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Abstract: We propose a new class of measures for shaping time-dependent trajectories in
dynamic optimization (DO). The proposed measures are analogous to risk measures used in
stochastic optimization (SO) and are inspired by a recently-proposed unifying abstraction
for infinite-dimensional optimization. Risk measures are summarizing statistics (e.g., average,
variance, quantiles, worst-case values) that are used to shape the probability density of random
objectives and constraints. We show that this extensive collection of measures can be applied
in DO for computing and manipulating interesting features of time-dependent trajectories (e.g.,
excursion costs and quantiles). We also discuss how to implement these measures in the Julia
modeling package InfiniteOpt.jl.
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1. INTRODUCTION

We consider the continuous-time dynamic optimization
(DO) problem:

min
y(·)∈Y

Mtf(ẏ(t), y(t), t)

s.t. g(ẏ(t), y(t), t) ≤ 0, t ∈ Dt.
(1)

This representation follows from a recently-proposed ab-
straction that unifies infinite-dimensional optimization
(InfiniteOpt) problems (e.g., dynamic/stochastic/PDE op-
timization) (Pulsipher et al., 2022). In the context of
DO, the infinite domain (which terminology arises from
the infinite parameter modeling constructs presented in
the unifying abstraction) Dt is the time domain [t0, tf ],
y(t) ∈ Y ⊆ Rny are time-valued decision functions (e.g.,
state/control variables), f(·) is an infinite-dimensional cost
function, and g(·) is a vector-valued infinite-dimensional
constraint functions gj(·), j ∈ J ⊆ Rng . The use of
derivative variables ẏ(t) ∈ Rny (which denote dy(t)/dt)
is done for convenience in notation such that these can be
augmented via auxiliary state variables, as is common to
DAE modeling approaches, to enhance the generality of
Problem (1) (allowing for constraints on derivative values
and not requiring explicit ODEs) (Biegler, 2010).

The measure operator Mt : Dt 7→ R is the focus of this
work; this operator seeks to scalarize infinite-dimensional
cost functions (summarizing them over the time domain
Dt) to form a well-posed objective function. Such measures
can also be used to handle constraints, but here we focus
on objectives to simplify the presentation. Problem (1) is
general and captures a wide range of DO problems (e.g.,
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model predictive control and state/parameter estimation)
where y(·) consists of state/control/parameter variables
and g(·) ≤ 0 can include DAE/path/point constraints.

Classical DO formulations minimize the integral of the cost
trajectory (known as the Bolza objective). In other words,
these formulations use the measure operator:

Mtf(t) =

∫
t∈Dt

f(t)dt (2)

where we write f(t) := f(ẏ(t), y(t), t) for convenience.
Minimizing (2) has the effect of uniformly shaping the cost
trajectory f(t) over the domain Dt. This also amounts
to minimizing the total cost (which is equivalent to the
average cost with a normalization factor of (tf − t0)−1).
However, we can envision more advanced DO formulations
that aim to shape the cost trajectory f(·) with other mea-
sures (e.g., peak or excursion costs). For example, Risbeck
and Rawlings recently proposed an MPC objective that
penalizes the total and peak costs (Risbeck and Rawlings,
2019). Minimizing the peak of a cost-trajectory is often a
desirable feature in systems, as the peak can be associated
with unsafe behavior and/or economic penalties.

Under the InfiniteOpt representation, Problem (1) is anal-
ogous to the SO problem:

min
z∈Z,y(·)∈Y

Mξf(z, y(ξ), ξ)

s.t. g(z, y(ξ), ξ) ≤ 0, ξ ∈ Dξ.
(3)

where z ∈ Z ⊆ Rnz are here-and-now decision variables,
ξ : Ω 7→ Dξ is a random parameter in accordance with the
probability space (Ω,F , F ), Dξ ⊆ Rnξ is the co-domain of
its distribution, and y(ξ) ∈ Y ∈ Rny are recourse decision
variables (Birge and Louveaux, 2011). We observe that (1)
is a special case of (3) if we define nz = 0, nξ = 1, Dξ = Dt,



Mξ = Mt, and set y(ξ) to contain both ẏ(t) and y(t).
This equivalence might not be immediately obvious since
y(ξ) is not differentiable in general, but this special case
corresponds to |Ω| = 1 such that ξ becomes deterministic.

