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Abstract: In chemical processes, nonlinearities, uncertainties, and constraints have resulted in much
more complex optimization problems, since optimization algorithms depend on model characteristics.
Optimization success for chemical processes requires a proper combination of the optimization tech-
nique and the model that is appropriate. In this paper, we propose a data-enhanced learning compensation
method for linear predictive control of nonlinear chemical processes. By using more reliable data to
increase the accuracy of the model, optimizing performance can be greatly enhanced. Our method can
be used in situations where engineering constraints must be met by a system with dynamics not well
understood or nonlinearities that make previous control methods ineffective. Finally, a practical example
of the CSTR is provided to demonstrate the efficacy of the proposed methods.
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1. INTRODUCTION

Over the past 20 years, the chemical industry has undergone
significant change due to higher energy costs, stricter environ-
mental regulations, and increased global competition for pric-
ing and quality. In order to deal with these issues, optimization
is one of the most important engineering tools (Edgar et al.
(2001)). To reduce costs and meet constraints, plant designs
and operating procedures have been modified, with a focus on
improving efficiency and increasing profitability. Optimal oper-
ating conditions can be implemented via increased automation
at the process level. However, the constraints, nonlinearities,
and uncertainties of chemical processes have greatly increased
the size and complexity of the optimization problems.

Chemical processes always involve nonlinear dynamics and
constraints. Therefore, constrained optimization is more suit-
able for controlling chemical processes. Usually, the optimal
operating point of a plant lies at the intersection of constraints.
To achieve economic objectives of a process, the real-time
modeling of nonlinear behaviors and the constraints handling
become critical issues for any successful controller (Zhou et al.
(2022c)). Prett and Garcı́a (2013) point out that model pre-
dictive control (MPC) is the only way to handle constraints
effectively. MPC and linear quadratic regulation (LQR) are
popular techniques because of their theoretical foundations and
their robustness and stability guarantees. However, many for-
mulations use linear time-invariant (LTI) approximations of the
dynamics of the system (Mayne (2014)). In order to enhance
closed-loop performance and maintain these robustness and
stability guarantees, data science and machine learning can be
incorporated into constrained optimal control problems.
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In recent years, data science and machine learning have been
increasingly used in chemical processes (Qin and Dong (2020))
since modern information technology allows us to collect huge
amounts of data, such as historical data from previous mea-
surements and real-time data during process runs. It would be
extremely helpful if we could use those online or offline process
data to predict and assess system states, make decisions, and
perform real-time optimization (Zhou et al. (2022b,a)). Using
long-short-term memory (LSTM) networks to train the process
model, Wu et al. (2021) focused on machine learning modeling
and MPC of nonlinear processes. In order to identify richer
models of the system, Aswani et al. (2013) used statistical iden-
tification tools and developed a learning controller using MPC
formulation. Utilizing historical inputs and/or outputs data, Lu
et al. (2019) examined various levels of data-driven learning
mechanisms to process control with constraints. Results above
illustrate that data-driven learning (always including optimiza-
tion) is a superior method for handling nonlinearities and/or
constraints in process control. In light of this, we are investi-
gating the data-driven learning method for chemical processes.

In this paper, we explore how data-driven learning can be in-
corporated into constrained optimal control for chemical pro-
cesses. With the advancement of optimization algorithms, the
modeling step usually presents more choices and challenges
than the optimization technique (Zhou (2012); Yang et al.
(2016)). Hewing et al. (2020) categorized the research on
learning-based MPC, i.e., integrating or combining MPC with
learning methods. Thus, we propose a data-enhanced learning
compensation method for linear predictive control of nonlinear
chemical processes. We demonstrate that by utilizing more ef-
ficient data to improve the accuracy of the model, the control
performance can be enhanced, and the convergence rate can
be increased. The flexibility of our design allows it to handle
situations in which engineering constraints have to be met by a
system exhibiting dynamics not well understood or nonlinear-
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Fig. 1. A simplified illustration of the CSTR

ities that make traditional control methods ineffective. Finally,
through numerical experiments for the continuous stirred-tank
reactor (CSTR) systems that are ubiquitous in the chemical
industry, we demonstrate that the data-enhanced learning MPC
is more efficient than LQR and (robust) MPC.
Notations. For vector x, xT denotes its transpose. For matrix
A ∈ Rn×n, A � 0 or A � 0 means that A is positive definite or
semi-positive definite. Given two sets A and B, set addition A⊕
B M
= {a+b|a∈A,b∈B}; set subtraction A	B M

