
Data-Efficient Reinforcement Learning
from Controller Guidance with Integrated

Self-Supervision for Process Control

Nicolas Bougie ∗ Takashi Onishi ∗,∗∗ Yoshimasa Tsuruoka ∗,∗∗∗

∗ NEC-AIST AI Cooperative Research Laboratory, National Institute of
Advanced Industrial Science and Technology, Tokyo, Japan (e-mail:

nicolas-bougie,takashi.onishi,yoshimasa.tsuruoka@aist.go.jp).
∗∗ Data Science Research Laboratories, NEC Corporation, Kanagawa,

Japan
∗∗∗ Department of Information and Communication Engineering, The

University of Tokyo, Tokyo, Japan

Abstract: Model-free reinforcement learning methods have achieved significant success in a
variety of decision-making problems. In fact, they traditionally rely on large amounts of data
generated by sample-efficient simulators. However, many process control industries involve
complex and costly computations, which limits the applicability of model-free reinforcement
learning. In addition, extrinsic rewards are naturally sparse in the real world, further increasing
the amount of necessary interactions with the environment. This paper presents a sample-
efficient model-free algorithm for process control, which massively accelerates the learning
process even when rewards are extremely sparse. To achieve this, we leverage existing controllers
to guide the agent’s learning — controller guidance is used to drive exploration towards key
regions of the state space. To further mitigate the above-mentioned challenges, we propose a
strategy for self-supervision learning that lets us improve the agent’s policy via its own successful
experience. Notably, the method we develop is able to leverage guidance that does not include
the actions and remains effective when the existing controllers are suboptimal. We present
an empirical evaluation on a vinyl acetate monomer (VAM) chemical plant under disturbances.
The proposed method exhibits better performance than baselines approaches and higher sample
efficiency. Besides, empirical results show that our method outperforms the existing controllers
for controlling the plant and canceling disturbances, mitigating the drop in the production load.

Keywords: Reinforcement learning control; Process control; Chemical plant control;
Co-Learning and self-learning; Artificial intelligence

1. INTRODUCTION

Novel artificial intelligence (AI) strategies for process
control have the potential to significantly improve safety
and efficiency in a wide range of industrial domains such
as chemical plants (Machida et al., 2016). However, the
application of these algorithms has been fairly modest, and
they have not yet established a significant position in the
process industry. The majority of current systems involve
skilled operators and/or are operated by simple feedback
controllers such as proportional-integral-derivative (PID)
controllers. Nevertheless, these reactive control strategies
are unable to cope with disturbances such as weather
changes and lack flexibility. In detail, PID controllers are
suitable to maintain the system in a steady state but
fall short when encountering unexperienced steady states
or disturbances. Moreover, they require a high degree of
familiarity with the task in order to select appropriate
parameters.

Given the limitations of existing industrial controllers,
a key challenge for enhancing safety and efficiency in
process control industries is dealing with unexperienced

states or situations (e.g. disturbances). For instance, chem-
ical plants often experience external disturbances such as
day/night or heavy rain, as well as internal disturbances
such as sudden changes in feed composition or pressure
of a component. In such situations, since PID controllers
are likely to be ineffective, it is common practice to ask
a skilled operator to manually adjust and control the
chemical plant to restore the stability of the plant. These
procedures are typically complex and resource-intensive,
and they often cause costly interruptions to normal oper-
ations.

Model-free reinforcement learning (RL), on the other
hand, is a learning-based strategy that is able to adapt
its behavior to changes in the environment and novel
situations. A few prior studies have explored the use of
RL for controlling a chemical plant (Zhu et al., 2020; Cui
et al., 2018; Kubosawa et al., 2021) and dealing with dis-
turbances (Kubosawa et al., 2019). However, the flexibility
and adaptability of RL comes with the need of experi-
encing a huge number of interactions to converge upon a
satisfactory policy, also known as the “sample-efficiency”
issue. Although training an agent for millions or billions

of steps is acceptable in sample-efficient simulators such as
Atari games (Bellemare et al., 2013), this often becomes
intractable in the process control industry. Process control
tasks typically involve complex and changing dynamics,
huge state-action spaces, and costly computations, which
entails a low sample efficiency. In addition, in real-world
tasks, rewards are naturally sparse - zero for most of the
time steps, further increasing the number of necessary
training steps.

