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Abstract: The goal of this research is to improve the harmonic search (HS) algorithm by
using type-1 and interval type-2 fuzzy systems to dynamically change one of the evolutionary
method’s parameters. We have previously used both sorts of fuzzy systems in a variety of
benchmark challenges and discovered that using fuzzy logic in conjunction with the harmonic
search algorithm produces good results. In some of the experiments, it is clearly demonstrated
that our methodology is statistically superior to other algorithms. Using type-1 and interval
type-2 fuzzy systems, the harmony memory (HMR) parameter is dynamically changed during
the evolution process in this example. The fundamental contribution of this work is the capacity
to establish, by experimentation in a benchmark control issue, which of the two types of fuzzy
systems employed with the harmonic search method produces better results. This is because
there are no previous studies to our idea that employ and compare type-1 and interval type-2
fuzzy systems. Furthermore, three type of uncertainties are employed in the benchmark two-tank
level control system to assess the performance of both fuzzy systems, simulating the disturbances
that may present in the actual world and therefore allowing statistical validation if there are
substantial differences between type-1 and interval type-2 fuzzy systems.
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1. INTRODUCTION

Over the last four decades, a slew of novel meta-heuristics
have evolved. They have used their strengths to solve
crucial optimization challenges in areas including resource
allocation, industrial planning, scheduling, medical, engi-
neering, and computer engineering, among others. The
objective of the proposed algorithm is one of the key
features used to categorise meta-heuristics, and it may be
classed based on the judgments of technique presentation.
The majority of meta-heuristics are based on physics, bi-
ology, and ethology, in which random variables and several
parameters are used to attain the target function.Over
the last four decades, a slew of novel meta-heuristics have
evolved. The objective of the proposed algorithm is one
of the key features used to categorise meta-heuristics, and
it may be classed based on the judgments of technique
presentation.

Natural and physical processes, as well as animal behav-
ioral patterns, are now inspiring algorithm ideas, such as
the Genetic Algorithm Patel et al. (2021), Ant Colony Op-
timization (ASO), Particle Swarm Optimization (PSO),
Bee Colony Optimization (BCO) Olivas (2019), Simulated
Annealing (SA), and Harmony Search (HS) Algorithm
Patel (2022). The Harmony Search Algorithm is one of the
most recent meta-heuristic algorithms (HS). This design
is based on the idea of music spontaneity, and it keeps
polishing its pitches to achieve better harmony. In terms

of simplicity, flexibility, adaptability, and scalability, the
HS has various advantages Patel (2022). It also features
a novel stochastic derivative and requires a simpler math-
ematical equation to generate new solutions at each iter-
ation, especially when an existing solution is taken into
account Patel (2022). When dealing with optimization
performance in particular numerical optimization issues
to search local optima, adjusting the parameters of the
HS method becomes the important task. In the case of
PSO and the Differential Evolution Optimization (DEO)
method, a similar difficulty arises.

The harmonic memory rate (HMR), pitch adjusting rate
(PAR), and range bandwidth (BW) are three factors that
have prompted researchers to work on the HS algorithm
Patel (2022). Since the inception of HS, much of the
work has been devoted to fine-tuning the parameters and
their impact on the algorithm’s efficiency. Each of these
parameters has a role to play in supporting HS in finding
the optimal solutions. The HMR parameter, for example,
is important for accomplishing a faster convergence rate,
PAR is responsible for increasing solution variety, and BW
is used to improve the diversity of exact solution at the
conclusion of the iteration Patel (2022).

Fuzzy controllers are now optimized using metaheuristics,
and these controllers need to be optimised because they
often do not attain the best performance possible nec-
essary for real-world applications. Because they employ



the original concept of fuzzy sets Zadeh (1965, 1988),
these controllers are commonly referred to as type-1 fuzzy
logic controllers (FLC). The existing fuzzy logic (type- 1)
that was suggested from the inception, type-2 fuzzy logic
was later developed with the objective of handling more
difficult problems, that is, problems with a higher high
degree of uncertainty, than type-1 fuzzy logic can solve
Zadeh (1988); Liang and Mendel (2000).

