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Jülich, Germany

Abstract: Adaptive control vector parameterization for the solution of optimal control
problems approximates the original infinite-dimensional optimal control problem by a set of
finite-dimensional nonlinear programs (NLPs) whose control grids are iteratively refined. The
refinement is stopped by a heuristic stopping criterion. The Hessians of the Lagrangian of these
NLPs can be efficiently computed by the technique of composite adjoints as recently proposed
by the authors. By means of a case study, namely the optimal control of the Williams-Otto
semi-batch reactor, we show how to interpret composite adjoints as estimates for the continuous
adjoints referred to by Pontryagin’s Minimum Principle. Thus, these composite adjoints can
be used to (i) construct a novel and mathematical sound stopping criterion for the iterative
refinement of the control grid and to (ii) setup an indirect multiple shooting method the solution
of which verifies and improves the approximate solution to the exact one.
Copyright c©2010 IFAC
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1. INTRODUCTION

Optimal control problems arise in many engineering ap-
plications. Originally dealing with problems in aerospace
engineering, nowadays optimal control and especially
nonlinear model predictive control (NMPC) are a cur-
rent research topics in process control. The authors’ re-
search group develops and maintains DyOS (Dynamic
Optimization Software) for the numerical solution of
large-scale optimal control problems in real time. DyOS
has been successfully applied to a number of challeng-
ing open-loop and closed-loop optimal control problems
(Hartwich and Marquardt, 2010; Würth et al., 2009). One
strength of DyOS lies in its adaptive control vector param-
eterization (Schlegel et al., 2005; Schlegel and Marquardt,
2006), a variant of the single shooting approach (Sargent
and Sullivan, 1978).

DyOS starts with a coarse parameterization of the control
vector and iteratively eliminates or inserts points into the
control grid to find a problem-tailored parameterization.
Currently, the refinement is stopped by monitoring the
change in the objective function: if the objective function
value does not improve in some subsequent grid refinement
iterations, the algorithm stops (Schlegel et al., 2005).
Though this approach works well in practice it suffers from
two drawbacks. Firstly, the algorithm performs at least
one ”redundant“ iteration, since the objective function
does not improve significantly from the penultimate to the
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last iteration. Secondly, we actually do not know to what
extent the solution satisfies the necessary conditions of
optimality in the sense of Pontryagin’s Minimum Principle
(Pontryagin et al., 1962), i.e. we do not know how close or
far away we are from the true solution. We are searching
for methodologies to resolve these issues by extending the
direct solution approach by some elements of an indirect
approach.

This contribution shows by means of a case study how
information of the single shooting NLP, especially com-
posite adjoints (Hannemann and Marquardt, 2010), can be
interpreted as continuous adjoints in the sense of Pontrya-
gin’s Minimum Principle and thus can be used to decide
whether the control grid is sufficiently refined. Further,
we utilize them to initialize an indirect method to detect
the distance from the true solution. We discuss how the
information about the continuous adjoints extracted from
the NLP can be incorporated in a new adaptive control
vector parameterization algorithm in the future.

This paper is organized as follows. In Section 2 the
class of optimal control problems under consideration
is presented and in Section 3, we recall the necessary
conditions of optimality. The discretization of optimal
control problems by means of single shooting leads to
nonlinear programs which is presented in Section 4. The
interpretation of NLP information, especially the meaning
of composite adjoints, is discussed in Section 5. A case
study is investigated in Section 6. The results of the case
studies give rise to the modified adaptive control vector
parameterization presented in Section 7. Finally, Section
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8 presents our conclusion and gives an outlook on future
research directions.

