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Abstract: Air separation units (ASU) pose a classic problem for nonlinear system control. This paper
proposes a framework that integrates nonlinear model predictive control (NMPC) and moving horizon
estimation (MHE). We prove that the proposed method achieves offset free regulatory behavior, even
in the presence of plant-model mismatches. If the plant uncertainty structure is known, the proposed
framework can be modified to estimate the uncertainty parameters. Thus, the model used in the NMPC
and MHE can be adaptively modified online. Finally, the proposed method is applied on a large scale air
separation unit, and the steady state offset free behavior is observed.

1. INTRODUCTION

Electricity is not readily stored and must be used or wasted
after production. Therefore, power plants must be able to ramp
up and down frequently to meet the fluctuating power demand.
Huang et al. [2009b] reported a successful application of non-
linear model predictive control (NMPC) based on a rigorous
dynamic model for an air separation unit (ASU) in an Integrated
Gasification Combined Cycle (IGCC) power plant. It is shown
by Huang et al. [2009b] that the NMPC strategy is able to
steer the ASU during the ramping processes and demonstrates
superior performance against linear MPC. This study is based
on the assumption that all the states of the ASU process are
measured. In practical applications, however, state information
is usually not completely available for measurement. Thus,
a state estimator is normally applied to reconstruct the state
information from the plant output.

In practice, disturbances and modeling errors are usually
present and often not predictable. Furthermore, as time progress
or operating conditions change drastically, they develop into
non-vanishing plant-model mismatches. Thus, it is essential to
ensure controller’s performance in the presence of the plant-
model mismatches. Offset free regulatory behavior for plant
outputs is an important requirement in control applications. In
order to achieve offset free behavior, several strategies based
on state augmentation for linear systems have been proposed
by Pannocchia and Kerrigan [2005] and Pannocchia and Be-
mporad [2007]. Moreover, a target state resetting strategy is
proposed by Rajamani et al. [2009]. For nonlinear systems,
Meadows and Rawlings [1997] describes a conventional offset
free (N)MPC method which adds an output disturbance into
the objective function for the entire predictive horizon. The
output disturbance is generated by comparing the measured
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plant output to the model prediction at the current time step.
Huang et al. [2009a] proposed an offset free NMPC formula-
tion that integrates both the state and output disturbances from
nonlinear extended observers, such as extended Kalman filter
and extended Luenberger observer. In addition, the proposed
method yields better disturbance-rejecting performance com-
pared to the conventional method and it can be applied to open-
loop unstable systems.

In this work, we propose to extend the NMPC formulation
to integrate Moving Horizon Estimation (MHE) as the state
estimator. It can be shown that the proposed method will
yield offset free steady state control behavior even when there
are non-vanishing plant-model mismatches. Then the proposed
method with rigorous dynamic model is applied to the large
scale air separation unit in Huang et al. [2009b]. We see that
the NMPC and MHE successfully regulate the outputs of the
unit at the desired set points without any offset.

2. MOVING HORIZON ESTIMATION AND NONLINEAR
MODEL PREDICTIVE CONTROL

This work considers a general nonlinear dynamic system with
possible plant-model mismatches,

xk+1 = f (xk,uk,θk) (1a)

yk = h(xk), k ≥ 0 (1b)

where xk ∈ R
nx , uk ∈ R

nu , yk ∈ R
ny and θk ∈ Ωθ ⊂ R

nθ are
the plant states, controls, outputs and uncertainty parameters,
respectively, defined at time steps k ≥ 0, and Ωθ is a compact
set. Here if θk = 0, equation (1) represents the nominal plant.
Without losing generality, we assume that the given plant (1)
has an equilibrium point at the origin, that is f (0,0,0) = 0.
Moreover, no trajectory of this system exhibits finite escape
time.

In this section, two formulations that integrate the NMPC and
MHE are proposed in the sequel.
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2.1 Formulation with State and Output Disturbances

In this scenario, we assume that the uncertainty structure is un-
known. Hence, a nominal value 0 for the uncertainty parameter
is used in the predictive model for both MHE (2a) and NMPC
(3a). To compensate for the plant-model mismatch, state and
output disturbances are used.