Because type-2 fuzzy logic systems are a collection of type-
1 fuzzy logic systems, their ability to handle uncertainty.
The article in Patel and Shah (2021a,b, 2019a,b,c) demon-
strate the use of type-2 fuzzy systems to solve a variety of
control applications with excellent results.

The type-1 fuzzy systems have previously been optimised
with metaheuristic algorithms; for example, the optimiza-
tion of type-1 fuzzy controllers is discussed in Lagunes
et al. (2019), which uses the firefly method to optimise
fuzzy controllers of autonomous mobile robots. Galactic
Swarm Optimization (GSO) was also utilised to optimise
a fuzzy controller for an autonomous robot following a
trajectory in Bernal et al. (2019), where the dynamic
adjustment of the most critical parameters for the GSO
algorithm’s operation is described. The GSO algorithm
was also employed in the optimization of the liquid level
fuzzy controller in Bernal et al. (2020).

There are other studies that use alternative metaheuristic
algorithms to optimise fuzzy controllers. In Wagner and
Hagras (2007), for example, the genetic algorithm (GA) is
used to evolve the framework of a type-2 fuzzy controller
in real-world robot navigation. Other authors have used
fuzzy controllers to control autonomous robots following
a trajectory, as described in Astudillo et al. (2006). There
are some more fuzzy controller applications due to their
efficiency and performance, as shown in Wu (2012), which
compares type-1 and type-2 fuzzy controllers, and Wu and
Tan (2004), which uses two fuzzy controllers to control the
liquid-level process in a single tank.

The major goal of this research is to provide an opti-
mization approach that uses a metaheuristic algorithm
to achieve optimal performance for generating satisfac-
tory outcomes in the control of two-tank interacting level
control system subject to faulty circumstances. Because
it has been shown that using parameter adjustment in
metaheuristic algorithms for the optimization of mathe-
matical functions and control problems produces compet-
itive results, we propose in this paper that we use type-
1 fuzzy logic to perform dynamic parameter adjustment
and measure the performance of the algorithms used in
the optimization of the fuzzy controller.

2. FUZZY LOGIC AND HARMONY SEARCH
ALGORITHM

Fuzzy logic is a good methodology to design robust sys-
tems which can achieve a satisfactory performance in an
environment with uncertainty or ambiguity Zadeh (1965).

The relevant theories and concepts for this study are
presented in this section.

2.1 Harmony Search Algorithm

Harmony search algorithm (HSA) is a metaheuristic that
was developed during last decade. It imitates the actions of
a musician who achieves perfect harmony Z. W. Geem and
Loganathan (2001). The following are the main character-
istics of HSA: (1) No derivate information is required, (2)
just a few control parameters are required for fine tuning,
and (3) no initial configuration of decision variables is
necessary V. Kumar and Kumar (2012).

2.2 Harmony Search Algorithm

Currently the HS algorithm is one of the most popular
metaheuristics used to solve diverse types of problems.
HS is based on the musical theory of jazz improvisation
for imitating the natural process of a musician, which
is translated into mathematical terms and generates the
following 5 steps and their respective equations:

Step 1: Initialize the problem and parameters.
Minimize

f(x)s.t.x(j)) ∈ [LB(j), UB(j), j = 1, 2, · · · , n] (1)

Step 2: Initialize the Harmony memory (HM).

HM =


x1
1 x1

2 · · · x1
N f(x1)

x2
1 x2

2 · · · x2
N f(x2)

...
...

...
...

...
xHMS
1 xHMS

2 · · · xHMS
N f(xHMS)

 (2)

Step 3: Improvise a New Harmony.