= {a|a⊕B⊆A}.
2. MOTIVATING EXAMPLE: A NONLINEAR CSTR

In chemical industry, the CSTR has many features similar
to those found in other types of chemicals reactors, such as
tubular reactors and packed bed reactors. Therefore, a CSTR
model makes it easy to demonstrate how modeling principles
apply to other chemical reactors (Seborg et al. (2010)). Here
we consider an irreversible liquid-phase chemical reaction in
a CSTR shown in Fig. 1, in which chemical species A reacts
in the vessel to form chemical species B, that is, A→ B. As
shown in Fig. 1, the inlet stream contains pure component A
with a molar concentration, cA. By removing the heat that is
released during the exothermic reaction, a cooling coil is used
to maintain the reaction mixture at its operating temperature.
Detailed modeling for such a CSTR system is described in
Seborg et al. (2010), where mass and energy balances result
in a nonlinear state-space model given by
dcA

dt
=

F (cAi− cA)

V
− k0 exp

(
− E

RT

)
cA (1a)

dT
dt

=
F (Ti−T )

V
− ∆HR

ρCp
k0 exp

(
− E

RT

)
cA +

UA
V ρCp

(Tc−T )

(1b)
where the state variables are the molar concentration of species
A, denoted as cA, and the reactor temperature, denoted as
T ; the manipulated variable is the coolant jacket temperature
Tc. The model parameters in nominal conditions are reported
in Table A.1. Moreover, the chemical reactor is designed to
operate under steady-state conditions:

cs = 0.878 mol/L, T s = 324.5 K, T s
c = 300 K (2)

Additionally, we consider the constraints on state and manipu-
lated variables for the CSTR system given by (1). These con-
straints (Zhou et al. (2020)) are set as follows:

130 K < T < 454 K, 60 K < Tc < 540 K (3a)
0.4386 mol/L < cA < 1.3159 mol/L. (3b)

Next, we outline all the assumptions that were used to formulate
the dynamics (1). For mass balance equation given by (1a), the
following three assumptions are used: i) the CSTR is perfectly

mixed; ii) the mass densities of the feed and product streams
are equal and constant; iii) the liquid volume in the reactor
is kept constant. For energy balance equation given by (1b),
assumptions used are as follows: i) the coolant temperatures
and the cooling coil walls have negligible thermal capacitances
compared with liquid temperatures; ii) all of the coolant is at
the same temperature as Tc; iii) the rate of heat transfer from the
reactor contents to the coolant is given by UA(Tc−T ), where
U is the overall heat transfer coefficient and A is the area of
heat transfer. U and A are assumed to be constants; iv) the
enthalpy change associated with mixing the feed with the liquid
in the tank is negligible compared with the enthalpy change for
the chemical reaction; that is, the heat of mixing is negligible
compared to the heat of reaction; v) shaft work and ambient
heat losses can be neglected. Using all the above assumptions,
we define normalized and dimensionless variables x and u as
x =

[
xT

1 ,x
T
2
]T and u = (Tc−T s

c )/T s
c with x1 = (cA− cs)/cs and

x2 = (T −T s)/T s. Next, to simplify the model given by (1), we
use the nominal values for the parameters shown in Table A.1
and obtain the nonlinear process of the CSTR as follows:

dx1

dt
=−x1 +0.1399−7.2×1010(x1 +1)exp

(
−26.9666

x2 +1

)
(4a)

dx2

dt
=−3.0921x2 +1.9342u−0.0791

+4.0724×1010(x1 +1)exp
(
−26.9666

x2 +1

)
(4b)

