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Abstract:
The starting point of this paper is to solve a steady-state optimization problem with simple
feedback controllers using the Primal-Dual approach. However, this approach controls the
constraint indirectly and on a slow time scale by manipulating the Dual variables (Lagrange
multipliers). This control strategy may lead to unacceptable dynamic violations. The main
contribution of this paper is to reduce the violations by introducing direct constraint control
on the fast time scale using a selector. To get consistency with the steady-state optimization,
we need to change the constraints in the Primal-Dual approach to involve the input used for
direct constraint control. As a further refinement of this idea, we propose a multi-input direct
constraint control for cases where many inputs affect the constraint value, and where pairing with
a single input may lead to input rate saturation. The proposed control structure is applied to a
subsea oil production network, showing that the proposed approach can minimize the dynamic
violation during transient, and can achieve optimal steady-state conditions using simple feedback
controllers.
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1. INTRODUCTION

Real-time optimization (RTO) deals with the steady-state
economic optimization of the entire plant based on a de-
tailed process model. As input, it needs an estimate of the
present state (including constraints) and as output (results
from the steady state optimization), it gives setpoints to
the control layer. The RTO-layer is operating at a slow
time scale (often around an hour) and because distur-
bances may affect the operation on a faster time scale, it is
desirable to put some of the optimization into the control
layer, so that at least the control layer moves the inputs in
the right economic direction when there are disturbances.
This is the idea of feedback-optimizing control (Morari
et al., 1980), which aims at translating optimization ob-
jectives into control objectives. In addition, there may
be numerical problems in the RTO-layer, especially when
the model is large and complex (Wenzel et al., 2016). It
may therefore be desirable to decompose the optimization
problem into smaller subproblems. Decomposition may
have other advantages, such as simplifying tuning and
making it possible to have subparts of the optimization
on a faster time scale. It may also make it possible to
introduce feedback as a “trick” for numerically solving the
optimization, which may make it possible to use constraint
measurements more directly in the optimization layer. A
comprehensive review of RTO as a feedback control prob-
lem is given by (Krishnamoorthy and Skogestad, 2022).
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In this paper, the starting point is that a constrained
optimization problem can be translated into an uncon-
strained optimization problem using Lagrangian/Dual re-
laxation (see Krishnamoorthy (2021); Dirza et al. (2021);
Krishnamoorthy and Skogestad (2022), and Fig. 1). Struc-
turally, this method has two types of controllers, namely,
a gradient controller and a central constraint controller.
The gradient controller is responsible to regulate the es-
timated gradient of the Lagrange function, which is a
function of Lagrange multipliers. To satisfy the necessary
condition of optimality (NCO), this estimated gradient
must be controlled to 0. To estimate the gradient, Dirza
et al. (2021) uses feedback-based RTO in a distributed
fashion. Hence, it is also known as distributed FRTO.
The central constraint controller control the measured
constraint, but the effect on the inputs are only indirect
by manipulating the Lagrange multipliers. Consequently,
significant dynamic violations may occur during the tran-
sient. One method that controls the active constraint
directly is regional-based control as described in Jäschke
and Skogestad (2012). This method works well in a small
system but is problematic in a complex and large process
system.

Fig. 2 illustrates the effect of direct and indirect constraint
control on constrained variables during the transient. Even
though it only occurs during transient, it is necessary to
apply back-off when we have ’critical’ hard constraints. For
example, in most process system, hard constraints exist in
many areas related to safety systems. If a hard constraint
is violated, then the safety system must take over. A more
specific example is a rupture disk (also known as a pressure
safety disk). A rupture disk is a type of sacrificial part
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Fig. 1. Block diagram of original primal-dual scheme (Kr-
ishnamoorthy, 2021; Dirza et al., 2021). The gray box
represents a given plant. The white boxes represent
computational blocks. The red and blue boxes repre-
sent controller blocks with different timescales. The
symbol of hat (̂.) represents estimated values, and y
denotes the measurement set (output variables). The
remaining notations are explained in Section 2
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Fig. 2. The illustrated responses of constrained variables
with direct and indirect constraint control.

because it has a one-time-use membrane and once the disk
has ruptured it will not reseal. Since the disc is part of
a protection system, it is necessary to replace it. In the
context of production optimization, it is undesirable to
do the replacement too often as it can lead to production
performance degradation during those activities. Then, a
back-off is introduced.