This motivates the need to build sample-efficient RL algo-
rithms for process control. A prior study has attempted to
employ a multi-agent framework to deal with large action
spaces and reduce the problem complexity (Cui et al.,
2018). This idea was then extended to alleviate the curse of
dimensionality by introducing Fastfood kernel approxima-
tion (Zhu et al., 2020). In a different spirit, it is possible to
learn probabilistic transition models using Gaussian pro-
cesses and incorporate model uncertainties into long-term
predictions (i.e. MPC) (Kamthe and Deisenroth, 2018).
RL has also been used to tune the initial values of PID
controllers (Qin et al., 2018). Another approach models the
long-term value of a state via a Markov decision process
and feeds it back into the controller (Cheng et al., 2004).
However, learning a task from scratch can still require
a prohibitively time-consuming amount of exploration of
the state-action space in order to learn a good policy.
To overcome these difficulties, some work in the field
of industrial control has been devoted to reduce sample
complexity by initializing their agent from historical data
(Li et al., 2020) or cloning behaviors of existing algorithms
(Jia et al., 2019). Nevertheless, these approaches require
access to the actions of an optimal expert and are limited
to specific applications.

In this paper, we aim to build a sample-efficient intelligent
system for process control. Our key insight is to leverage
existing controllers (e.g. PIDs) in order to encourage a
RL agent to visit task-relevant regions of the state space.
Namely, our agent observes the states visited by the ex-
isting controllers, and uses the information gleaned from
these observations to identify potentially meaningful re-
gions, drastically improving its performance at the onset of
learning. However, we also account for the possibility that
the existing controllers will produce suboptimal guidance
when facing unexperienced states (for example caused by
disturbances). While suboptimal trajectories can still en-
code domain knowledge on system dynamics and control,
we argue that it is necessary to enrich controller guidance
with the agent’s own successful experience. Thus, we fur-
ther propose a self-supervision method that can be used
along with controller guidance, greatly accelerating the
agent’s training. Self-supervision is achieved by employing
an episodic memory and keeping meaningful trajectories
in terms of return. Together, they provide a flexible and
data-efficient approach for process control, allowing learn-
ing even when rewards are extremely sparse. Contrary to
most imitation learning approaches, the present work does
not necessitate access to the expert actions — it solely
relies on states, and can extract guidance from suboptimal
controllers. Across a range of disturbance scenarios on a
VAM plant (Machida et al., 2016), the proposed method
learns significantly faster than standard RL baselines and
produces higher average return.

2. PROPOSED METHOD

We propose a sample-efficient agent capable of solving
process control problems, including when extrinsic rewards
are sparse. Our approach explores the idea of combining
controller guidance and self-supervision with the agent’s
own experience. The method solely relies on states as
guidance, which broadens its applicability to practical
tasks where guidance can be generated by observing exist-
ing controllers (e.g. PIDs) or operators. The key insight
is to guide exploration towards states/regions that are
potentially taking the agent in the appropriate direction
(e.g. correct disturbances and/or maintain the system in a
steady state). Note that we refer to the existing controllers
as experts although they are likely to be suboptimal when
facing changes in the environment such as disturbances.

To this end, the proposed method learns an ensemble
of Nd discriminators. The discriminators are trained to
differentiate between the provided guidance — relevant
states, and the agent’s growing experience. We propose
to predict if a transition s∗ → s is taking the agent
in the correct direction, where s∗ is a batch of the last
states and s is the current state. The intuition behind this
formulation is that predicting the relevance of the current
state is challenging without accessing past trajectories.
On the other hand, we can accurately predict, on the
basis of previously visited states s∗, whether the transition
looks similar to the existing controllers’ intentions and is
relevant for reaching the goal being pursued.