In SO, the measure Mξ can be drawn from a wide col-
lection of risk measures (summarizing statistics) that aim
to shape the probability density function of f(ξ); some
examples include the expected value, mean-variance, ab-
solute deviation, quantiles, and conditional-value-at-risk
(CVaR) (Ruszczyński and Shapiro, 2006). Risk measures
enable greater flexibility in shaping the cost function f(ξ)
and are commonly used to penalize extreme events (i.e.,
high costs). By leveraging the connection between (1) and
(3), we have recently shown that the expected value and
CVaR measures can be used as measures in DO to shape
the time-dependent cost trajectory (Pulsipher et al., 2022).

In this work, we formalize the use of risk measures to
DO problems that follow (1). The contributions that
distinguish this work from that presented in (Pulsipher
et al., 2022) are:

• the consideration of additional risk measures (e.g.,
mean-variance and disutility)
• the formal demonstration of time-valued measures as

special cases of their SO counterparts
• the establishment of properties for risk measures in a

DO context
• the more complete empirical demonstration of diverse

time-valued measures
• the identification of avenues of future research for this

new class of dynamic measures.

This new class of dynamic measures Mt enable us to
shape trajectories and policies in new and interesting ways.
Moreover, we highlight how the Julia-based modeling
package InfiniteOpt.jl provides a useful interface to
compactly express such measures.

2. MAIN RESULTS

2.1 Time-Valued Density Functions

We begin by establishing time analogues of probability
density functions (pdf) and of cumulative density func-
tions (cdf) typically used in SO (i.e., pdfs and cdfs defined
over the time domain Dt). These provide key constructs
to facilitate the use of risk measures in DO.

In SO, ξ is described by the pdf pξ : Dξ 7→ R≥0, which
satisfies

∫
ξ∈Dξ pξ(ξ)dξ = 1. The pdf is used to compute

statistics such as the expectation:

Eξ[f(ξ)] =

∫
ξ∈Dξ

f(ξ)pξ(ξ)dξ. (4)

This measure Mξ = Eξ is commonly used in SO; here, we
can see that pξ(·) acts as a weighting function that places
varied emphasis over the domain Dξ. The expectation
summarizes the cost function in a single scalar value.

Following the analogy of SO and DO, we define a weighting
function pt : Dt 7→ R≥0 (i.e., a time-valued pdf) to yield
the time average (expectation):

Et[f(t)] :=

∫
t∈Dt

f(t)pt(t)dt. (5)

This provides us flexibility in prioritizing different regimes
in the domain Dt. We obtain (2) as a special case by setting
p(t) = 1; however, we can envision choosing from a wide
range of candidate pdfs, such as:

pt(t) =
1

tf − t0
(6)

This is the pdf of a uniform random variable and places
equal emphasis on different parts of the time domain. This
inspires the consideration of other weighting functions,
such as the exponential pdf:

pt(t) = γ e−γt (7)

where γ ∈ R>0 is the decay rate parameter. Using this
weighting function to compute the time average places
emphasis on the beginning of the domain and quickly
decays over time. In other words, this can be seen as a
discount factor (Shin and Zavala, 2020).