As stated before, the model given by (4) was based on a lot of
assumptions. This makes it difficult for the model to capture
uncertainties inherent to the real plant, such as unmodeled
dynamics and uncertainty in parameter values. Thus, it is best
to use historical process data to help us build real-time models
and perform optimizations in real-time. To accomplish this, we
examine how historical data can be used to optimize control
performance during controller design for the CSTR system
illustrated in Fig. 1. Since all the historical process data, such
as the inputs and states, are available, we use the notations
I and O to indicate the input and state data sets; that is,
I M
=
{

u0,u1, . . . ,uK
}

and O M
=
{

x0,x1, . . . ,xK
}

. It is important
to note that the nonlinear model given by (4) is continuously
differentiable and it is used to simulate plant responses and
perform verification in the presence of uncertainties, even when
some advanced linear control system design techniques are
used in the next section.

3. CONTROLLER DESIGNS
In this work, we consider that only a linear model of the non-
linear chemical process around the operating point is available
for controller design, and that linear model is described by

x(t +1) = Ax(t)+Bu(t) (5)
in which t is the sampling time and x(t) ∈ Rn and u(t) ∈
Rm denote the state and input, respectively, with n and m
representing dimensions. The matrix pair (A,B) is assumed
to be controllable. The following sections will provide several
controllers for the process, highlighting our main results.

3.1 LQR
In LQR controller, the optimization relies on the minimiza-
tion of quadratic cost function (Olalla et al. (2009)). In most
cases, LQR controllers provide superior performance without
complicated algorithms and additional computational analysis.
Besides, the LQR controller is simple, easy to implement, and



has a lower memory capacity (Ogata (2010)). In this subsection,
we focus on LQR formulation for the system. Generally, the
LQR controller is designed with the from of u(t) = Kx(t),
where K ∈ Rm×n is a feedback control gain that is to be deter-
mined by optimizing the performance measure J(x(t),u(t)) =
∑

∞
t=0 xT(t)Qx(t)+uT(t)Ru(t), where Q� 0 and R� 0 are sym-

metric sign-definite weighting matrices. Thus, the LQR formu-
lation for (5) is given by

min
u(t)

J(x(t),u(t)), s.t. (5) (6a)

The complete LMI formulation of the problem given by (6) can
refer to Olalla et al. (2009). Following Lewis et al. (2012), the
unique solution to the LQR problem (6) is given by

u?(t) = Kx(t) ∈ Rm (7a)

where K =−(R+BTPB)−1BTPA and P=Q+ATPA−ATPB(R+
BTPB)−1BTPA. Note that the LQR is capable of achieving
robust stability and stability despite model inaccuracies. How-
ever, it cannot take into account the constraints.

3.2 Tube-Based MPC
Since LQR cannot handle the constraints, we use an alternative
MPC method. MPC is incredibly successful in the process
industries because of its conceptual simplicity and its ability
to deal with hard constraints(Qin and Badgwell (2003)). Sev-
eral current developments in MPC are summarized in Mayne
(2014). In this section, we develop a MPC method for the chem-
ical system. For nominal MPC, we solve the optimal control
problem (OCP) by disregarding all the disturbances. Because
of the open-loop nature of OCP, we employ a simple parameter-
ized local policy, termed tube-based MPC. Outlined by Chisci
et al. (2001), tube-based MPC enforces the satisfaction of the
constraints in solving OCP by keeping closed-loop trajectory
inside tubes that satisfy the constraints.