Xnew(j) = Xnew(j)± r ×BW (3)

Step 4: Update the Harmony Memory.
To update the HM with a new solution vector, xnew,
the objective function will be used to evaluate them. A
comparison is made to find out if the new vector solution
is better than the worst historical vector solution and then
the worst historical is excluded and substituted with a new
one.

Step 5: Verify if the stopping criteria is met.
The process is repeated until the number of improvisations
(NI) is satisfied; otherwise the process is repeated from
Steps 3 and 4. Finally, the best solution is achieved and
considered as the best result to the problem.

2.3 Fuzzy Harmony Search Algorithm

The main goal of dynamic parameter adaptation using
fuzzy systems is to improve the quality of the results
obtained by performing a better local and global search
than with the original HS method. The metric used in the
fuzzy system input is the percentage of elapsed iterations
defined by Eq. (4), and the output is the dynamic adjust-
ment of the HMR parameter representing the exploitation
of the search space defined by Eq. (5), and to better
represent this idea this parameter is converted into a fuzzy
parameter. In this method, this value is considered to be
fuzzy as it is updated within the FHS progress, and is



Table 1. Rules for the type-1 and interval type-
2 fuzzy inference system for (FHS) algorithm

Sr. no. Iteration (I) Diversity (D) HMR

1 Low Low Low

2 Low Moderate Moderate

3 Low High Moderate

4 Moderate Low Moderate

5 Moderate Moderate Moderate

6 Moderate High High

7 High Low High

8 High Moderate Moderate

9 High High High

determined by Eq. (5), where HMR is changing values in
the range [0, 1].

Iteration(I) =
Current Iteration (CI)

Maximun of iterations (MI)
(4)

To find out the new parameter values, the fuzzy system
uses as input the percentage of transpire iterations and the
degree of ”Diversity (D)” of individuals from bio-inspired
method, and now from these metrics, these parameters
are used as an input for the fuzzy system as defined by
Equations (5).

Diversity(D) =
1

ns

ns∑
i=1

√√√√ nx∑
j=1

(
Xij(t)−Xj(t)

)2
(5)

Equation (6) considers a percentage of elapsed iterations
to find the values of HMR. It initializes with low values of
HMR so that the algorithm has diversification and then
achieves intensification:

HMR =

∑rhmr

i=1 µhmr
i (hmr1i)∑rhmr

i=1 µhmr
i

(6)

where HMR is the memory consideration; rhmr is the
number of rules of the fuzzy system corresponding to hmr;
hmr1i is the output result for rule i corresponding to hmr;
µhmr
i i is the membership function of rule i corresponding

to hmr. The pseudo-code for the fuzzy HM optimization
algorithm taken from Patel (2022) and implemented.

The rules are designed based on the study of parameters
of the algorithm, so that in the initial iterations HS will
explore and then in the final iterations it will exploit the
search space, and in this case the rules are on an increase
fashion. The fuzzy rules are summarized in Table 1.

Table 1 represents the idea of increasing the output of the
rules as iterations are progressing.

The fuzzy rules are same for the type-1 and interval type-2
system for parameter adaption of fuzzy HS algorithm.

The HS algorithm parameter adjustment fuzzy system
employs the input variable ”Iteration (I)” and the out-
put variable the harmony memory (HMR) parameter. As
shown in Fig. 1, each variable is made up of three triangle
membership functions designated ”Low”, ”Moderate”, and
”High”. As shown in Fig. 1, the fuzzy system HS T1 that
performs HS parameter adjustment employs the ”Iteration

(I)” and ”Diversity (D)” variable as an input variable and
HMR as an output variable as a parameter, and these
variables are made up of three triangular membership
functions designated as ”Low”, ”Moderate”, and ”High”.

Fig. 1. Type-1 fuzzy system for the FHS

Same way, IT2FIS design for parameter adaption of FHS
algorithm and the input and output membership function
presented in figure. 2.

Fig. 2. Interval Type-2 fuzzy system for the FHS

The logic behind fuzzy system rules is that when the
algorithms are in their first iterations, they can explore,
and when they are in their final iterations, they can utilize.