At time step k, the MHE problem based on the nominal uncer-
tainty value is formulated as

min
Ne

∑
j=1

(ζ T
k−Ne+ jΠyζk−Ne+ j +ξ T

k−Ne+ jΠxξk−Ne+ j)

+(x̂k−Ne
− x̄k−Ne

)T Π0(x̂k−Ne
− x̄k−Ne

)

s.t. x̂k−Ne+ j+1 = f (x̂k−Ne+ j,uk−Ne+ j,0)+ξk−Ne+ j (2a)

ŷk−Ne+ j = h(x̂k−Ne+ j) (2b)

ζk−Ne+ j = yk−Ne+ j − ŷk−Ne+ j (2c)

x̂k−Ne+ j ∈ X,ζk−Ne+ j ∈ Ωζ ,ξk−Ne+ j ∈ Ωξ (2d)

j = 0, . . . ,Ne −1, (2e)

where Ne is the estimation horizon length, Πy, Πx, Π0 are
symmetric positive definite tuning matrices, x̂k, ŷk are the
estimated state and output values, and ξk, ζk are the state
and output disturbances which are assumed to be bounded in
compact sets Ωζ and Ωξ , respectively. In addition, x̄k−Ne

is the
most likely prior value of xk−Ne

. After the MHE problem is
solved, we choose x̂k−Ne+1 as the prior value x̄k−Ne+1 for the
arrival cost at time step k +1.

Note that though we consider a noise free plant (1) for no-
tational simplicity, the proposed MHE and NMPC can easily
incorporate the state and output noises. In addition, state noise
can be considered as a special form of the uncertainty parameter
θ .

With the estimated states (x̂k) and the state, output disturbances
(ξk, ζk) at the current time step k, the NMPC with state and
output disturbances is formulated as:

min

Np

∑
j=0

(lk+ j − yr)
T Γy(lk+ j − yr)+

Nc−1

∑
i=0

△vT
k+iΓu△vk+i

s.t zk+ j+1 = f (zk+ j,vk+ j,0)+ξk, j = 0, . . . ,Np −1 (3a)

zk = x̂k, zk+ j ∈ X (3b)

lk+ j = h(zk+ j)+ζk, △vk+i = vk+i+1 − vk+i (3c)

vk+ j = vk+ti for ti ≤ j < ti+1, vk+i ∈ U, (3d)

t0 = 0 ≤ t1 ≤ t2 ≤, . . . ,≤ Np −1 (3e)

where Np, Nc are the prediction and control horizon length
respectively, zk, lk, vk are the predicted state, output and con-
trol movement, respectively. The estimated state is used as the
initial condition in the NMPC problem. In typical NMPC appli-
cations, fewer degrees of freedom are available for the control
movement. The last two constraints indicate that the control
action is the input blocking form, ensuring that the available
degrees of freedom spread over the entire prediction horizon.
After the NMPC problem is solved, the first manipulated vari-
able vk is injected into the plant, i.e. uk = vk.

Note that unlike conventional NMPC formulation, the predic-
tive model is perturbed by the state and output disturbances (ξk

and ζk) to compensate for the unknown uncertainty parameter
θk. It is worth mentioning that ζk and ξk, which are the calcu-
lated value at the end of the estimation horizon in MHE, are
parameters in the NMPC problem.

Now, we pursue the analysis to show that the proposed method
yields zero steady state offset. The analysis is similar to that
in Meadows and Rawlings [1997], but does not depend on the
target setting optimization problem.

Theorem 1. If

(1) the set point yr is feasible for the perturbed predictive
model zk+ j+1 = f (zk+ j,vk+ j,0)+ξk and lk+ j = h(zk+ j)+
ζk,

(2) the NMPC controller (3) is asymptotically stabilizing for
the perturbed predictive model,

(3) the closed-loop system goes to a steady state,
(4) the perturbed predictive model is observable at the steady

state,

then the system controlled by the MHE (2) and the NMPC (3)
has zero steady state offset.