The cdf P : Dξ 7→ [0, 1] of a random variable ξ is:

P (ξ; ξ̂) := Pξ(ξ ≤ ξ̂) =

∫
ξ∈{ξ∈Dξ:ξ≤ξ̂}

pξ(ξ)dξ (8)

This denotes the cumulative probability of finding ξ below

the threshold ξ̂ ∈ Dξ. In the context of the DO, we can
write the cdf of the time trajectory f(t) by using the
excursion sets:

D+
t (f(t); f̂) := {t ∈ Dt : f(t) ≥ f̂}
D−t (f(t); f̂) := {t ∈ Dt : f(t) ≤ f̂}

(9)

where D+
t (f(t); f̂) ⊆ Dt and D−t (f(t); f̂) ⊆ Dt are the

positive and negative function excursion sets, respectively.
We can use the negative excursion set to establish:

P (f(t); f̂) =

∫
t∈D−

t (f(t);f̂)

pt(t)dt. (10)

In a DO context, the cdf measures the fraction of time that

the trajectory f(t) is below a threshold f̂ . We will see that
expressing the cdf in terms of excursion set allows us to
interpret measures as mechanisms to bound trajectories.

2.2 Dynamic Measures

Here we illustrate the interpretation of risk measures in a
DO context. Numerous risk measures have been proposed
in the SO community and analyzing them comprehensively
is beyond the scope of this work (we refer the reader
to (Krokhmal et al., 2013) for a review). This section
establishes key constructs and exemplifies the steps needed
to interpret risk measures in a time setting. We discuss
properties of these proposed measures in Section 2.3.

Expectation The time expectation measure Et shown in
Equation (5) allows us to assess a weighted average of our
cost trajectory f(t) in accordance with the weighting func-
tion pt(t). In the context of DO, minimizing the expected
cost provides an easily interpretable objective and the key
modeling choice lies in the selection of pt(t). Reasonable
candidates for many DO applications are (6) and (7),
as demonstrated in Section 3; however, other weighting
functions are possible (e.g., Gaussian and Gamma). The
selection of the weighting function dictates how much
emphasis is placed on different parts of the time domain.
The expectation serves as a core construct in defining the
more sophisticated measures.



Proposition 1. The time expectation Et in (5) is a special
case of Eξ in (4) if nz = 0, nξ = 1, Dξ = Dt.

Mean-Variance The mean-variance E-Vξ is a classical
measure used in portfolio optimization (Leland, 1999). For
SO problems (3), this minimizes the variance (i.e., spread)
of the cost outcomes in an attempt to mitigate high-cost
events:

E-Vξ[f(ξ)] := Eξ[f(ξ)] + λVξ[f(ξ)] (11)

where Vξ = Eξ[(f(ξ) − Eξ[f(ξ)])2] is the variance and
λ ∈ R≥0 is a tradeoff parameter. Transferring this to a
DO setting we obtain the time-valued measure:

E-Vt[f(t)] := Et[f(t)] + λVt[f(t)]. (12)

Minimizing E-Vt[f(t)] in a DO problem provides a tradeoff
problem that seeks to minimize the magnitude of the cost
trajectory (the expectation) and the variability/fluctua-
tions (variance) of the cost trajectory. A disadvantage of
this measure is that it penalizes cost variability equally
for low and high costs (symmetric penalty). However, this
property can be advantageous for cost functions that seek
to enforce smooth control trajectories. This bares relation
to the classical DO practice of using a quadratic penalty
terms to dampen oscillation; however, we note that (12) is
more general since it can embed an arbitrary pdf.

Proposition 2. The measure operator E-Vt from (12) is a
special case of E-Vξ from (11) under the same conditions
of Proposition 1.

Quantile The quantile Qξ(f(ξ);α) (also referred to as

the value-at-risk) denotes the threshold value f̂ for f(ξ)
such that the cumulative probability of incurring costs
below the threshold is at least α ∈ [0, 1]:

Qξ(f(ξ);α) := inf
f̂∈R

{
P (f(ξ); f̂) ≥ α

}
. (13)

Constraining (13) is equivalent to enforcing a probabilistic
constraint (Sarykalin et al., 2008):

Qξ(f(ξ);α) ≤ 0 ⇐⇒ Pξ(f(ξ) ≤ 0) ≥ α. (14)

We can use the cdf (10) in combination with (13) to define
the time-valued quantile:

Qt(f(t);α) := inf
f̂∈R

{∫
t∈D−

t (f(t);f̂)

pt(t)dt ≥ α

}
. (15)

Using this measure in (1) minimizes the excursion thresh-
old of the cost trajectory such that the fraction of time
that exceed it is no more than 1 − α. Unlike the E-Vt
measure, the quantile measure only penalizes high cost
values, making it an attractive alternative in certain cases.
However, the potential disadvantages of this measure are
that it does not strongly discourage high cost peaks in the
positive function excursion D+

t (f(t);Qt(f(t);α)), and it is
nonconvex and difficult to compute in general.