Applying too large back-off may lead to a significant
economic penalty in the long run. Thus, we want to reduce
the back-off. One solution that can reduce it, due to
dynamic violation, is by directly controlling the active
constraint tightly by manipulating the physical inputs,
i.e., valve opening rate. However, the saturation of this
input rate will interfere with the upper optimization layer
(central constraint controller).

The main goal of this paper is to overcome the input
rate saturation issue in minimizing the dynamic violation
during transient, in the framework of primal-dual, using
multi-input direct constraint control.

This paper is organized as follows. Section 2 describes the
problem formulation of primal-dual with direct constraint
control. Section 3 presents the proposed control structure
of multi-input with direct constraint control. Section 4
compares the performance of the proposed control struc-
ture, the one with single direct constraint control, the one

without direct constraint control, and the true optimal
steady-state condition for a large-scale subsea oil produc-
tion system before concluding the paper in Section 5.

2. PROBLEM FORMULATION

2.1 Steady-state Optimization Problem

Consider a steady-state optimization problem

min
u

J (u,d) (1a)

s.t. g (u,d) ≤ 0, (1b)

u ∈ U (1c)

where u ∈ Rnu are the set of manipulated variables
(physical inputs/primal variables), d ∈ Rnd denotes the
set of parameters/disturbances, J : U × Rnd → R is the
cost function, g : U ×Rnd → Rng denotes the constraints.
For simplicity, state x is not explicitly shown in problem
(1).

2.2 Primal-Dual

To solve problem (1), the control structure of Primal-Dual
has two layers of controllers as illustrated in Fig. 1. This
section briefly explains those controllers.

Central Constraint Controller: Considering λ as dual
variables/lagrange multipliers, the Lagrangian of Problem
(1) is as follows.

L (λ,u,d) = J (u,d) + λ>g (u,d) (2)

When constraint g is active, we assign central constraint
controller to drive g → 0 by manipulating the associated
dual variables λ.

Note that, according to the KKT conditions (complemen-
tary slackness and dual feasibility), λ ≥ 0 must hold for
inequality constraints in problem (1). This requirement is
ensured by using a max operator.

This structure indicates that the presence of a central
constraint controller enables automatic active constraint
changing. Thus, this method is flexible in the presence of
active constraints changing.

Gradient Controller: Given eq. (2) and estimated
steady-state gradient of cost and constraint, then the gra-
dient of the Lagrangian function is as follows.

∇uL(u,d,λ) = ∇uJ +∇>ugλ (3)

As can be seen in eq. (3), the gradient of the Lagrangian
is a function of Lagrange multipliers.

According to François et al. (2005), it is necessary to
control the gradient of the Lagrangian function to 0
(∇uL(u,d,λ)→ 0) to satisfy the stationary condition of
the necessary condition of optimality (NCO). Thus, we can
consider the gradient of the Lagrangian function as self-
optimizing controlled variables, and gradient controller is
used to control ∇uL(u,d,λ)→ 0.

Drawback: First, the use of single-loop (diagonal) con-
trollers for the two controllers, assuming that we have
weakly interactive systems. This is satisfied for our case
study in Section 4. Second, the constraint is controlled at
a slow time scale. This condition may lead to a significant



dynamic violation during the transient. When we consider
a hard constraint, applying any available back-off strategy,
such as Galvanin et al. (2009), is usually necessary, in
practice, to ensure that the overshoot does not violate the
constraint significantly.

Defining ζ as the matrix of the back-off parameter, and
considering active hard constraints, then the profit loss
scale is linear with the back-off parameter. Mathemati-
cally, this can be expressed as Loss = −λ>ζ. By control-
ling the active hard constraints tightly, we can minimize
the back-off parameter, hence reducing the profit loss in
the long run. The back-off parameter can be determined
based on the magnitude of the dynamic violation. Thus, re-
ducing dynamic violations is essential to reduce economic
penalties in the long run.

