 we present a 

case study to demonstrate the application of the proposed 

framework and evaluate the performance of the framework; 

this is followed by concluding remarks in section 4. 

2. METHODLOGY 

The proposed methodology broadly consists of two steps: 1. 

development of a surrogate model; 2. development of a 

classification model to perform fault detection. In subsequent 

sections, we enumerate the above two steps to develop a 

surrogate-assisted fault detection framework. 

2.1 Dynamic surrogate model development 

For a dynamic system, we have developed the surrogate 

model using a multivariate dynamic kriging approach. The 

available data (obtained either directly from the process or 
generated using a simulator) is used to train the model such 

that it can capture the future state of the system over one-time 

interval. The kriging model predicts the future value of the 

output variable as a function of the past values of outputs and 

inputs. Mathematically this is represented by equation 1 as 

follows: 

 X ̂1
prd(t + 1)

= fprd,1 (X̂(t), . . , X̂(t − L), U(t), . . , U(t − L))

 X ̂2
prd(t + 1)

= fprd,2 (X̂(t), . . , X̂(t − L), U(t), . . , U(t − L))

X ̂3
prd(t + 1)

= fprd,3(X̂(t), . . , X̂(t − L), U(t), . . , U(t − L))}
 
 
 
 

 
 
 
 

    (1) 

Here, U(t) represents the set of input variables and X(t) 

represent a set of output variables at a given time instant, t. L 

represents a specific time lag or delay that can be determined 

using a trial and error approach by setting prediction accuracy 

as the metric. The 𝑓𝑝𝑟𝑑  here denotes the kriging model that 

maps the output at a future instant with inputs and outputs at 

the previous time instants. The set of surrogate models 
developed is then used recursively to predict the outputs at 

several time steps ahead in the future. At each time step, the 

output is predicted using the input and the predicted output 

variables from the previous time instants. The performance of 

the developed dynamic surrogates is accessed by their 

prediction accuracies in terms of NRMSE (normalized root 

mean square) values over significantly larger time horizons. 

2.2 Binary classifier development 

We have developed a binary classifier that can detect if the 

process is under normal or faulty state. The binary classifier 

is developed based on the SVM algorithm. At any given time 

instant, the kriging-based dynamic surrogate is used to 

predict the output variables. The output predicted from the 

kriging model is compared with the actual values of the 

output (obtained either directly from the process or generated 

using a simulator). The residuals i.e., the difference between 

the actual output and that predicted by the dynamic surrogate 

is used as the input to the classifier. This input along with the 

actual labels (1: Normal and 0: Faulty) is used to train the 
classifier using the nonlinear SVM algorithm. The 

hyperparameters associated with the SVM algorithm 

(i. e. , c and γ) are tuned using a five-fold cross validation 

technique to obtain the optimal values of hyperparameters 

(coptimal = 0.1 and γoptimal = 0.01). The performance of 

the classifier is assessed based on the fault detection rate 

(FDR), false alarm rate (FAR), and overall accuracy 

(Ajagekar & You, 2020), as given by equations 2, 3, and 4, 

respectively. FDR ranges from 0 (worst value) to 1 (best 

value). FAR represents the percentage of normal samples that 

are misclassified as faulty. FAR ranges from 0 (best value) to 

1 (worst value). 

FDR (%) =  100
number of fault samples detected as faulty

total number of fault samples
       (2) 

FAR (%) =  100
number of normal samples detected as faulty

total number of normal samples
    (3) 

Accuracy (%) = 100
number of samples detected correctly

total number of samples
     (4)  

Figure 1 below illustrates the proposed surrogate assisted 

framework for fault detection. 

 

Figure 1: Surrogate-assisted fault detection framework. 

3. APPLICATION 

3.1 Three-tank system 

The proposed methodology is applied to a benchmark 

problem involving three interconnected tanks as shown below 

in Figure 2. The system consists of three cylindrical tanks of 

each area A = 0.0154 m2, s13 = s23 = s0 = 0.005 m
2 area 



of cylindrical pipe, and flow coefficients of a1  =  0.6836, 

a2  =  0.4819, a3  =  0.4819. Two pumps fill the tanks at 

flow rates of Q1(t) and Q2(t), which range from 0 to 

0.003
m3

s
. The levels of each tank (i.e., h1, h2, and h3) are the 

process outputs and Q1 & Q2 are considered as inputs to this 

process. The three tank system is modelled as a set of 

ordinary differential equations as shown in equation 5. The 

process is subjected to faults such as leakage and plugging in 

tanks and drift in level measurement of tanks. Leakage and 

plugging for a tank is modelled using an additional flowrate 

term represented by Qf1, Qf2, and Qf3. Values of these 

flowrates usually vary between ±10 − 25% of the maximum 

flowrate, [QMax = 0.003
m3

s
] (Shokry et al., 2020). Positive 

values of these flowrates denote plugging whereas negative 

values represent leakage in a tank. 