Proposition 3. The quantile measure Qt (15) is a special
case of its analogue Qξ in (13) under the same conditions
of Proposition 1.

Conditional-Value-at-Risk The conditional-value-at-risk
(CVaR) measure seeks to address the limitations of the
quantile measure Qt by penalizing the expected value of
the 1− α largest cost values:

CVaRξ(f(ξ);α) := min
f̂∈R

{
f̂ +

1

1− α
Eξ[f(ξ)− f̂ ]+

}
(16)

where Eξ[f(ξ)− f̂ ]+ := Eξ[max(0, f(ξ)− f̂)] and α ∈ [0, 1).
CVaR is also known as the superquantile; under mild
assumptions, CVaR can be represented as:

CVaRξ(f(ξ);α) = Eξ[f(ξ) : f(ξ) ≥ Qt(f(t);α)] (17)

since the minimizer f̂∗ is Qt(f(t);α) (Rockafellar et al.,
2000). With this observation, the time-valued CVaR mea-
sure can be expressed as:

CVaRt(f(t);α) := min
f̂∈R

{
f̂ +

1

1− α
Et[f(t)− f̂ ]+

}
. (18)

This provides a convex measure that penalizes the high
(peak) costs incurred in the positive function excursion
set D+

t (f(t);Qt(f(t);α)). Note that this penalizes multiple
peak costs (and not just the peak cost, as done in typical
DO formulation). Moreover, one can show that:

lim
α→0

CVaRt(f(t);α) = Et[f(t)]

lim
α→1

CVaRt(f(t);α) = max
t∈Dt

f(t)
(19)

which both follow from (17). As such, CVaR is highly
versatile measure for use in DO that can capture both
average and extreme features of a time trajectory.

Proposition 4. The CVaR measure in (18) is a special case
of CVaRξ in (16) under the same conditions of Proposition
1.

Disutility Disutility risk measures are another prevalent
measure class used in SO; this employs an expectation
over a disutility function s : R 7→ R (typically a convex
increasing function) that penalizes unfavorable values of
f(ξ):

Dξ(f(ξ)) := Eξ[s(f(ξ))]. (20)

In an effort to define a translation invariant measure, the
measure is often expressed as:

D̃ξ(f(ξ)) := inf
f̂∈R

Eξ[f(ξ) + s(f(ξ)− f̂)]. (21)

One can show that CVaRξ(f(ξ);α) is a special case of (21).
This follows by letting s(x;α) = (1 − α)−1 max(0, x) − x
where x ∈ R. Then by substituting s(x;α) in (21) we
obtain (16). We transfer (21) to DO by using the time-
valued expectation Et:

D̃t(f(t)) := inf
f̂∈R

Et[f(t) + s(f(t)− f̂)]. (22)

This measure class provides great flexibility in shaping
dynamic trajectories as there are diverse choices of s(·)
(in addition to the flexibility provided via selecting the
weighting function pt(·)). A useful survey on the properties
of disutility functions in the context of SO is provided in
(Fulga, 2016).

Proposition 5. The time-valued disutility measure D̃t(f(t))

is a special case of D̃ξ(f(ξ)) under the same conditions of
Proposition 1.

2.3 Measure Properties

Here we formalize some key mathematical properties of the
dynamic measures presented in Section 2.2. This provides
some interesting and useful insights on the behavior that
these measures induce. These properties have been studied
in the SO community, and we will show that this rich
theory can be readily applied to DO.