Proof : In the following analysis, the super script ss denotes
the steady state value. Since yr is reachable for the perturbed
predictive model and the NMPC control law is asymptotically
stable, the stage cost in NMPC (3) is zero at steady state, i.e.

lss = yr. (4)

Moreover, at the steady state, the predictive state remains
constant, zss = x̂ss. The control action is also a constant, i.e.
uss = vss. Thus the following equations hold true,

x̂ss = f (x̂ss,uss,0)+ξ ss, (5a)

lss = h(x̂ss)+ζ ss. (5b)

In addition, at the steady state the MHE evolves according to

x̂ss = f (x̂ss,uss,0)+ξ ss, (6a)

ŷss = h(x̂ss), (6b)

ζ ss = yss − ŷss. (6c)

Since the predictive model in the MHE (6a) is exactly the same
as that in the NMPC (5a), by combining equations (5b), (6b)
and (6c), we see

lss = yss. (7)

Then by virtue of equations (4) and (7), the following equation
can be derived

yss = yr. (8)

It indicates that the plant output equals to the set point at the
steady state. �

Remark 1. If the set point yr is not feasible, then the proposed
approach minimizes the steady state output difference, i.e.
(yss − yr)

T Γy(y
ss − yr).

Remark 2. Note that in this analysis, the observer is in a general
formulation (6). Thus, the Theorem also applies to the NMPC
incorporated with the nonlinear recursive observers.

2.2 Formulation with State and Parameter Estimation

In this scenario, we assume that the uncertainty parameter struc-
ture is known. Then instead of compensating for the uncertainty
by state and output disturbances, MHE can estimate both the
state and uncertainty together. Thus the model for the MHE and
the NMPC is modified adaptively. At time step k, the MHE is
formulated as:
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min
Ne

∑
j=1

(ζ T
k−Ne+ jΠyζk−Ne+ j)+ θ̂ T

k Πθ θ̂k

+(x̂k−Ne
− x̄k−Ne

)T Π0(x̂k−Ne
− x̄k−Ne

)

s.t. x̂k−Ne+ j+1 = f (x̂k−Ne+ j,uk−Ne+ j, θ̂k) (9a)

ŷk−Ne+ j = h(x̂k−Ne+ j) (9b)

ζk−Ne+ j = yk−Ne+ j − ŷk−Ne+ j (9c)

x̂k−Ne+ j ∈ X,ζk−Ne+ j ∈ Ωζ , θ̂k ∈ Ωθ (9d)

j = 0, . . . ,Ne −1, (9e)

where θ̂k is the estimated uncertainty parameter which is
bounded in a compact set Ωθ . Since this MHE formulation
smoothes the uncertainty parameter over the entire estimation
horizon, the estimated state is also smoothed over the horizon.

Consequently, the NMPC is able to adaptively update the pre-
dictive model using the estimated parameter.

min

Np

∑
j=0

(lk+ j − yr)
T Γy(lk+ j − yr)+

Nc−1

∑
j=0

△vT
k+ jΓu△vk+ j

s.t zk+ j+1 = f (zk+ j,vk+ j, θ̂k), j = 0, . . . ,Np −1 (10a)

zk = x̂k, zk+ j ∈ X (10b)

lk+ j = h(zk+ j)+ζk, △vk+ j = vk+ j+1 − vk+ j (10c)

vk+ j = vk+ti for ti ≤ j < ti+1, vk+ j ∈ U, (10d)

t0 = 0 ≤ t1 ≤ t2 ≤, . . . ,≤ Np −1. (10e)

To show that the formulation with state and parameter esti-
mation (MHE (9) and NMPC (10)) provides zero steady state
offset, an analysis similar to Theorem 1 can be performed. It is
omitted here for the sake of brevity.

Similar to the analysis in Theorem 1, we can show that the
NMPC and MHE with parameter estimation (MHE (9) and
NMPC (10)) is able to provide offset-free control behavior. The
proof follows in the same way as that in Theorem 1, and is
omitted here.

2.3 Illustrative CSTR Example

We consider a simulated NMPC scenario with a nonlinear
continuous stirred tank reactor (CSTR) developed by Hicks
and Ray [1971]. The CSTR is represented by the following
differential equations:

dzc

dt
= (zc −1)/u2 + k0zc exp(−Ea/zT ) (11a)

dzT

dt
= (zT − z

f
T )/u2 + k0zc exp(−Ea/zT )+νu1(zT − zcw

T ).