In detail, given a batch of previously experienced states
s∗ and the current state s, the discriminators are trained
to differentiate between expert state trajectories (labeled
as 1) from a replay memory ME and the agent’s growing
dataset R (labeled as 0). In this work, the agent is trained
to “fool” the discriminators into thinking itself is the
expert. Throughout learning, the discriminators in the
ensemble are randomly initialized, and each discriminator
Dϕ is trained according to the loss function defined below,
with respect to its parameters ϕ:

L(Dϕ,ME , R) = E(s∗,s)∼ME
[log(Dϕ(s

∗, s))]

+ E(s∗,s)∼R[log(1−Dϕ(s
∗, s))] (1)

Each discriminator is trained independently by drawing
examples at random with replacement from ME and R.
Since our approach operates in the low data regime —
where not many expert data are available, we embrace
dropout and mixup training (Zhang et al., 2018) as reg-
ularization techniques. Therefore, we introduce a dropout
layer before every weight layer of our discriminator net-
works. We also utilize mix-up regularization that creates
new examples as convex combinations of training points
and labels. While this technique has been primarily used
on images, we found this technique extremely effective
on sensor data. Namely, mixup constructs virtual training
examples (s∗, s, y) as follows:

s∗ = λs∗1 + (1− λ)s∗2 ; s = λs1 + (1− λ)s2 (2)

y = λy1 + (1− λ)y2 (3)

where λ ∈ [0, 1] controls the extent of mixup λ ∼
Beta(α, α), (s∗1, s1, y1) and (s∗2, s2, y2) are two examples
drawn at random from our training datasets ME and R,
and y1 and y2 are the labels (i.e. expert or policy) of the
examples.

We can now employ the fitted discriminators to generate
a reward that will encourage the agent to explore states
around potentially meaningful regions of the state space.
The exploration bonus bt, which is further summed with
the task reward rt, is computed by using the outputs of
the discriminators:

bt(s
∗, s) = F (w(s∗, s,Dϕ1)Dϕ1(s

∗, s), ..., w(s∗, s,DϕNd
)DϕNd

(s∗, s))

(4)
where w(s∗, s,Dϕ) denotes the weight of tuple (s∗, s,Dϕ)
and the aggregation function F is a hyperparameter of our
method. Theoretically, F = mean would be a good choice;
however, in practice it is prone to learning inaccurate
behaviors due to the small amount of available expert
data. Empirically, we found that F = max works well
as a robust substitute to mean, rewarding the agent for
exploring regions that either are considered as relevant
by the discriminators or the ones for which the ensemble
has high spread. In other words, it captures both the
expert’s intentions and uncertainty. We assign a weight
w(s∗, s,Dϕ) to the output of the discriminator Dϕ(s

∗, s)
in order to take into account its confidence. It was shown
that the use of dropout can be interpreted as a Bayesian
approximation of Gaussian process (Gal and Ghahramani,
2016). Therefore, to estimate predictive confidence, we
collect the results of stochastic forward passes through the
discriminator network:

w(s∗, s,Dϕ) = clip(

[
β

Edj∼D[D
dj

ϕ (s∗, s)− p]2

]
, 0.1, 1)

(5)

whereD
dj

ϕ (s∗, s) represents the discriminator with dropout
mask dj , D is a set of dropout masks, β is a hyperpa-
rameter of our method, and p is the predictive posterior

mean, p = Edj∼DD
dj

ϕ (s∗, s). Since the forward passes can
be done concurrently, the method results in a running time
identical to that of standard dropout.

2.1 Leveraging Controller Guidance

As discussed above, we maintain a replay buffer ME where
we store expert data. Expert state trajectories are used
to determine if a transition s∗ → s is taking the agent
in the correct direction. Rather than relying on standard
human demonstrations that are cost and time prohibitive
to collect in process control tasks, we take advantage of
existing controllers — controller guidance.

The most straightforward way to leverage controller guid-
ance is to run the plant under the control of the existing
controllers (e.g. PIDs) and collect steady states. In this
setting, the existing controllers strive to maintain the
system in a steady state, where the production of the plant
is optimal and conditions are stable. The collected tuples
(s∗, s) are stored inside the replay buffer, ME ← ME ∪
{(s∗0, s0), (s∗1, s1), ...}. This type of guidance allows the
learner to identify the regions that must be reached in
order to maintain the system in steady/optimal conditions.