In the context of SO, four main properties are typi-
cally considered for risk measures: convexity, monotonicity,
translation invariance, and positive homogeneity. More-
over, a measure operator is said to be coherent if it satisfies
all these properties (Artzner et al., 1999; Ruszczyński and
Shapiro, 2006).

Convexity asserts that a measure operator Mξ satisfy:

Mξ(βf + (1− β)h) ≤ βMξ(f) + (1− β)Mξ(h) (23)

for all measurable functions f(ξ), h(ξ) : Dξ 7→ R in the
linear function space F and all β ∈ [0, 1]. This property
is key for creating optimization objectives that are well-
posed and guarantees that the measure of a convex cost is
also convex.

Under monotonicity, we have that if f1(ξ) � f2(ξ) (f1(ξ)
dominates f2(ξ)), then the measure Mξ satisfies:

Mξ(f1(ξ)) ≥Mξ(f2(ξ)). (24)

This ensures that, if a cost function dominates another
cost function, then the measure former will also be greater.
than that of the latter. The concept of dominance (compar-
ing whether a random variable is better than another ran-
dom variable) is an interesting and important concept that
has not been explored in DO. In a DO context, dominance

of first-order (f1(t) � f2(t)) requires that P (f1(t) > f̂) ≥
P (f2(t) > f̂) for any threshold value f̂ . In other words, the
fraction of time that the trajectory f1(t) remains above the
threshold is greater or equal than the fraction of time that
the trajectory f2(t) remains above the same threshold. A
monotonic measure is such that, if f1(t) � f2(t), then
Mt(f1(t)) ≥ Mt(f2(t)) holds. Note that dominance holds
trivially if f1(t) ≥ f2(t) for all t ∈ Dt. These concepts
are important because comparisons (benchmarks) of time
trajectories are not as straightforward (Renteria et al.,
2018), as the trajectories are functions (not scalar values)
and thus a trajectory might be better in some parts of the
time domain but not in others

A translation invariant measure satisfies:

Mξ(f(ξ) + a) = Mξ(f(ξ)) + a (25)

if a ∈ R and f(ξ) ∈ F . In a DO context, this property
ensures that offsetting the cost function will not change
the shape of the optimal cost trajectory.

The positive homogeneity property is given by:

Mξ(τf(ξ)) = τMξ(f(ξ)) (26)

if τ > 0 and f(ξ) ∈ F . In the context of DO, a
positive homogeneous measure provides the property that
uniformly scaling the cost by τ will not affect the shape of
the optimal cost trajectory.

The analysis of the stochastic risk measures featured in
Section 2.2 is well-established in the SO literature and
Table 1 provides a summary of these (Artzner et al., 1999;
Ruszczyński and Shapiro, 2006).

Because time-valued measures are special cases of the SO
counterparts, they inherit the properties of Table 1. This
illustrates how we can transfer rich theory from SO (with
respect to these measure operators) to a DO context.
The time-valued expectation measure is a coherent risk
measure and this might explain why this has been the
classical measure used in DO. It is particularly important
to observe that convexity ensures that the use of this

Mξ (23) (24) (25) (26)

Eξ Yes Yes Yes Yes
E-Vξ Yes No Yes No
Qξ No Yes Yes Yes

CVaRξ Yes Yes Yes Yes

D̃ξ Yes Yes Yes Yes

Table 1. A summary of the properties satisfied
by certain measures Mξ. Note that D̃ξ only
satisfies (26) if s(·) is positive homogeneous.

measure yields a convex objective if the cost function is
convex. Interestingly, the convexity of the objective has
key implications for establishing stability conditions (e.g.,
closed-loop stability of MPC) (Rawlings et al., 2017). From
this, we observe that other non-convex measures such as
E-Vt and Qt may not yield stability. On the other hand,
CVaRt and D̃t are convex and thus might inherit stability
properties (this is an interesting topic of future work).