2.3 Primal-Dual with Direct Constraint Control

Recent solution: One possible method to minimize dy-
namic violation is to combine direct constraint control
with the Primal-Dual framework. As opposed to the orig-
inal primal-dual, appear where the constraint is indirectly
controlled by central constraint controller in slow time
scale, Dirza et al. (2022) suggested to control the con-
straint directly in fast time scale using direct constraint
control. This strategy provides an alternative input to sat-
isfy the constraint better during transient. Meanwhile, the
central constraint controller is responsible to ensure that
both calculated input from direct constraint controller and
gradient controller are equal in steady-state.

The problem: The main assumption of this method
is that the single controlled valve, that manipulates the
single input used for direct constraint control, is suffi-
ciently large and has no input rate saturation. However,
the action of the single-input may be insufficient due to
this saturation. Therefore, it is necessary to incorporate
more available inputs to address this issue.

3. PROPOSED CONTROL STRUCTURE

In this paper, we propose to use multi-input direct con-
straint control structure (see, Fig. 3) to reduce the dy-
namic constraint violation of the original Primal-Dual
structure.

In single direct constraint control (Dirza et al., 2022), a
single input is assigned to control an active constraint.
Meanwhile, in the proposed structure, we have multiple
inputs jointly controlling the constraint directly in the fast
time scale.

Multi-input direct constraint control: For direct
constraint control, we need to select (pair) one combined
input (uc) for each constraint,

uc = Hc>uind (4)

where uind ∈ Rnu denotes the vector of all inputs provided
by gradient controllers.

If we have only one constraint and select a single input,
then Hc is a row vector with 0’s except for a 1 (non-
zero) for the selected input. For the multivariable case,
it is reasonable to select inputs with a large effect on the
constraints. A good choice is then,

Hc = ∇ugA (5)

where Hc ∈ Rnu×ngA , ngA is the number of constraints
that we want to control tightly when they are active
simultaneously, and∇ugA is the gradient of the constraints
that are active simultaneously with respect to the input.
However, we should put less weight on inputs that are close
to their constraints, and also put less weight on inputs
that have a large effective delay to the corresponding
constraint. For example, we may choose,

Hc> =

[
∇u1

g1 ∇u2
g1 0 0

0 0 ∇u3
g2 ∇u4

g2

]
where the first two inputs are assigned to jointly control
constraint g1, and the last two to constraint g2. This means
that the selection matrix Hc allows a configuration where
a constraint can be directly controlled by multiple inputs.

Combining fast constraint controllers: Given uind ∈
Rnu , we can calculate the input u that we want to
implement on the plant as follows,

u = uind +
(
Hc†

)>
∆uc (6)

where Hc† ∈ RngA×nu is the pseudo inverse of Hc, and
∆uc labels the correction factor computed as follows,

∆uc =
(

min
(
ucdir,H

c>uind

)
−Hc>uind

)
(7)

where ucdir ∈ RngA is the input obtained from direct
constraint controller.

Note that in Eq. (7), we choose a min selector because we
assume that the more input we give, the closer the con-
strained variables are to the constraints. On the contrary,
we would choose a max selector, if the input-constrained
variables response is in the opposite direction.

Outer/Upper Layer: To get consistency between the
direct constraint controller ucdir and the gradient controller
uind, the constraint g ≤ 0 in the outer/upper layer is

replaced by the constraint Hc>uind ≤ ucdir. Thus, in
the outer/upper layer, the central constraint controller
is responsible to ensure they are equal in steady state(
Hc>uind − ucdir

)
→ 0.

4. SIMULATION RESULTS

In this section, we apply the multi-input direct constraint
control on gas-lifted oil production network with N = 6
wells as shown in Fig. 4, which is similar to the one used
in Dirza et al. (2022).

The oil production from each well, labeled by wpo,i, is
manipulated by the gas-lift injection rate wgl,i (Note that,
u = wgl). The gas resource used for the gas-lift is shared
and limited by available power for the gas-lift compressor,
Powmaxgl . In addition, the capacity handling for the total
produced gas is limited to a maximum supply of wmaxpg .
The objective of the production optimization problem is
to optimally allocate the shared gas lift such that the profit
is maximized. Thus, the optimization problem is

min
wgl,i,∀i ∈ N

JN = −
∑
i∈N

$o,iwpo,i +
∑
i∈N

$gl,iwgl,i (8a)

s.t. g(u,d) =:

Powgl − Powmaxgl∑
i∈N

wpgi − wmaxpg

 ≤ 0 (8b)
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Fig. 3. Block diagram of proposed control structure with
direct constraint control.

where $o,i and $gl,i are the oil prices and the cost of
gas compression to lift the gas, respectively. The total
produced gas is defined as RpgN =

∑
i∈N wpgi .