In some experiments we attempt to leverage the expert
trajectories under disturbances to enrich the set of initial
examples. Thus, we collect imperfect behaviors by observ-
ing the controllers attempting to correct disturbances. To
do so, we run the simulator under disturbances and collect

state trajectories. Note that most disturbances cannot
be corrected; nevertheless, even imperfect trajectories can
still encode domain knowledge on system dynamics and
control. This necessity to learn from suboptimal controllers
further highlights the importance of building a novel type
of guidance that does not include the expert actions. We
found that distinguishing expert states from agent states is
less prone to overfitting suboptimal behaviors than relying
on state-action pairs from an expert (see Sect 3.6.2).

2.2 Self-Supervision

In addition to controller guidance, we propose to incor-
porate the agent’s past good trajectories, a form of self-
supervision. The intuition behind this approach is that
controller guidance drastically improves performance at
the onsent of the training phase. Once the agent acquires
knowledge about the task, we aim to prioritize the agent’s
past good experience over suboptimal controller guidance.
To this end, we propose to store past episodes with large
returns in an episodic memory: MR = {(τ,Rt, done), ...},
where τ is a state trajectory, Rt =

∑∞
k=t γ

k−trk is the
discounted sum of rewards, and done indicates if the tra-
jectory was successful.

The episodic memory has a limited capacity K. At every
step, a new trajectory might be added to the memory.
What to do when the capacity is exceeded? We substitute
the element with the lowest return Rt in memory with
the current element. Until the entire memory is filled
with successful trajectories, this strategy is solely applied
among unsuccessful trajectories. This way, there are still
more fresh elements in memory than older ones, but the
older meaningful elements are not totally neglected.

To train the discriminators, we extract transitions s∗ → s
from MR, and then employ a mixture of examples from
ME and MR as expert data. At the beginning of the
training, we only provide the agent controller guidance
so |MR| = 0. The agent samples from the trajectories
in ME with probability δ, MR with probability ρ, and
from steady data in ME with probability 1 − ρ − δ. As
the agent acquires more knowledge about the task —
controller guidance is mostly needed to collect the first
few successful trajectories, we decrease the probability of
replaying controller guidance and increase the probability
ρ of replaying experienced states. δ and ρ are annealed
according to the following rules each time a new successful
trajectory is added to the episodic memory:

δ = δ − (
ρ0
K

); ρ = ρ+ (
ρ0
K

) (6)

where ρ0 is the initial value of ρ, and K is the maximum
size of the episodic memory. Note that in terms of imple-
mentation, examples from MR are merged into ME when
training the discriminators — MR and ME are treated as
a single memory ME ←ME ∪MR in Eq. 1 and transitions
are sampled according to Eq 6.

3. EXPERIMENTS

We evaluate the proposed method on a chemical plant
simulator, which replicates a real vinyl acetate monomer
(VAM) plant. Our goal is to evaluate the agent’s capability
to control the chemical plant under disturbances in terms
of return and data efficiency.

3.1 Chemical Plant Simulator

Experiments are conducted on a VAM plant environment
under disturbances, which reflects the characteristics and
practical problems of real plants. The simulator is com-
prised of eight components for materials feeding, reacting,
and recycling. The process is observed via 109 sensors that
measure the volume, flux, temperature, concentration, and
pressure of the chemical substances. In order to complete
the task, the agent has to: 1) avoid failures in equipment
that can be triggered by disturbances, 2) stabilise and
correct internal or external disturbances — recover from
disturbances, and 3) maintain the process in a steady state.
The environment includes 19 disturbance scenarios that
can be used to evaluate these properties.