(11b)

This system involves two states z = [zc,zT ] corresponding to
dimensionless concentration and temperature, and two manip-
ulated inputs, corresponding to the cooling water flow rate
u1 and the inverse of dilution rate u2. The model parameters

are zcw
T = 0.38, z

f
T = 0.395, Ea = 5, ν = 1.95× 104 and k0

is an uncertainty parameter in the plant with nominal value
k0 = 300 in the model. The system is operated at steady state
zss = [0.12466,0.74068] corresponding to uss = [378,20]. In
this simulation, it is assumed that both the states are measured,
i.e. the output mapping function in (1b) is chosen to be h(·) =
diag[1,1]× [zc,zT ]T .

This model is regulated by the framework with both proposed
methods. The horizon of the MHE, Ne is chosen as 6 with
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Fig. 1. State profile in scenario 1, the blue dashed line is the
plant, the red line is the estimated value, the black line is
the set point
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Fig. 2. Control profile in scenario 1

sampling time 1. Let Q = diag[1,1] and R = diag[1,1], and

define Ass = ∂ f

∂ z
|zss,uss , Bss = ∂ f

∂u
|zss,uss , Css = ∂h

∂ z
|zss and Vss =

R +CssQCT
ss. The weighting matrices are chosen to be inverse

of the covariance information which is calculated similar to
the extended Kalman filter, i.e., Π−1

0 = AssQAT
ss + BssQBT

ss −

AssQCT
ssV

−1
ss CssQAT

ss, Π−1
x = Q, Π−1

y = R and Πθ = 0. The
NMPC is tuned with prediction horizon Np = 10, control hori-

zon Nc = 5, and the tuning matrices Γy = diag[106, 106], Γu =
0.

In the first simulation, the plant is controlled by the formulation
with state and output disturbances (MHE (2) and NMPC (3)).
The plant starts from the nominal steady state value. At time
step 10, the uncertainty parameter k0 is reduced to 70% of its
nominal value as shown at the bottom of Figure 3. The resulting
closed-loop responses are shown in Figures 1 and 2. We see that
the state estimates are biased after the plant-model mismatch is
introduced. However, the proposed method is able to regulate
the plant outputs at the desired set points.

The second simulation scenario is the same as the first one,
except that the plant is regulated by the formulation with state
and parameter estimation (MHE (9) and NMPC (10)). As
shown at the bottom of Figure 6, the estimated uncertainty
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Fig. 3. Error profile in scenario 1
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Fig. 4. State profile in scenario 2, the blue dashed line is the
plant, the red line is the estimated value, the black line is
the set point.

gradually converges to the plant value after the plant-model
mismatch is introduced at time step 10. Thus, after time step
20, the uncertainty parameter in the model equals to that in the
plant, removing the plant-model mismatch. Figure 4 shows that
the proposed method quickly rejects the disturbance and yields
the offset free control behavior. In addition, the estimated states
converge to the measured plant states after the plant-model
mismatch is eliminated.

It is interesting to compare Figure 1 and 4 to see that the
formulation with parameter estimation (equations (9) and (10))
rejects the plant-model mismatch faster than the formulation
with state and output disturbances (equations (2) and (3)).
Therefore, it is recommend to estimate the state and parameter
together if the uncertainty structure information is available.

3. ASU SIMULATION

In this study, we consider an industrial size air separation unit
in IGCC power plants, reported in Huang et al. [2009b]. The
unit contains two integrated cryogenic distillation columns as
shown in Figure 7. The high pressure column (bottom) has 40
trays and operates at 5-6 bars, while the low pressure column
(top) operates at 1-1.5 bars and also has 40 trays. An air feed
flow is split into two substreams. The high pressure air (MA)
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Fig. 5. Control profile in scenario 2
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Fig. 6. Error profile in scenario 2, the blue dashed line is the
plant, the red line is the estimated value.

enters the bottom of the high pressure column and the expanded
air (EA) enters the 20th tray of the low pressure column . Crude
nitrogen gas (GN) from the main heat exchanger is also added
to the 25th tray of the high pressure column. The reboiler of
the low pressure column is integrated with the condenser of the
high pressure column. The main products of the high pressure
column are pure nitrogen (PNI) (> 99.99%) and crude liquid
oxygen (∼ 50%). The crude oxygen stream is fed into the 19th

tray of the low pressure column. In addition, an intermediate
side stream from the 15th tray of the high pressure column (LN)
is fed into the top of the low pressure column. A high purity
separation is achieved in the low pressure column, leading to
nitrogen gas with ∼ 99% purity and oxygen (POX) with ∼ 97%
purity as products.