For the system given by (5), we consider a parameterized local
control policy as u(t) = Kx(t)+ ζ (t), where K is the same as
we used in (7). In this case, for (5), we obtain the uncertain term
as g(x(t),u(t)) M

= f (x(t),u(t))−Ax(t)−Bu(t), where f (·, ·) de-
notes a discrete-time representation of the uncertain nonlinear
process. Besides, we assume that, given two polytope constraint
sets X and U , g(·, ·) is bounded as g(x(t),u(t)) ∈ W ⊂ Rn,
∀x ∈X , u ∈U . To ensure stability (Rakovic et al. (2012)), we
need a control invariant set Ω ⊂ Rn which resides the state at
the end of each prediction horizon t, i.e., x(t +N) ∈ Ω, where
N denotes the prediction horizon. To enforce satisfaction of the
constraints, we should have Ω ⊂ {x : x ∈ X ,Kx ∈ U }. For
disturbance invariance, we should keep (A+BK)Ω⊕W ⊂ Ω.
Methods for computing positively invariant outer approxima-
tions of Ω are given in Rakovic et al. (2005). To decrease con-
servatism and improve robustness, we use different disturbance
tubes Rk for every prediction step, which satisfy

R0 = {0}, Rk =⊕k−1
j=0(A+BK)kW , k = 1,2, . . . ,N. (8)

Finally, the tube-based MPC problem can be formulated as
min
ū(t)

JF(x̄(t), ū(t)) (9a)

=
t+N−1

∑
k=t

x̄T(t)Qx̄(t)+ ūT(t)Rū(t)+ x̄T(t +N)Px̄(t +N)

s.t. x̄(t + k+1) = Ax̄(t + k)+Bū(t + k), x̄(t) = x(t) (9b)
ū(t + k) = Kx̄(t + k)+ζ (t + k) (9c)
x̄(t + k+1) ∈X 	Rk+1, x̄(t +N) ∈Ω	RN (9d)
ū(t + k) ∈U 	 (KRk) , k = 0,1, . . . ,N−1 (9e)

By solving of (9), we obtain that nominal control and state
sequences {ζ (t),ζ (t + 1), . . . ,ζ (t + N − 1)}, {x̄(t + 1), x̄(t +
2), . . . , x̄(t + N)} satisfies x̄(t + k + 1) = Ax̄(t + k) + Bū(t +
k) = AK x̄(t + k)+ ζ (t + k), where AK

M
= A+BK. In this case,

for the uncertain system given by
x(t +1) = Ax(t)+Bu(t)+g(x(t),u(t)) (10)

with a given Ω, we obtain that control and state sequences
{u(t),u(t+1), . . . ,u(t+N−1)} and {x(t+1),x(t+2), . . . ,x(t+
N)} satisfy x(t+k)∈ x̄(t+k)+Ω and u(t+k)∈ ζ (t+k)+KΩ

for all k = 0,1, . . . ,N− 1. Because of (9d) and (9e), the actual
trajectories will satisfy x(t + k + 1) ∈ X , u(t + k) ∈ U , and
x(t +N) ∈ Ω. Finally, x(t) will converge to Ω. This indicates
that the set Ω is robustly stable for the system.

3.3 Main Results: Data-Enhanced Learning for Tube MPC
For the tube-based MPC given by (9), because of its use of a
prediction model, it should be amenable to adaptive implemen-
tation and to the online tuning of the model. A disadvantage of
tube-based MPC in (9) is that the dynamics of the system are
constant at each time step. It seems wasteful since the historical
process data are stored for each time step, as these data can
provide adaptation to the model at each time step. Marafioti
et al. (2014) proposed an approach to augment the input con-
straint set of MPC, guaranteeing that ’sufficient richness’ of the
periodic input signal properties or ’persistent excitation’ can
be fulfilled to ensure uniform identification of the model. It is
our goal to use data-enhanced learning compensation when the
’persistent excitation’ requirement is not met.

For the OCP (9), we note that the linear model attained from
(9b) is used for predicting the response, along with the robus-
tified constraints attained from (9d)-(9e), which assures robust
constraint satisfaction. As additional data becomes available,
we employ a separate model with adaptive approximations of
the true (nonlinear) dynamics, which gives us more accurate
input and output predictions to use in the objective function. To
that end, we use a separate model with the form of

x̃(t + k+1)=Ax̃(t + k)+Bũ(t + k)+Ot(x̃(t + k), ũ(t + k))
(11)

where Ot(·, ·) is a data-enhanced learning function that is to
be designed using historical process data. Since the function
Ot(·, ·) denotes a compensation term for prediction model (9b),
which varies with time t and iteratively approximates the non-
linear portion of the system’s dynamics, accuracy of the opti-
mization can be increased with more data available.