In addition, it is also normal that valves have input rate
constraint. Thus, we define the input rate constraint.

∆wmingl ≤ ∆wgl,i ≤ ∆wmaxgl , i = 1, ..., N

where, ∆wmingl and ∆wmaxgl are the lower and upper bound
of the inputs rate, respectively.
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Fig. 4. A simplified process diagram of a gas-lift opti-
mization problem with limited available power for
gas-lift compressor, and limited produced gas due to
maximum capacity of gas handling facility.

The gas-oil ratio (GOR), which is a reservoir property, is
assumed to be varying with time (disturbances) for the
different wells. Wells with a high GOR have a lighter fluid
column, and hence do not require a lot of gas-lift injection
compared to wells with a low gas-oil ratio. Consequently,
changes in the gas-oil ratio significantly affect the optimal
allocation of gas-lift injection. The available power for the
gas-lift compressor is also assumed to be varying with
time due to changing power load balance in the processing
facility. In addition, the total produced gas is limited by

the maximum capacity handling of the gas processing
facility. This limit is also assumed to be time-varying.

To maintain the focus of this work, we compare the perfor-
mance of the following approaches: (C1) The ideal steady-
state optimal; (C2) Primal-Dual (No direct constraint con-
trol); (C3) Primal-Dual with single-input direct constraint
control; (C4) The proposed control structure (multi-input
direct constraint control).

To obtain the ideal steady-state optimal solutions (C1),
we solve problem (8) every 150 seconds. To solve problem
(8) using original Primal-Dual (C2), one can read Dirza
et al. (2021) and the control structure is illustrated in Fig.
1.

The single input approach (C3) is a special case of the
multi-input approach. We choose to assign wgl,2 as the
only input that is responsible for tightly controlling active
constraint Powgl to Powmaxgl , and wgl,5 as the only input
that is responsible for tightly controlling active constraint
RpgN to wmaxpg . Defining g1, and g2 as the first and second
row of g, these pairings can also be described in matrix
formulation, where matrix Hc is chosen as follows.

Hc> =

[
0 1 0 0 0 0
0 0 0 0 1 0

]
In multi-input control structure (C4), we choose Hc> =
∇>ugA. Thus, no single input, wgl,i, is assigned to each ac-
tive constraint for direct constraint control. However, there
are calculated inputs, i.e., wgl,powgl,dir and wgl,wpg,dir,
which are used to adjust all the inputs, labeled by wgl,
if any of those constraints is active.

In this case, the two constraints (8b) are never active
simultaneously. Thus, we assign all available inputs to
tightly control the active one. In this case, the selected
correction factor is

∆wgl = min
(
∆wgl,powgl

,∆wgl,wpg

)
where ∆wgl,powgl

and ∆wgl,wpg are the correction factors
when g1 and g2 are active, respectively. The selection
matrices are Hc = ∇>wgl

g1 to calculate ∆wgl,powgl
, and

Hc = ∇>wgl
g2 to calculate ∆wgl,wpg .

To determine λ, we use a PI controller as a central
constraint controller with a max selector that gives λ = 0
when the constraint is no longer optimally active. The anti-
windup is necessary to avoid λ keeps changing in this case.
Thus, this selector gives a value of either 0 or λ̂.

λ̂ = λk +KP

(
Hc>wgl,ind −wgl,dir

)k
+

k∑
τ=k−1

(
KI

(
Hc>wgl,ind −wgl,dir

)τ
+ Kaw

(
λ− λ̂

)τ)
where k is the current step. KP , KI , and Kaw are propor-
tional, integral and anti wind-up gain, respectively.

To estimate the steady-state gradients in (3) and (5),
we use the model-based gradient estimation framework
proposed in Krishnamoorthy et al. (2019). Note that the
proposed framework is not restricted to this gradient
estimation approach, so one may instead use any other
model-based or model-free gradient estimation scheme
(Srinivasan et al., 2011).