To measure the performance of the algorithms for the
optimization of the fuzzy controller, the mean squared
error (MSE) is used. Its equation is described below:

MSE =
1

n

n∑
I=1

(Xi − Yi)
2
, (7)

where Xi is the reference value at time I; the reference
values are given in Mart́ınez et al. (2009); Yi is the value
produced by the system at time I, and n is the number of
samples considered in the test.

3. SIMULATION RESULTS

In this section, the results obtained from the fuzzy con-
troller optimization of the two-tank level control system
are presented. The methodology consists on using a meta-
heuristic algorithm to generate a vector of the necessary
parameters to form the membership functions of the type-
1 fuzzy controller that is optimized. For this specific case,
the metaheuristics are the harmonic search optimization



and their variants with dynamic adaptation of parameters
using type-1 and interval type-2 fuzzy systems. Table 2
shows the parameters used in harmonic search optimiza-
tion algorithm to perform the optimization of the type-1
fuzzy controller for two-tank level control process.

Table 2. Parameters of the proposed fuzzy HS
algorithms

Parameter FHS

PArate 0.01-0.99

BW 0.01-0.07

Iteration 600

HMR Dynamic

Figure 3 shows the performed simulation to obtain the
best optimized fuzzy system with the interval Type-2 fuzzy
harmonic search algorithm, where it can be observed that
the best error found at 30th simulation.

Fig. 3. Results for the fuzzy HS using type-1 and interval
Type-2 fuzzy system

3.1 Two-tank level control system mathematical model and
fuzzy controller

A1
dh1
dt

= (α×q1)−qo1−q12 & A2
dh2
dt

= q12−q2−ql (8)

qo1 = γ1
√
h1, q2 = γ2

√
h2,& q12 = γ12

√
h1 − h2 (9)

In figure 4 the input and output membership functions
(MFs) for fuzzy controller are presented for TTLCS pro-
cess. The linguistic variable for input and output are taken
triangular and trapezoidal MFs.

3.2 Regulatory response with and without faults

In order to validate the proposed fuzzy algorithm the fuzzy
controller optimized using type-1 FHS and IT2FHS, the
figure 5, 6, 7, and 8 presented the regulatory response of

Fig. 4. Input and output MFs of Type-1 Fuzzy controller
for two-tank level control process

the two-tank level control process. The proposed algorithm
is capable to handle uncertainty like faults effectively
because of using interval type-2 fuzzy system. In summary,
we can state that there is sufficient statistical evidence
to say that the harmonic search optimization (and its
interval type-2 fuzzy variant) outperforms the harmonic
search optimization using type-1 fuzzy variation.

Fig. 5. Regulatory response of two-tank level control
process without fault

Fig. 6. Regulatory response of two-tank level control
process with actuator fault M=50% in (CV1)

Table 3 shows the fault recovery performance for the
design optimized fuzzy controller for two-tank level control
system under actuator fault, and results clear demonstrate
that the FHS using IT2FIS gives superior fault recovery
response as compared to FHS using T1FIS.

Figure 9, depicts the best type-1 FLS that the fuzzy HS
algorithm finds using IT2FIS for the benchmark two-tank
level control system.



Fig. 7. Regulatory response of two-tank level control
process with system component (leak) fault M=50%
in (CV1)

Fig. 8. Regulatory response of two-tank level control
process with external process disturbances M=40%
in (q2)

Table 3. Fault recovery time comparison with
uncertainty

Fuzzy
Algorithm

Uncertainty
Magnitude

Tfr

FHS Using IT2FIS Actuator Fault
M=50%

0.53 Sec
FHS Using T1FIS 0.64 Sec

FHS Using IT2FIS Leak Fault
M=50%

0.42 Sec
FHS Using T1FIS 0.57 Sec

FHS Using IT2FIS Process Disturbances
M=40%

0.37 Sec
FHS Using T1FIS 0.46 Sec

Fig. 9. Optimized MFs for type-1 fuzzy controller using
IT2FHS for the benchmark two-tank level control
process

3.3 Statistical Results and Comparison

To validate the performance of the proposed fuzzy opti-
mization algorithm to find out the optimal MFs param-

eters of the two-tank level fuzzy controller, a statistical
comparison is made to find evidence that the algorithms
have performed well in the case study of the two-tank level
control plant.