Finally, the data-enhanced compensation for tube-based MPC
solves the following OCP at each time step

min
ũ(t)

JF(x̃(t), ũ(t)) (12a)

=
t+N−1

∑
k=t

x̃T(t)Qx̃(t)+ ũT(t)Rũ(t)+ x̃T(t +N)Px̃(t +N)

s.t. x̃(t + k+1) = Ax̃(t + k)+Bũ(t + k)
+Ot(x̃(t + k), ũ(t + k)), x̄(t) = x(t) (12b)

x̄(t + k+1) = Ax̄(t + k)+Bũ(t + k) (12c)
ũ(t + k) = Kx̄(t + k)+ζ (t + k) (12d)
x̄(t + k+1) ∈X 	Rk+1, x̄(t +N) ∈Ω	RN (12e)
ũ(t + k) ∈U 	 (KRk) , k = 0,1, . . . ,N−1. (12f)

For this problem, (12c) is used to derive deterministic guaran-
tees on the robustness and stability properties of the resulting
closed-loop system, while (12b) is an adaptive model of the



system which learns the true underlying dynamics of the chem-
ical system over time. Since the variable x̃ is used in adaptive
model (12b) with data compensation, thereby yielding more
accurate predictions for the actual state trajectory. Choosing
control inputs according to the learned (more accurate) dynam-
ics (12b), yet subject to the robustness constraints on the model
(12c), results in lower cost and higher performance, while also
dropping the strict condition used in Marafioti et al. (2014).

Using (10), we obtain g(x(t),u(t)) = f (x(t),u(t))− Ax(t)−
Bu(t). Thus, the main goal of Ot(·, ·) in (12b) is to make that

Ot(x(t),u(t))→ g(x(t),u(t)) (13)
as more data become available for compensation. With suf-
ficiently rich data for approximating the nonlinear term, we
would expect that the nonlinear system can be learned using
(12b). Next, we shall discuss how we develop the data compen-
sation method to ensure (13).

To save computational burden, we use the polynomial approxi-
mation to develop a parametric function, such that Ot(x(t),u(t))
is a polynomial in (x(t),u(t)). Thus, we would like to find some
positive integers r1,r2, such that

Ot(x,u) = PT
x
−→m [0,r1](x)+PT

u
−→m [0,r2](u) (14)

where−→m [0,r1](x) and−→m [0,r2](u) with two positive integer r1 and
r2 denote the polynomials of the vector x ∈Rn and u∈Rm with
the order at least 0 and at most r1 and r2, respectively, i.e.,

−→m [0,r1](x) =


1

x(t)
...

xr1(t)

 , −→m [0,r1](u) =


1

u(t)
...

ur2(t)

 (15)

and, px, pu denote two vectors that need to be identified using
the available data. Note that −→m [0,r1](x) and −→m [0,r2](u) are con-
catenated polynomial vectors for x∈Rn and u∈Rm and Ot(·, ·)
in (14) is a linear function parametrized by a set of coefficients
Ξ =

[
PT

x ,P
T
u
]T ∈Rl with l = (r1 +1)+(r2 +1); that is, Ot(·, ·)

is a polynomial vector consisting of the (r1 + r2 +2) vectors.
Then, writing in a compact form for (14) results in

Ot(x(t),u(t)) = Ξ
T
[−→m [0,r1](x(t))−→m [0,r2](u(t))

]
. (16)

Next, using the input data {u(t)}k
t=0 in set I and the data

{x(t)}k
t=0 in set O, we can construct the data

y(t) = x(t +1)− (Ax(t)+Bu(t)) (17)

and then, form−→m [0,r1](x) and−→m [0,r1](u) for t = 1,2, . . . ,k. Then
given two integers r1 and r2, using the least-squares method, we
can optimize the parameter Ξ by solving