The ASU model is represented by tray-by-tray equations con-
sisting of mass balances (overall and component balances of ni-
trogen, oxygen and argon), energy balances, phase equilibrium,
hydraulic and summation equations.

Overall Mass Balance
dMi

dt
= Li−1 +Vi+1 −Li −Vi +Fi (12)

where i is the index of each tray, starting from the top of the
column. Mi is the liquid mole holdup ([mol]) on tray i, Li and Vi

are liquid and vapor molar flow rates, respectively and Fi is the
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Fig. 7. ASU flow sheet.

molar feed ([mol
min

]). If there is no feed to tray i, then Fi = 0. In this
case, the only nonzero values of Fi are those corresponding to
expanded air (EA, U1), pure air (MA, U2), liquid nitrogen (LN,
U3), crude gas nitrogen (GN, U4) and crude oxygen stream as
shown in Figure 7.

Component Balances

Mi

dci, j

dt
= Li−1(ci−1, j − ci, j)+Vi+1(di+1, j − ci, j)

−Vi(di, j − ci, j)+Fi(c
f
i, j − ci, j) (13)

where j ∈ COMP is the index of each component, ci, j and di, j

are component mole fractions in the liquid and vapor phases,

c
f
i, j are the mole fractions of the feed.

Energy Balance

Mi(
∂hL

i

∂Ti

T̄i + ∑
j∈COMP

∂hL
i

∂ci, j

c̄i, j) = Li−1(h
L
i−1 −hL

i )

+ Vi+1(h
V
i+1 −hL

i )−Vi(h
V
i −hL

i )+Fi(h
f
i −hl

i)(14)

where hL
i = f hl(Ti,Pi) and hV

i = f hv(Ti,Pi) are liquid and vapor

enthalpies in [ kJ
mol

], pi is the total pressure on tray i, and h
f
i is

the feed enthalpy, Ti is the tray temeperature. Expressions and
data to compute hV

i and hL
i can be found in a number of standard

references. Moreover

c̄i, j :=
dci, j

dt
=

(

Li−1(ci−1, j − ci, j)+Vi+1(di+1, j −di, j)

−Vi(di, j − ci, j)+Fi(c
f
i, j − ci, j)

)

/Mi, (15)

and

T̄i :=
dTi

dt
= −

∑ j∈COMP

[

ci, j ∑k∈COMP(
∂Ki, j

∂ci,k
c̄i,k)+Ki, j c̄i,k

]

∑ j∈COMP ci, j∂Ki, j/∂Ti

.(16)

Here we define Ki, j = γi, j p
sat
i, j /pi, where psat

i, j = f p(Ti) is the

saturation pressure of pure component j on tray i, and γi, j

denotes the liquid activity coefficient describing the non-ideal
vapor-liquid equilibrium calculated as in Huang et al. [2009b].

Summation Equation

1 = ∑
j∈COMP

yi, j (17)

Hydraulic Equation
Li = kdMi (18)

where kd is considered as an uncertainty parameter with kd =
0.5 min−1 as the nominal value.

Vapor-Liquid Equilibrium

yi, j pi = γi, jxi, j p
sat
i, j . (19)

After modeling each tray in the distillation columns by equa-
tions (12) - (19), the ASU model is composed of 320 differential
equations and 1,200 algebraic equations.

The control structure is set the same as that reported in Huang
et al. [2009b]. We choose the molar flow rate of pure oxygen
(POX-Y1), pure nitrogen (PNI-Y2), the temperature at 30th tray
in the low pressure column (Tl30-Y3), and temperature at the
15th tray in the high pressure column (Th15-Y4) as output
variables. Four stream flow rates are considered as manipulated
variables, including the expanded air feed (EA-U1), main air
feed (MA-U2), reflux liquid nitrogen (LN-U3) and crude gas
nitrogen (GN-U4). The objective is to regulate the outputs at
their set-points in the presence of the plant-model mismatch.