2.4 Modeling in InfiniteOpt.jl

The unifying abstraction for infinite-optimization (which
facilitated the connection between Problems (1) and (3))
is implemented in a Julia package called InfiniteOpt.jl
(Pulsipher et al., 2022). This enables us to intuitively
model continuous DO problems following a simple sym-
bolic syntax (see Code Snippet 1). It is measure-centric
and readily enables to quickly implement new candi-
date measure operators (such as those proposed in Sec-
tion 2.2). Moreover, the unifying abstraction behind
InfiniteOpt.jl facilities the incorporation of random
constructs and/or PDE constraints. By default, these
models are solved via direct transcription, but other
methodologies can be implemented. For more information
on how to install and use InfiniteOpt.jl, visit https://
github.com/pulsipher/InfiniteOpt.jl where we pro-
vide tutorials, examples, API guides, and more.

3. CASE STUDY

We compare the time-valued measures proposed in Section
2.2 in the context of optimal control. We adapt the pan-
demic control problem that seeks to choose an isolation
policy to control the spread of a contagion that minimally
imposes economic impact (induced by mandated isola-
tion). We model the spread of the disease via the SEIR
model which defines the populations of individuals sus-
ceptible to infection ys : Dt → [0, 1], exposed individuals
that are not yet infectious ye : Dt → [0, 1], infectious
individuals yi : Dt → [0, 1], and recovered individuals
yr : Dt → [0, 1] (considered immune to future infection).
Moreover, these satisfy ys(t) + ye(t) + yi(t) + yr(t) = 1.
Thus, our state variables are comprised of ys(t), ye(t),
yi(t), and yr(t). Moreover, we exhibit control by impos-
ing an isolation policy yu(t) ∈ [0, yu] ⊆ [0, 1] that en-
tails the separation of susceptible and exposed individuals
(yu(t) = 0 denotes no separation and yu(t) = 1 denotes
complete separation). The formulation seeks to minimize
the isolation policy function yu(t) (i.e., f(t) = yu(t) for
simplicity) while enforcing that the amount of infectious
individuals yi(t) remains below yi ∈ (0, 1]:



min Mtyu(t)

s.t. ẏs(t) = (yu(t)− 1)βys(t)yi(t), t ∈ Dt
ẏe(t) = (1− yu(t))βys(t)yi(t)− ξye(t), t ∈ Dt
ẏi(t) = ξye(t)− γyi(t), t ∈ Dt
ẏr(t) = γyi(t), t ∈ Dt
ys(0) = s0, ye(0) = e0, yi(0) = i0, yr(0) = r0
yi(t) ≤ yi, t ∈ Dt
yu(t) ∈ [0, yu] , t ∈ Dt

(27)
where s0, e0, i0, r0 ∈ [0, 1] are initial conditions and
β, γ, ξ ∈ R are the rates of infection, recovery, and in-
cubation, respectively, which are specific to the disease
in question. Here we specify initial conditions at s0 =
.9999, e0 = 10−5, and i0 = r0 = 0. The disease pa-
rameters are taken to be β = 0.727, γ = 0.303, and
ξ = 0.3. We choose limits yu = 0.8 and yi = 0.02.
Finally, we set Dt = [0, 200]. We model Formulation (27)
in InfiniteOpt.jl and use backward finite-difference to
evaluate the derivatives using 101 discretization points.
Code Snippet 1 highlights the compact syntax required to
model Formulation (27) in InfiniteOpt.jl under these
conditions. For the objective Mtyu(t), we consider the
following time-valued measures:

∫
t∈Dt yu(t)dt, Et[yu(t)], E-

Vt(yu(t);λ), and CVaRt(yu(t);α). We also investigate the
implications of using the uniform time-valued pdf in (6)
against the exponential pdf of (7).