Ξ̂ = argmin
Ξ

t

∑
k=0

∥∥∥(y(k)−Ξ
T
[−→m [0,r1](x(t))−→m [0,r2](u(t))

])∥∥∥2
(18)

Note that the Ot(x(t),u(t)) given by (16) is linear in the coeffi-
cients Ξ, where−→m [0,r1](x) and−→m [0,r1](u) are two sets of polyno-
mial vectors. This indicates that the least-squares optimization
(18) has linear computational complexity, which greatly simpli-
fies the computation load.

We highlight that the data-enhanced learning function given by
(14) has two different meanings. The first is that (14) allows
for corrections to be made to the nominal model given by
(5): the second element of (15) modifies the A, B matrices of
the nominal model; the remainder of (15) produces a more
accurate model than the nominal one. The second is that the

coefficients of (14) are characterized as unique optimizers of
the least-squares problem (18). Using data-enhanced learning
compensation given by (14) for the nominal model, it provides
specific predictions of future behaviors, resulting in more ac-
curate inputs and outputs for minimization of the performance
function in solving (12).

3.4 Summary of the Main Results
Our proposed method describing the data-enhanced learning
compensation for tube MPC is summarized in Algorithm 1.

Algorithm 1: Data-enhanced learning predictive controller
Data: Collect histrotical input and output data
Input: r1, r2
Output: ζ (t) for every t
k← t;
while k ≥max(r1,r2) do

if t ≥ 0 then
Form −→m [0,r1](x) and −→m [0,r1](u) given by (15);
Solve (18) to obtain an estimate of Ξ;
Solve (12) to obtain ζ (t + k), k = 0,1, . . . ,N−1;

end
Apply ũ(t) = Kx̄(t)+ζ (t) to the system;
t← t +1;

end

Note that the data-enhanced learning compensation method for
MPC does not need any a priori assumptions for the nonlinear
dynamic behavior f (·, ·) or the nonlinear term g(·, ·) in (10)
after extracting a dominant linear behavior. This implies a
distinctive feature of our design: Algorithm 1 is flexible enough
to handle a broad range of nonlinear chemical processes: from a
partially known system to an unknown system, identifying the
system from effective data as a dominant linear plant. Using
the previous data, it enables us to incorporate non-traditional
models of adaptation into the prediction model, resulting in a
lower cost and higher performance.

Due to the fact that our method retains the feasibility and
constraint satisfaction of the tube MPC given by (9), we can
design the data-enhanced learning function without having to
worry about stability properties or the ’persistent excitation’
requirement used in Marafioti et al. (2014). For the true plant, as
long as (14) can be computed with available data, the purposed
Algorithm 1 can be executed. In this sense, our purposed
Algorithm 1 illustrates a clear separation between robustness
and performance.

4. CASE STUDIES
In this section, we revisit the motivating example to demon-
strate the properties of the developed controllers and the supe-
rior performance of Algorithm 1. To that end, using a sampling
time of 0.1 min, we obtain the discrete-time state-space model
with the form of (5) with matrices A,B given by

A =

[
0.8906 −0.3419
0.0090 0.9067

]
, B =

[
−0.0337
0.1811

]
.

Note that the pair (A,B) is controllable. Using (2), we can write
the constraints given by (3) in the following form

X =

{
x(t) =

[
x1(t)
x2(t)

]
:
{
−0.5 < x1(t)< 0.5
−0.4 < x2(t)< 0.4

}
(19a)

U = {u(t) :−0.8 < u(t)< 0.8} (19b)
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Fig. 2. Performance under the LQR controller given by (7).

The initial values of the CSTR system are set as T (0) =
320 K and cA(0) = 0.5 mol/L, which corresponds to x(0) =
[−0.4300,−0.0138]. Next, to render the states to the operating
point given by (2), we will now check the system performance
under all the controllers developed in Section 3.