Concretely, the state space consists of the sensor readings.
To facilitate the learning of agents, we use an observation
normalization scheme. That is, we whiten each dimension
by subtracting the running mean and then dividing by the
running standard deviation. The action space consists of
a set of PIDs to control — these PIDs are selected based on
their relevance with regards to the scenario. The ranges of
actions are defined as [−x1%,+x2%] from the initial values.
In our experiments, we set x1 = 0.60 and x2 = 1.35. The
agent interacts with the environment once a minute for 60
virtual minutes, which corresponds to one episode. In the
absence of domain knowledge and to replicate real-world
problems where rewards are naturally sparse, a general-
purpose choice is to set the reward function as:

r(x, xt) =

{
1.0 if (|x−xt|

xs
< ϵ)

0.0 otherwise
(7)

where x is the current state, xt is the target state, xs is a
steady state value, and ϵ is a threshold value. In practice,
we set xt = xs and ϵ = 0.01.

3.2 Disturbance Scenarios

We now describe the three disturbance scenarios that we
use to evaluate the presented method:

• Change Feed Pressure AcOH (“Pressure AcOH”):
raw material acetic acid feed composition is changed
due to condition changes of the acetic acid plant.
The intensity level varies randomly between [1, 50].
The agent controls the PIDs: PC130, LC130, FC130,
FC170, and PC210.
• Change Feed Pressure C2H4: raw ethylene feed pres-
sure is changed due to condition changes of the ethy-
lene plant. The intensity level varies randomly be-
tween [70, 140]. The agent controls the PIDs: PC130
and LC130 (“Pressure C2H4-2”), or, PC130, LC130,
FC130, and TC150 (“Pressure C2H4-4”).
• Day and Night (“Day/Night”): a day and night cycle
leads to atmosphere changes, resulting in non-steady
conditions and fluctuations in internal temperatures.
The intensity level varies randomly between [1, 50].
The agent controls the PIDs: PC130, LC130, FC310,
TC150, and FC170.

3.3 Experimental Details

As our policy learning method, we rely on proximal pol-
icy optimization (PPO) (Schulman et al., 2017). We re-

fer to our algorithm as CGS — Data-Efficient RL from
Controller Guidance with Integrated Self-Supervision.
The actor and critic networks consist in 3 fully-connected
layers with 128 hidden units. Tanh is used as the activation
function. Training is carried out with a fixed learning rate
of 7−4 using the Adam optimizer (Kingma and Ba, 2014),
with a batch size of 128. The policy is trained for 4 epochs
after each episode. In all our experiments, the discrimi-
nators’ confidence is estimated using 100 dropout masks
with p = 0.2. In general cases, Nd = 3 is sufficient to yield
satisfactory performance. The discriminator networks are
updated 5 times after each episode using batches of size
128, except for the first 10 episodes where the networks are
updated for 100 times. To create s∗, we stack the four most
recently experienced states. We set β = 0.7, ρ0 = 0.30, and
γ = 1. The exploration reward is normalized by dividing
it by a running estimate of the standard deviations of
the exploration returns. The exploration bonus is scaled
by a factor 0.1 and the extrinsic reward by a factor 0.9.
For mixup training, we set α = 1. Our method uses 100
steady states as training examples (referred to as ste),
which can be enriched with examples extracted from 15
expert trajectories under disturbance (referred to as trj).
We refer to the self-supervision algorithm as sel, and we
set the size of the episodic memory K = 20.

3.4 Feed Pressure Disturbance Scenarios

We first perform experiments on three internal disturbance
tasks: pressure AcOH, pressure C2H4-2, and pressure
C2H4-4. We evaluate our method with different settings:
CGS+ste, CGS+ste+trj, CGS+ste+sel, and CGS+ste+
trj+sel. Moreover, we compare our method against several
baselines including PPO (Schulman et al., 2017), A2C
(Mnih et al., 2016), ACKTR (Wu et al., 2017), and the
existing PIDs. We show learning curves in Figure 1. As
can be observed, our method learns faster than other
approaches in all the tasks. In addition, CGS achieves
higher average return than baseline methods including
the existing controllers. The results show that controller
guidance (ste and trj) drastically improves the agent’s
performance at the onset of its training. On the other
hand, self-supervision allows the agent to constantly re-
ceive supervision during its training, which leads to a con-
tinuous improvement of the agent’s performance. Notably,
Figure 1b and Figure 1c highlight that the gap between
our approach and the others is increasing with the degree
of complexity of the task — the number of PIDs to control.