PID controllers are tuned using the SIMC tuning method
introduced by Skogestad (2003). The local gradient con-
trollers, the central constraint controller, and the direct
constraint controller are designed with a sampling time of
1 sec.

The plant simulator is developed using the CasADi ver.
3.5.1 toolbox (Andersson et al. (2019)) in MATLAB
R2019b, and is simulated using the IDAS integrator. The
simulations are performed on a 2.11 GHz processor with
16 GB memory for 66 hours simulation time. The GOR
for all wells vary as shown in Fig. 5, where it can be seen
that the system is frequently subject to disturbances, and
a dramatic drop occurs at t = 6 hr. The available power
for the gas-lift compressor (Powmaxgl ) and gas processing

capacity (wmaxpg ) also varies, which affects the optimal
allocation of the gas-lift.
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Fig. 5. GOR variations (disturbances) in the six wells.

Fig. 6 shows the simulation results comparing the ideal
optimum, single-input, and the proposed control structure,
where we can notice that after a dramatic GOR drop at
t = 6 hr, more power is required by the gas-lift compressor
to supply more lift gas. Thus, the maximum available
power constraint is active. Note that the single-input ap-
proach does not work ’properly’ to control the constraint
during the transient due to input rate saturation. On
the other hand, the multi-input approach can control the
active constraint tightly. In addition, when the maximum
gas handling capacity drops and GOR of well 1 increases
at t = 39 hr, the active constraint region switches, and
the maximum gas handling capacity is active. Without
changing the control structure, the multi-input approach
can automatically switch its ’mode’. After switching, this
approach tightly controls the new active constraint. We
can also notice that there is no significant dynamic vi-
olation in this case, so that the back-off parameters are
relatively small, which means reducing more potential loss.

Fig. 7 shows that probably the only issue of multi-input (in
this case) is the overshoot of dual variables at t = 6 hr, that
appears due to disturbance and the presence of multi-input
direct constraint control itself. Regarding active constraint
switching, Fig. 7 (b) indicates that both single-input and
multi-input can minimize dynamic violation at t = 39 hr
with a relatively short transient time. Meanwhile, original
primal-dual consumes more transient time for switching.

Finally, Fig. 8 compares and confirms that the proposed
control structure is the approach that can address the issue
of input rate saturation indicated by its capability to reach
the optimal-steady state condition, and minimize the back-
off.

Regarding economic loss due to back-off, one can notice
in Fig. 6(c) that primal-dual (without direct constraint

control) needs to apply around 3.2 MW of back-off of
the real Powmaxgl , single-input around 1.1 MW, and multi-
input almost 0 MW in this case. This back-off has included
the violation shown in Fig. 6(d) because the change of
the cost shown in Fig. 8(a) of the second constraint
is less than the first one. After implementing back-off
strategy, both primal-dual, and single-input lose around
$369/hr, and $104/hr, respectively. Meanwhile, the multi-
input approach loses almost $0/hr in this case.

Note that, when we assume that both constraints (8b)
may be active simultaneously, we could split the inputs,
i.e., the first three inputs may be used to control the first
constraint tightly, and the last three may be used to the
second constraint. One possible option of the selection
matrix for this formulation is

Hc> =

[
∇wgl,1

g1 ∇wgl,2
g1 ∇wgl,3

g1 0 0 0
0 0 0 ∇wgl,4

g2 ∇wgl,5
g2 ∇wgl,6

g2

]
and it is not necessary to select the correction factor as
both of the selection factors are required by the assigned
inputs. To the end, this approach provides flexibility in
constructing the control structure that can satisfy any
possible active constraints region/combination.

5. CONCLUSION

In this paper, we proposed a multi-input direct constraint
control that is combined with primal-dual framework. We
showed that the proposed control structure can overcome
the issue of input rate saturation by introducing an online
correction factor for the assigned inputs. Since the cor-
rection factor is constructed by a selection matrix, several
inputs may jointly contribute to ’directly’ controlling the
active constraint, thus, avoiding the dependency on a
single input. This strategy enables system-wide optimal
operation with minimum back-off even under saturated
inputs rate conditions, and without losing the flexibility
of active constraint switching.
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