First, to apply the LQR controller to the system, we set the
weighting matrices as Q = P = diag([10 10]) and R = 0.1,
respectively. Thus, we obtain the feedback control gain K as

K = [2.5529 −4.7132] .

The system performance under the LQR controller given by
(7) is depicted in Fig. 2. Note that the LQR controller can
stabilize the CSTR system. However, it violates the constraint
of the input lower bound given by (19b) at the beginning. If
the constraints are violated at any time t, serious consequences
may ensue, for example, physical components may be damaged
or saturation may cause a loss of closed-loop stability. Fig. 2
indicates that the LQR cannot handle the constraints.

Next, to apply the tube-based MPC to the system, we set the
control horizon as N = 5 and construct the control invariant
set Ω and the robust tubes Rk given by (8), which are both
illustrated in Fig. 3. Then we solve the OCP given by (9) at each
sampling time t. The system performance under the tube-based
MPC is depicted in Fig. 4. As shown in Fig. 4, the tube-based
MPC can render the system state to the operating point without
violating the constraints given by (19).

Then, we apply our proposed Algorithm 1 to the system. First,
we set r1 = 2 and r2 = 2 for (15). Then we use Algorithm 1 to
control the CSTR system given by (4) at each sampling time t.
The system performance under Algorithm 1 is shown in Fig. 5.
From the comparison of Figs. 5 and 4, we see that Algorithm 1
can significantly accelerate the convergence rate of tube-based
MPC, while also satisfying all the constraints given by (19).

Finally, to illustrate the superior performance of Algorithm 1,
we compare the accumulated costs associated with the LQR, the
tube-based MPC, and Algorithm 1, as shown in Fig. 6. Fig. 6
reveals that the accumulated cost for Algorithm 1 is less than
that of the LQR and the tube-based MPC. This indicates that
the data-enhanced learning compensation method can improve
the control performance of linear predictive controllers.

Fig. 3. The control invariant set Ω and the robust tubes Rk.
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Fig. 4. Performance under the tube-based MPC given by (8).
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Fig. 5. Performance under our proposed Algorithm 1.

5. CONCLUSIONS
As chemical processes always have nonlinear dynamics and
constraints, constrained optimization is a better method to con-
trol them. LQR and MPC have gained popularity because of
their robustness and stability guarantees, but their formulations
are typically LTI derivations of underlying system dynamics.
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Fig. 6. System performance under our proposed Algorithm 1.

By incorporating statistics and machine learning techniques
into the design process, this paper developed a data-enhanced
learning compensation for closed loop performance improve-
ment. Using this method, one can tune the prediction model
used in tube-based MPC while ensuring the robustness and
performance of the closed-loop system simultaneously. The
method can be used for situations where engineering con-
straints must be satisfied by a system with dynamics that are
unknown or with nonlinearities that make traditional control
methods ineffective.

REFERENCES

Aswani, A., Gonzalez, H., Sastry, S.S., and Tomlin, C. (2013).
Provably safe and robust learning-based model predictive
control. Automatica, 49(5), 1216–1226.

Chisci, L., Rossiter, J.A., and Zappa, G. (2001). Systems with
persistent disturbances: predictive control with restricted
constraints. Automatica, 37(7), 1019–1028.

Edgar, T.F., Himmelblau, D.M., and Lasdon, L.S. (2001). Op-
timization of Chemical Processes. McGraw-Hill, New, York,
NY.

Hewing, L., Wabersich, K.P., Menner, M., and Zeilinger, M.N.
(2020). Learning-based model predictive control: Toward
safe learning in control. Annual Review of Control, Robotics,
and Autonomous Systems, 3, 269–296.

Lewis, F.L., Vrabie, D., and Syrmos, V.L. (2012). Optimal
Control. John Wiley & Sons, Hoboken, NJ.

Lu, J., Cao, Z., Zhao, C., and Gao, F. (2019). 110th anniversary:
An overview on learning-based model predictive control
for batch processes. Industrial & Engineering Chemistry
Research, 58(37), 17164–17173.