We further report some examples of learned policies in
Figure 2. The solid lines indicate the actual measured
distance to the target state. Note that to ensure the
readability of the figure, we show examples of policies
learned by the following RL methods: CGS+ste + trj +
sel, PPO, A2C, and ACKTR. This experiment highlights
that quickly after the onset of a disturbance, our agent
can correct it and return to a steady state (dashed line),
mitigating the drop in the production load.

3.5 Day and Night Disturbance Scenario

In addition to the first set of experiments, we evaluate our
methodology on a different type of disturbance: day/night.

(a) Pressure AcOH (b) Pressure C2H4-2 (c) Pressure C2H4-4

Fig. 1. Performance for different disturbance scenarios on the VAM plant. Results are averaged over 5 runs (±std).

(a) Pressure AcOH (b) Pressure C2H4-4

Fig. 2. Examples of learned policies for several distur-
bances with different levels of intensity. A straight line
usually indicates a failure in equipment, meaning that
the policy is no longer able to control the plant.

Fig. 3. Average return on the VAM plant under day and
night disturbance. Results are averaged over 5 runs.

In this scenario, day and night cycles may result in non-
steady conditions caused by a drop in internal tempera-
tures. Figure 3 plots the learning curves of all the models.
We can observe that our strategy helps to greatly im-
prove convergence speed and performance. We can further
observe that the existing PIDs cannot cope with distur-
bances. On the other hand, leveraging controller guidance
allows our agent to quickly experience first few successful
trajectories. After a few training episodes, self-supervision
provides enough supervision for the learner to discover
alternative strategies to further correct disturbances.

3.6 Ablation Study

Size of the Episodic Memory We now report evaluations
showing the effect of increased episodic memory size. Table
1 demonstrates that agents trained with memory size
larger than 10 obtain higher mean returns after similar
numbers of updates. However, we can also observe that a
too large value (i.e.K >50) tends to hurt the performance.
One reason is that a large memory induces a higher chance
of keeping in memory outdated suboptimal trajectories.

Table 1. Return (± std) for different values of
the memory size (CGS+ste+ sel). Results are

averaged over 5 random seeds.

Average return ± std

Memory Size Pressure AcOH Pressure C2H4-2 Pressure C2H4-4 Day/Night

10 0.77 ± 0.11 0.93 ± 0.04 0.89 ± 0.02 0.75 ± 0.03
20 0.79 ± 0.10 0.95 ± 0.04 0.92 ± 0.03 0.77 ± 0.02
30 0.80 ± 0.15 0.95 ± 0.05 0.91 ± 0.03 0.76 ± 0.04
50 0.77 ± 0.13 0.92 ± 0.04 0.88 ± 0.05 0.76 ± 0.06
100 0.71 ± 0.11 0.89 ± 0.06 0.86 ± 0.04 0.69 ± 0.06

Table 2. Return (± std) for different types
of imperfect guidance in the pressure C2H4-4
scenario, where ϱ is the probability of adding
noise. Results are averaged across 5 seeds.

Average return ± std

Method ϱ = 0.0 ϱ = 0.05 ϱ = 0.1 ϱ = 0.2

CGS+ste (act) 0.82 ± 0.05 0.68 ± 0.11 0.55 ± 0.06 0.48 ± 0.12
CGS+ste (no-act) 0.91 ± 0.03 0.87 ± 0.07 0.84 ± 0.10 0.71 ± 0.09
CGS+ste+ trj (act) 0.65 ± 0.08 0.57 ± 0.08 0.38 ± 0.18 0.25 ± 0.21
CGS+ste+ trj (no act) 0.90 ± 0.11 0.84 ± 0.09 0.73 ± 0.12 0.70 ± 0.10
CGS+ste+ sel 0.92 ± 0.03 – – –
CGS+ste+ trj + sel 0.98 ± 0.02 – – –
PPO 0.40 ± 0.07 – – –
A2C 0.01 ± 0.01 – – –
ACKTR 0.17 ± 0.03 – – –
PIDs 0.52 – – –

Generally, the size does not require to be fine-tuned for
each task (i.e. 20 ≤ K ≤ 50) since the agent maintains
acceptable performance.