A
dh1

dt
= −a1s13sgn(h1 − h3)√2g|h1 − h3|

+Q1 + Qf1

A
dh2

dt
= −a3s23sgn(h3 − h2)√2g|h3 − h2|

−a2s0√2gh2 + Q2 +Qf2

A
dh3

dt
= −a1s13sgn(h1 − h3)√2g|h1 − h3|

−a3s23sgn(h3 − h2)√2g|h3 − h2| + Qf3 }
 
 
 
 

 
 
 
 

      (5) 

 

Figure 2: Three tanks system. 

3.2 Surrogate model performance evaluation 

The dynamic surrogate for the above three tank system is 

developed using the multivariate dynamic kriging approach 

with zero-lag as explained in section 2.1. The process data is 

generated by solving equation (5) using MATLAB as the 

simulator under normal scenario i.e., by setting the flowrates 

of Qf1, Qf2, and Qf3 to 0 and Q1 & Q2 are assigned random 

flowrate values within the range of [0 – QMax]. The data 

obtained from our simulations is used to train the dynamic 

surrogate. We have developed three surrogates corresponding 

to each of the process output (i.e., h1, h2, and h3). To 

evaluate the robustness of the developed kriging models, we 

have performed validation w.r.t. a different dataset as 

compared to the training dataset. The input profile depicting 

the flowrates of Q1 & Q2 considered for validation is shown 

in Figure 3. The actual and predicted heights (using kriging 
models) over 1800 time steps ahead in the future are 

illustrated in Figure 4. The NRMSE values for the three 

models are obtained as 0.37%, 0.04%, and 0.26%. Thus, it is 

evident that the developed surrogate models can approximate 

the system behavior with reasonably high accuracy and can 

be reliably used within the fault detection framework. 

 

Figure 3: Input profile for Q1 & Q2 to test the performance of 

surrogate model. 

 

Figure 4: Actual and predicted heights using kriging models. 

3.3. Binary classifier model evaluation 

The binary classifier is developed using the nonlinear SVM 

(rbf kernel) algorithm in MATLAB based on the procedure 

given in section 2.2. To train the SVM model we have used 

the same input profile for Q1 & Q2 as shown in Figure 3. 
However, we have introduced a sequence of fault as shown in 

Figure 5. The same fault sequence has been repeated thrice to 

encompass 1800 time steps. To evaluate the robustness of the 

trained SVM model, we have tested the classifier under 

various scenarios. It is to be noted that the input profiles of 

Q1 & Q2, sequence of faults, type of faults, and magnitude of 

faults in all of these scenarios are different from what is used 

during training of the classification model. The input profile 

depicting the flowrates of Q1 & Q2 considered for testing the 

performance of the developed binary classifier is shown in 
Figure 6. Keeping the input profile same we have generated 

the following test scenarios: 

Test scenario 1: During the training of the classifier we have 

always used any one fault at a given time instant. In reality 

there can be more than one fault present at a given time 

instant. Thus, in this scenario, we have introduced multiple 

faults at the same time instant. Also, in reality faults may be 

present with different intensity. It is particularly important to 

see if the proposed framework can detect faults even when 



the magnitude is significantly lower compared to the training 

case. To take this factor into account, we have also reduced 

the magnitude of each fault as compared to that used during 

training the classifier. The classifiers are trained using fault 

magnitudes of ±25% of QMax  (i. e. , 0.00075
m3

s
), whereas 

for test scenarios fault magnitudes as low as 

±10% of QMax (i. e. , 0.0003
m3

s
), are implemented. Besides 

these, we have also changed the sequence in which faults are 

introduced into the process. Figure 7 demonstrates the fault 

sequence for test scenario 1. The actual heights and the 

predicted heights obtained from the kriging model are shown 

in Figure 8. Based on the residuals as inputs to our 

classification model, it classifies whether at any given time 

instant the process is at normal or faulty state. The FDR, 

FAR, and accuracy for this test scenario are found to be 

99.3%, 4%, and 98.2% respectively. 

 

Figure 5: Fault sequence to train the classifier. 

 

Figure 6: Input profile for Q1 & Q2 to test the performance of 

the classifier model. 

 

Figure 7: Fault sequence for test scenario 1. 