Marafioti, G., Bitmead, R.R., and Hovd, M. (2014). Persistently
exciting model predictive control. International Journal of
Adaptive Control and Signal Processing, 28(6), 536–552.

Mayne, D.Q. (2014). Model predictive control: Recent develop-
ments and future promise. Automatica, 50(12), 2967–2986.

Ogata, K. (2010). Modern Control Engineering. Prentice hall,
Hoboken, NJ.

Olalla, C., Leyva, R., El Aroudi, A., and Queinnec, I. (2009).
Robust LQR control for PWM converters: An LMI approach.
IEEE Transactions on Industrial Electronics, 56(7), 2548–
2558.

Prett, D.M. and Garcı́a, C.E. (2013). Fundamental Pro-
cess Control: Butterworths Series in Chemical Engineering.

Butterworth-Heinemann, Stoneham, MA.
Qin, S.J. and Badgwell, T.A. (2003). A survey of industrial

model predictive control technology. Control Engineering
Practice, 11(7), 733–764.

Qin, S.J. and Dong, Y. (2020). On data science for process sys-
tems modeling, control and operations. IFAC-PapersOnLine,
53(2), 11325–11331.

Rakovic, S.V., Kerrigan, E.C., Kouramas, K.I., and Mayne,
D.Q. (2005). Invariant approximations of the minimal robust
positively invariant set. IEEE Transactions on Automatic
Control, 50(3), 406–410.

Rakovic, S.V., Kouvaritakis, B., Cannon, M., Panos, C., and
Findeisen, R. (2012). Parameterized tube model predictive
control. IEEE Transactions on Automatic Control, 57(11),
2746–2761.

Seborg, D.E., Mellichamp, D.A., Edgar, T.F., and Doyle III, F.J.
(2010). Process Dynamics and Control. John Wiley & Sons,
New York, NY.

Wu, Z., Rincon, D., Luo, J., and Christofides, P.D. (2021). Ma-
chine learning modeling and predictive control of nonlinear
processes using noisy data. AIChE Journal, 67(4), e17164.

Yang, Y., Chen, X., Lu, N., and Gao, F. (2016). Injection
Molding Process Control, Monitoring, and Optimization.
Hanser Publications, Cincinnati, Ohio, USA.

Zhou, H. (2012). Computer Modeling for Injection Molding:
Simulation, Optimization, and Control. John Wiley & Sons,
Hoboken, NJ.

Zhou, Y., Gao, K., Tang, X., Hu, H., Li, D., and Gao, F. (2022a).
Conic input mapping design of constrained optimal iterative
learning controller for uncertain systems. IEEE Transactions
on Cybernetics, 1–13. doi:10.1109/TCYB.2022.3155754.

Zhou, Y., Li, D., and Gao, F. (2022b). Conic iterative learning
control using distinct data for constrained systems with state-
dependent uncertainty. IEEE Transactions on Industrial
Informatics, 18(5), 3095–3104.

Zhou, Y., Li, D., Xi, Y., and Gan, Z. (2020). Synthesis of model
predictive control based on data-driven learning. Science
China Information Sciences, 63, 1–3.

Zhou, Y., Li, D., Xi, Y., and Gao, F. (2022c). Event-triggered
distributed robust model predictive control for a class of
nonlinear interconnected systems. Automatica, 136, 110039.

Appendix A. PARAMETERS OF THE CSTR SYSTEM

Table A.1. Parameters of the CSTR

Parameter Explanation Nominal value Units
Fi Inlet flow rate 100 L/min
cAi Feed concentration 1 mol/L
Ti Feed temperature 350 K
V Volume of CSTR 100 L
k0 Pre-exponential factor 7.2×1010 min−1

E/R E/R = Activation energy 8750 K
UA Heat transfer constant 5×104 J/min ·K
ρ Density of A-B mixture 1000 g/L

Cp Heat capacity of A-B mixture 0.239 J/g ·K
∆HR Heat of reaction for A→ B −5×104 J/mol