Effect of Imperfect Guidance In this section, we aim to
investigate the effect of imperfect guidance on the agent’s
performance. We compare our method (CGS no-act) to
CGS where we replace s∗ by the expert actions a (CGS-
act). In other words, given tuples (a, s), the discriminators
distinguish between the provided guidance and the agent’s
growing experience, where s is the current state and a is
the next action. The goal is to evaluate whether lever-
aging state trajectories is more robust to imperfect/noisy
guidance than learning from state-action trajectories. Al-
though trj guidance is by nature suboptimal, we sought
to increase the difficulty of the task. Thus, we simulate
imperfect guidance by adding normal noise N (0, σ2) to
the current state (CGS no-act) s or the expert actions
(CGS act), with a probability ϱ ∈ {0.0, 0.05, 0.1, 0.2}
and σ = 0.03. For this experiment, we use PPO+ste
and PPO+ste + trj since self-supervision is not directly
affected by noisy guidance. We report in Table 2 the
performance of our framework. We observe that CGS
can still achieve acceptable performance. Even though the
proposed method performs slightly worse in the imperfect

Table 3. Return (± std) for different amounts
of controller guidance. Results are averaged

over 5 random seeds.

Average return ± std

Steady States / Trajectories Pressure AcOH Pressure C2H4-4 Day/Night

50 / 5 0.89 ± 0.06 0.87 ± 0.07 0.53 ± 0.05
100 / 5 0.89 ± 0.05 0.88 ± 0.06 0.52 ± 0.06
500 / 5 0.90 ± 0.05 0.87 ± 0.08 0.52 ± 0.05
50 / 15 0.91 ± 0.05 0.88 ± 0.08 0.55 ± 0.04
100 / 15 0.93 ± 0.04 0.90 ± 0.11 0.61 ± 0.04
500 / 15 0.92 ± 0.05 0.90 ± 0.09 0.62 ± 0.03
50 / 50 0.92 ± 0.07 0.90 ± 0.08 0.56 ± 0.02
100 / 50 0.92 ± 0.06 0.93 ± 0.09 0.62 ± 0.04
500 / 50 0.93 ± 0.05 0.92 ± 0.08 0.64 ± 0.03

setting, it still notably improves performance compared to
the agents that learn from actions. This trend continues
when noise is artificially added to the expert actions or
recently observed states (i.e. ϱ > 0). Overall, empirical
results suggest that: 1) our method is reasonably robust
to suboptimal guidance, 2) an agent trained from state
guidance is less prone to overfitting suboptimal behaviors
than an agent relying on state-action guidance.

Amount of Controller Guidance Finally, to quantify the
impact of controller guidance on learning and performance,
we evaluate our architecture (CGS+ste + trj) with dif-
ferent amounts of controller guidance. Table 3 reports
the mean episode-returns obtained on different scenarios.
We notice that although the number of steady states
significantly differs, the difference in learning effect can
be negligible. This can happen because the agent is able
to leverage a small amount of steady states in order to
identify task-relevant regions. We can further observe that
our method is able to operate in the low-data regime —
a few imperfect trajectories generated by PIDs provide
enough supervision to enhance the performance of agents.

4. CONCLUSION

In this paper, we presented CGS, a sample-efficient RL
framework for process control, which is capable of con-
trolling a chemical plant and correcting disturbances. The
proposed method relies on controller guidance to improve
the agent’s performance, particularly at the onset of its
training, and self-supervision to guide the agent through-
out the training process. We further propose a strategy
to prioritize sampling of the agent’s successful experience,
and adjust the exploration bonus according to the discrim-
inators’ confidence. Experimental results on a VAM plant
show that CGS can greatly benefit in sample efficiency
and could help to expand the possible applications of RL
to real-world process control. Remarkably, our approach
is able to leverage guidance from suboptimal controllers
and alleviates the need to access to the expert actions. We
further demonstrate that CGS significantly outperforms
baselines in terms of average return and sample efficiency.