 

Figure 8: Actual and predicted heights for test scenario 1. 

Test scenario 2: During the training of our classification 

model we have specifically considered leakage in tank 1 and 

3 and plugging in tank 2 (as shown in Figure 5). In reality, 
leakage or plugging can be associated with any of the three 

tanks. Thus, in this scenario we wanted to see the 

performance of the proposed framework when we introduce a 

different nature of fault into a tank as compared to our 

training scenario. In this test scenario, we considered leakage 

in tank 1 and 2 and plugging in tank 3. The fault magnitudes 

used in this scenario is also comparatively lower with respect 

to that used during the training phase. Figure 9 demonstrates 

the fault sequence for test scenario 2. The actual heights and 

the predicted heights obtained from the kriging models are 

shown in Figure 10. Based on the residuals as inputs, the 

SVM model classifies whether at a given time instant the 
process is at normal or faulty state. The values of FDR, FAR, 

and accuracy for this scenario are found to be 99%, 4%, and 

98.5% respectively. 

 

Figure 9: Fault sequence for test scenario 2. 



 

Figure 10: Actual and predicted heights for test scenario 2. 

Test scenario 3: The classifier is trained using constant values 

of fault magnitudes. However, a fault may not always have a 

constant magnitude rather the magnitude of a fault can vary 

with time. In this test scenario, we consider that leakage in 

tank 1 and 3 and plugging in tank 2 are changing 

exponentially. Figure 11 demonstrates the fault sequence for 

test scenario 3. The actual heights and the predicted heights 
obtained from the kriging model are shown in Figure 12. 

Based on the residuals as inputs, the SVM classifier results in 

an FDR, FAR, and accuracy values of 97.3%, 0%, and 98% 

respectively. We see that although there is a slight reduction 

in FDR and accuracy as compared to the previous two test 

scenarios, there is no case of false alarm. 

 

Figure 11: Fault sequence for test scenario 3. 

 

Figure 12: Actual and predicted heights for test scenario 3. 

Test scenario 4: In this test scenario, we consider that the 

tanks in this process are not subjected to any faults. However, 

there is a drift in sensor readings corresponding to the level 

measurement for tank 1 and 2. We have incorporated a 

positive drift in level measurement of tank 1 whereas a 

negative drift in level measurement of tank 2. Figure 13 

shows the fault sequence for test scenario 4. The actual 

heights and the predicted heights obtained from the kriging 

model are shown in Figure 14. The drifts in the sensor 

readings are introduced at time instant 101 and continued till 

400 as shown in Figure 13. Our framework is able to detect it 

from time instant 107 onwards i.e., there is a lag of 6 time 

steps before the drift can be detected. However, there was no 

case of false alarm in this scenario. From our results 
obtained, we observed that the values of FDR, FAR, and 

accuracy are 98%, 0%, and 98.5% respectively. 

 

Figure 13: Fault sequence for test scenario 4. 

 

Figure 14: Actual and predicted heights for test scenario 4. 

4. CONCLUSION 

In this study, we have proposed a surrogate-assisted fault 
detection framework and applied it to a three tank benchmark 

system. The proposed kriging-based dynamic surrogate 

model resulted in a significantly lower NRMSE values, thus 

enhancing the reliability of the surrogate mimicking the 

actual process output under normal (i.e., no faults) scenarios. 

Based on the residuals i.e., difference in the predicted output 

from the kriging model and the actual plant output, a SVM-

based binary classification model is proposed to detect 

fault(s), if any. To evaluate the robustness and performance 

of the developed methodology, we have tested it on a variety 

of scenarios different from that considered during the training 
phase. We have not only considered process faults like 

leakage and plugging of tanks but also accounted for sensor 

faults. The framework has been tested for different 

magnitudes of faults as well as a variety of fault sequences 

that are completely different from the ones used during the 

training phase. Besides this, we have incorporated not only 

single fault but also the presence of multiple faults 

simultaneously. The proposed framework not only performed 



well under different types of faults and sequences of faults 

but also successfully detected faults with significantly lower 

magnitudes as compared to the training phase.  

The overall accuracy of the model is found to be at least 98%, 

irrespective of the scenarios considered. Across scenarios, the 

maximum value of false alarm is found to be only 4% and the 

minimum value of fault detection is observed to be 97.3%. 

Thus, the proposed surrogate-assisted fault detection 

framework showed satisfactory performance for the three-

tank benchmark system. The future work will be directed 

towards evaluating the performance of the proposed 
surrogate-assisted residual-based classification framework for 

fault detection in other dynamic processes. 
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