In Table 5, the null hypothesis (Ho) states that the average
MSE error for the HS with IT2FLSs algorithm (µ1) is
greater than or equal to the average MSE error for HS
with T1FLSs (µ2). The alternative hypothesis (Ha) states
that the average MSE error for the HS with IT2FLSs
algorithm (µ1) is less than the average MSE error for HS
with T1FLSs (µ2).

The statistical test utilized is the Z-test, which is based on
Equation (10), and the parameters for this test are an α
of 0.05 and a 95 % level of confidence.

Z =

(
X̄1 − X̄2

)
− (µ1 − µ2)

(σ1 − σ2)
(10)

The statistical z-test results in table 4 show that the
proposal employed for FHS algorithms is good in most
circumstances; however, the main focus of this research is
a comparison of the same HS algorithm using T1FIS and
IT2FIS for uncertain nonlinear level control systems.

4. CONCLUSION

First, we may emphasise and underline that using generic
type-2 fuzzy logic is preferable for larger levels of uncer-
tainty. The following is a comparison of the outcomes of
the two types of fuzzy systems, T1 FHS and IT2 FHS. To
begin, the best simulations without defects were 1.1×1004

and 5.94 × 1002, respectively, which are considerably far.
The same can be observed with the average of the MSE
error where the results were 2.99 × 1002 and 1.39 × 1001,
respectively.

Overall, the research carried out positive results when
comparing the two types of fuzzy systems, as well as when
comparing them to high-speed interval type 2 fuzzy sys-
tems integrated with the HS algorithm. We can appreciate
that we were able to accomplish superior outcomes with
our proposed IT2FHS methodology because the generic
type-2 fuzzy systems greatly aid the harmony search algo-
rithm in achieving better results.

The fundamental contribution of this study can be de-
scribed as a proposal of the harmony search mixed with
type-1 and interval type 2 fuzzy systems to dynamically
adjust a parameter of the HS algorithm, which has not
been done previously in the literature. The results of the
experiment can be used by other researchers as a guide to
the good outcomes that can be produced when employing
interval type 2 fuzzy systems under high levels of uncer-
tainty.

As future work, we envision that the proposed method
could be also applied in other problems in areas such as
pattern recognition, time series prediction, and medical
diagnosis among others Rubio (2017); Olivas (2019). An-
other important idea is to be able to perform experimen-
tation using the two kinds of fuzzy systems to dynamically
adapt the pitch adjustment rate (PAR), parameter in
some other control problems, to be able to validate with



Table 4. Results for the statistical Z-test with fuzzy harmony search algorithm

System/Process µ1 µ2 Z-Value

Two-Tank Level
Control System

Benchmark Process

Level System without Fault
with FHS Using IT2FIS

Level System without Fault
with FHS Using T1FIS

-4.1237

Level System with Process Disturbance
with FHS Using IT2FIS

Level System with Process Disturbance
with FHS Using T1FIS

-2.0948

Level System with Actuator Fault
with FHS Using IT2FIS

Level System with Actuator Fault
with FHS Using T1FIS

-1.7135

Level System with Leak Fault
with FHS Using IT2FIS

Level System with Leak Fault
with FHS Using T1FIS

-1.8614

Table 5. Statistical z-test parameters

Parameter Value

Ho µ1 ≥ µ2

Ha µ1 < µ2 (Claim)

Level of significance 95 %

A 0.05

Critical value -1.645

which parameter of the harmony search algorithm the best
results are obtained.
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