Since there are many uncertainties in the ASU process, e.g.
thermodynamic properties, tray efficiencies, etc., it is not trivial
to determine the uncertainty structure of the ASU model in
practice. Therefore, we choose to use the formulation with
state and output disturbances. The prediction (Np) horizon and
control (Nc) horizon in the NMPC formulation are chosen
to be 20, with 5 minutes sampling time. Γy is chosen to be

a diagonal matrix with 3 × 10−2 corresponding to the Tl30,
Th15, and 1 × 10−4 corresponding to the POX, PNI, while
Γu is set to be a null matrix. For the MHE formulation, the
sampling time is still 5 minutes, but the estimation horizon (Ne)
is chosen to be 5. The MHE is tuned with Πy as a diagonal

matrix with 1 × 10−2 corresponding to Tl30, Th15, and 1 ×
10−4 corresponding to POX, PNI; Πx is chosen as a diagonal
matrix with 1 corresponding to the ci, j,∀i, j and 1 × 10−5

corresponding to Mi,∀i; and Π0 is a diagonal matrix with 5
corresponding to the ci, j,∀i, j and 5× 10−5 corresponding to
Mi,∀i.

The simulation starts from the nominal steady state with kd =
0.5. At 25 minutes, the kd in the plant is increased to 0.6, while
kd = 0.5 in the model, introducing a plant-model mismatch.
The closed-loop plant output is presented in Figure 8, and the
control action is shown in Figure 9. It is observed that the
proposed MHE and NMPC strategy rejects the disturbance and
regulates the plant outputs at their set points without any steady-
state offset.

It is known that the ternary distillation problem is not observ-
able if only tray temperatures and flow rates are measured.
However in this control structure setting, there are only 4 in-
puts, which means that the offset free control behavior can be
achieved for up to 4 outputs. We choose to use the same 4
measurements as reported in Huang et al. [2009b]. The purities
in the product steams POX and PNI are not directly mea-
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Fig. 8. ASU output. The blue dashed line is the plant, the red
line is the estimated value and the black line the set point.
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Fig. 9. Control profile for the ASU.

sured. Nevertheless, it is interesting to note in Figure 10 that
the oxygen and nitrogen purity in the product streams satisfy
the requirement. Moreover, the control action which is solved
based on the estimated states, yields offset free behavior for the
4 measured outputs, even though the system is not observable.
We believe it is due to the fact that the ASU is open-loop stable
and the MHE and NMPC problems at each time step are well
initialized from their previous solutions, respectively.

The NMPC and MHE problems for the ASU model are solved
using simultaneous collocation-based approach, as described
by Biegler et al. [2002]. After discretization, the resulting
Nonlinear Programming (NLP) problem corresponding to the
NMPC problem (20 finite elements and 3 collocations) has
116,900 constraints and 117,140 variables; while the NLP
corresponding to the MHE problem (5 finite elements and 3
collocations) contains 29,285 constraints and 30,885 variables.
Both the NLPs are solved using AMPL and IPOPT on a Intel
DuoCore 2.4 GHz personal computer. The NMPC problems
take up to 6 IPOPT iterations and 200 CPU seconds to solve,
while the MHE problems take up to 15 iterations and 90 CPU
seconds to solve.
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Fig. 10. Product purity profile.

4. SUMMARY

We extend the previous proposed offset free NMPC framework
to incorporate MHE as the state estimator. It can be shown
that the proposed method achieves offset free behavior, if the
set point is feasible for the perturbed predictive model and
the control law asymptotically converge to the steady state.
In addition, an integrated state and parameter estimation strat-
egy is proposed using MHE and incorporated into the NMPC
framework. Thus, the NMPC and MHE can adaptively accom-
modate plant-model mismatches. A better control performance
is observed using the framework with state and parameter es-
timation, provided that the uncertainty structure is known. The
proposed method is successfully implemented on a large scale
air separation unit.
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