REFERENCES

Bellemare, M.G., Naddaf, Y., Veness, J., and Bowling, M.
(2013). The arcade learning environment: An evalua-
tion platform for general agents. Journal of Artificial
Intelligence Research, 47, 253–279.

Cheng, L., Subrahmanian, E., and Westerberg, A.W.
(2004). A comparison of optimal control and stochastic

programming from a formulation and computation per-
spective. Computers & Chemical Engineering, 29(1),
149–164.

Cui, Y., Zhu, L., Fujisaki, M., Kanokogi, H., and Matsub-
ara, T. (2018). Factorial kernel dynamic policy program-
ming for vinyl acetate monomer plant model control. In
IEEE International Conference on Automation Science
and Engineering, 304–309.

Gal, Y. and Ghahramani, Z. (2016). Dropout as a bayesian
approximation: Representing model uncertainty in deep
learning. In International Conference on Machine
Learning, 1050–1059.

Jia, R., Jin, M., Sun, K., Hong, T., and Spanos, C. (2019).
Advanced building control via deep reinforcement learn-
ing. Energy Procedia, 158, 6158–6163.

Kamthe, S. and Deisenroth, M. (2018). Data-efficient
reinforcement learning with probabilistic model predic-
tive control. In International conference on artificial
intelligence and statistics, 1701–1710.

Kingma, D.P. and Ba, J. (2014). Adam: A
method for stochastic optimization. arXiv preprint
arXiv:1412.6980.

Kubosawa, S., Onishi, T., and Tsuruoka, Y. (2019). Syn-
thesizing chemical plant operation procedures using
knowledge, dynamic simulation and deep reinforcement
learning. ArXiv, abs/1903.02183.

Kubosawa, S., Onishi, T., and Tsuruoka, Y. (2021). Com-
puting operation procedures for chemical plants using
whole-plant simulation models. Control Engineering
Practice, 114, 104878.

Li, Y., Wen, Y., Tao, D., and Guan, K. (2020). Trans-
forming cooling optimization for green data center via
deep reinforcement learning. IEEE Transactions on
Cybernetics, 50(5), 2002–2013.

Machida, Y., Ootakara, S., Seki, H., Hashimoto, Y., Kano,
M., Miyake, Y., Anzai, N., Sawai, M., Katsuno, T.,
and Omata, T. (2016). Vinyl acetate monomer (vam)
plant model: A new benchmark problem for control and
operation study. 49(7), 533–538. IFAC Symposium
on Dynamics and Control of Process Systems Including
Biosystems.

Mnih, V., Badia, A.P., Mirza, M., Graves, A., Lillicrap,
T., Harley, T., Silver, D., and Kavukcuoglu, K. (2016).
Asynchronous methods for deep reinforcement learning.
In Conference on machine learning, 1928–1937.

Qin, Y., Zhang, W., Shi, J., and Liu, J. (2018). Improve
pid controller through reinforcement learning. In IEEE
Guidance, Navigation and Control Conference, 1–6.

Schulman, J., Wolski, F., Dhariwal, P., Radford, A., and
Klimov, O. (2017). Proximal policy optimization algo-
rithms. arXiv preprint arXiv:1707.06347.

Wu, Y., Mansimov, E., Grosse, R.B., Liao, S., and Ba, J.
(2017). Scalable trust-region method for deep reinforce-
ment learning using kronecker-factored approximation.
Proceedings of Advances in neural information process-
ing systems, 30, 5279–5288.

Zhang, H., Cisse, M., Dauphin, Y.N., and Lopez-Paz, D.
(2018). mixup: Beyond empirical risk minimization. In
international Conference on Learning Representations.

Zhu, L., Cui, Y., Takami, G., Kanokogi, H., and Matsub-
ara, T. (2020). Scalable reinforcement learning for plant-
wide control of vinyl acetate monomer process. Control
Engineering Practice, 97, 104331.