1 using InfiniteOpt, Ipopt
2
3 # Set the parameters
4 γ, β, ξ = 0.303, 0.727, 0.3
5 s0, e0, i0, r0 = 1 - 1e-5, 1e-5, 0, 0
6
7 # Define the model
8 m = InfiniteModel(Ipopt.Optimizer)
9

10 # Define the time parameter
11 @infinite_parameter(m, t ∈ [0, 200], num_supports = 101)
12
13 # Add the variables
14 @variable(m, ys, Infinite(t))
15 @variable(m, ye, Infinite(t))
16 @variable(m, yi ≤ 0.02, Infinite(t))
17 @variable(m, yr, Infinite(t))
18 @variable(m, 0 ≤ yu ≤ 0.8, Infinite(t))
19
20 # Set the time expectation objective
21 @objective(m, Min, E(yu, t))
22
23 # Define the SEIR equations
24 @constraint(m, ∂(ys, t) == -(1 - yu) * β * ys * yi)
25 @constraint(m, ∂(ye, t) == (1 - yu) * β * ys * yi - ξ * ye)
26 @constraint(m, ∂(yi, t) == ξ * ye - γ * yi)
27 @constraint(m, ∂(yr, t) == γ * yi)
28 @constraint(m, ys(0) == ys0)
29 @constraint(m, ye(0) == ye0)
30 @constraint(m, yi(0) == yi0
31 @constraint(m, yr(0) == yr0)
32
33 # Solve the model and retrieve results
34 optimize!(m)
35 u_opt = value(yu)
36 ts = value(t)

Code Snippet 1. Formulation (27) implemented in
InfiniteOpt.jl.

Figure 1 summarizes the results; the expectation Et[yu(t)]
with the uniform pdf shapes yu(t) identically to the classi-
cal integral measure and establishes a baseline for compar-
ison. we are able to place increased emphasis on the early
time regime when we use the exponential pdf defined in (7)
in combination with Et[yu(t)]. In comparison to the other
expectation measure, the exponentially weighted coun-
terpart exhibits a policy trajectory that is significantly

reduced at early times while later times lead to increased
isolation requirements. This highlights how the choice of
pdf pt(t) enhances the flexibility of our proposed measures
in accordance with the requirements of the problem. The
optimal policy we obtain with the mean-variance measure
E-Vt(yu(t); 8) demonstrates how placing increased priority
on minimizing the variance of the cost function induces the
trajectory to be increasingly smoothed (i.e., cost fluctua-
tions are damped). This comes at the trade-off (controlled
via specification of λ) of increasing the mean isolation
policy, but helps to derive a more consistent policy. For this
application, a smoother policy would likely be preferred
since rapid policy changes can be highly disruptive and
can lead to public dissatisfaction. Finally, in contrast to
the mean-variance (which equally penalizes positive and
negative cost deviations from the mean), the CVaR mea-
sure only penalizes the high cost deviations that surpass
the threshold determined by the α-quantile. In Figure 1 we
see that CVaRt(yu(t; 0.9) flattens the peak isolation policy
values observed with the standard integral/expectation
policy. This hedging against high costs also induces a more
substantial response at later times which results in a larger
cumulative cost. Thus, we observe a trade-off (controlled
via α) between penalizing cost peaks and minimizing the
total cumulative cost.

The variety of optimal trajectories observed in Figure 1
clearly demonstrates how the choice of Mt can greatly
impact the solution of (1). This diversity in solutions is
enabled by our proposed toolbox of dynamic measures.
The choice of an appropriate measure will depend on the
particular application considerations. In this case, the use
of mean-variance or CVaR would be reasonable choices
depending on whether dampening policy fluctuation or
peak policy values is of greater concern.

4. CONCLUSIONS

In this work, we have shown that risk measures used in
SO can be transferred (along with their mathematical
properties) to DO. This enables a new class of DO for-
mulations that shape time trajectories in interesting and
useful ways. The transfer of insights across the SO and DO
disciplines is facilitated by a unifying infinite-dimensional
abstraction. In future work, it will be interesting to investi-
gate the analogy between SO and DO further in transfer-
ring more amenable measure operators and establishing
their properties in a DO context (e.g., dominance and
stability). Moreover, the establishment of time-valued pdfs
provides a foundation from which the utility of transferring
distributionally robust measure functions to DO can be
investigated; which would potentially allow us to consider
multiple weighting functions over the time horizon.
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