2. PROBLEM FORMULATION

We consider exemplarily an optimal control problem with
one pure state constraint and several control constraints
where the controls appear linearly, motivated by the op-
timal control of the Williams-Otto semi-batch reactor as
introduced by Forbes (1994), given by

min
u(t)

Φ(x(tf )) (1)

s. t. ẋ(t) = a(x(t)) + b(x(t))u(t), (2)

x(t0) = x0 ∈ R
nx , (3)

s(x(t)) ≤ 0 ∀ t ∈ [t0, tf ], (4)

h(x(tf )) = 0 , (5)

u(t) ∈ U := [umin, umax] ⊂ R
nu . (6)

Here, Φ, s, h : R
nx → R, a : R

nx → R
nx , b : R

nx →
R

nx×nu are smooth functions. The independent variable
t is time, x(t) ∈ R

nx is the time-dependent state vector
and u(t) ∈ R

nu is the time-dependent control vector. We
assume that the optimal control is a piecewise continuous
function with a finite number of discontinuities. The state
vector x(t) is continuous and piecewise continuous differ-
entiable with respect to time. Eq. (2) holds except for the
points of discontinuities of u. The detailed presentation of
the formulation of the Williams-Otto semi-batch reactor
benchmark optimization problem considered later in a case
study can be found in Hannemann and Marquardt (2010).

An extension to different classes of optimal control prob-
lems (controls appearing nonlinearly, several pure state
constraints, mixed control-state constraints, etc.) is possi-
ble whenever suitable optimality conditions are available.
Hartl et al. (1995) provide a survey of such optimality
conditions. However, the authors are aware of the fact that
not all possible formulations are covered and that we are
relying on the assumption that the optimal control profiles
exhibit only a finite number of discontinuities, which may
be violated in some cases.

3. PONTRYAGIN’S MINIMUM PRINCIPLE

There are a couple of proven or informal minimum prin-
ciples for optimal control problems with state constraints
(Hartl et al., 1995). We restrict our investigation on the so-
called direct adjoining approach. For the discussion of the
minimum principle we need some notational prerequisites
which are introduced next.

Let τ1 < τ2 be real numbers. A subinterval (τ1, τ2) ⊂
[t0, tf ] is called an interior interval of the trajectory x(·)
if s(x(t)) < 0 for all t ∈ (τ1, τ2). In contrast, a subinterval
[τ1, τ2] ⊂ [t0, tf ] is called a boundary interval if s(x(t)) = 0
for all t ∈ [τ1, τ2].

Let t0 < τ1 < τ2 < tf and [τ1, τ2] be a maximal boundary
interval. Then, τ1 is called entry time and τ2 is called exit
time, taken together they are called junction times. We
will not discuss the case of a boundary point τ (Jacobsen
et al., 1971) where s(x(τ)) = 0 but x(·) is in the interior
just before and just after τ since this case is not relevant
for the Williams-Otto reactor.

To compute the optimal control within a boundary interval
[τ1, τ2] one has to introduce the concept of order of the
state constraint. We assume that the additional equation
s(x(t)) = 0 uniquely determines one control variable, say
u1, on [τ1, τ2]. Since s(x(t)) = 0 does not explicitly depend
on u1 we have to differentiate this equation recursively
with respect to t. We define

s0 := s,

si+1 :=
∂si

∂x
(a(·) + b(·)u) , i = 0, 1, . . . .

We say s(x(t)) ≤ 0 has the order p ≥ 1, iff

∂sp−1

∂u1
≡ 0 but

∂sp

∂u1
6= 0.

If the order of the state constraint is p, then the equation
sp(x, u) = 0 can be used to compute the control on a
boundary interval. The order of the state constraint of the
Williams-Otto reactor is p = 1.

To formulate the Minimum Principle of Pontryagin or,
in other words, the necessary conditions of optimality we
introduce the extended Hamiltonian

H(x, λ, η, u) := λT (a(x) + b(x)u) + η s(x), (7)

where x, λ ∈ R
nx , u ∈ R

nu , η ∈ R. Let x(t), u(t) be
an optimal solution of eqs. (1) – (6). Further, let the
equation sp(x, u) = 0 be solvable for u1 = u1(x), and let
u1(t) ∈ (umin1, umax1) for all boundary intervals [t1, t2].
Then, there exists

(a) a multiplier ρ ∈ R,
(b) a piecewise continuous and piecewise continuously

adjoint function λ : [t0, tf ] → R
nx ,

(c) a piecewise continuous multiplier function η : [t0, tf ] →
R,

(d) multipliers 0 ≤ ν(ti) ∈ R for every junction time ti,

such that the following statements hold:

(1) u(t) = argmin
u∈U

H(x(t), λ(t), η(t), u) for all points of

continuity t ∈ [t0, tf ] of u(t),

(2) λ̇(t)T = −Hx(x(t), λ(t), η(t), u(t))
λ(tf )

T = Φx(x(tf )) + ρ hx(x(tf )),
(3) η(t) ≥ 0 and η(t) s(x(t)) = 0,
(4) for each junction time ti the following junction con-

ditions hold:
λ(τ+i )T = λ(τ−i )T + ν(τi) sx(x(τi)), where λ(τ+i ) =
lim
ε↓0

λ(τi + ε), λ(τ−i ) = lim
ε↓0

λ(τi − ε).

In our setup, the Hamiltonian is linear in u. Hence, if
Hui

6= 0 holds for an optimal solution, the control ui stays
at its lower or upper bound. We introduce the switching
functions

σi(x, λ) = Hui
(x, λ, η, u), i = 1, . . . , nu. (8)

For an optimal solution (x∗, u∗) with corresponding ad-
joint functions λ∗, we simply write for convenience

σi(t) := σi(x
∗(t), λ∗(t)), i = 1, . . . , nu, (9)

such that the optimal control can be characterized by
{

u∗
i (t) = umaxi, if σi(t) < 0

u∗
i (t) ∈ [umini, umaxi], if σi(t) = 0

u∗
i (t) = umini, if σi(t) > 0

}

. (10)

Because of (10) we have

σi ≡ 0 on [τ1, τ2], (11)
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for a boundary interval [τ1, τ2] of the control ui.

4. DIRECT SINGLE SHOOTING

So far, we have characterized the optimal solution of the
continuous (infinite-dimensional) optimal control problem.
At this point we state how to approximate optimal solu-
tions by means of direct single shooting.

The basic idea is to substitute the control vector u(t) by an
approximation ũ(t, p) employing parameters pij and basis
functions φij(t), i.e.

ũi(t, p) :=

Pi
∑

j=1

pij φij(t), pij ∈ R, i = 1, . . . , nu . (12)

Typically, the functions φij(t) are constant, linear or cubic
B-splines. The vector p = (p11, . . . , pnuPnu

)T ∈ R
np

concatenates of all degrees of freedom. The state vector
depends on the parameter p and can be computed by
solving the initial value problem

˙̃x(t, p) = f(x̃(t, p), ũ(t, p)), (13)

x̃(0, p) = x0, (14)

for example by Runge-Kutta methods.

The path constraint (4) is relaxed by defining a grid
t0 < t1 < t2 < · · · < tN = tf to result in

s(x̃(tk, p)) ≤ 0, k = 0, . . .N.

The infinite-dimensional optimal control problem is ap-
proximated by the finite-dimensional nonlinear program

min
p

Φ(x̃(tN , p))

s. t. s(x̃(tk, p)) ≤ 0, k = 0, . . . , N (OC-NLP)

h(x̃(tN , p)) = 0 .

The Lagrangian of (OC-NLP) can be stated as

L(p, η̃, ρ̃) =Φ(x̃(tN , p)) +

(

N
∑

k=0

η̃k s(x̃(tk, p))

)

+ ρ̃ h(x̃(tN , p))) (15)

with Lagrange multipliers η̃k ∈ R, k = 0, . . . , N and ρ̃ ∈ R.

The well-known Karush-Kuhn-Tucker necessary condi-
tions characterize the optimal solution of (OC-NLP). Let
p∗ be an optimal solution of (OC-NLP). Under mild as-
sumptions, there exist unique Lagrange multipliers η̃k ∈
R, k = 0, . . . , N and ρ̃ ∈ R, such that

(1) Lp(p
∗, η̃, ρ̃) = 0,

(2) The constraints of (OC-NLP) are satisfied, and
(3) η̃i ≥ 0, η̃i s(x(ti, p

∗)) = 0, i = 0, . . . , N .

5. COMPOSITE ADJOINTS

Composite adjoints refer to a recently introduced tech-
nique to efficiently compute the Hessian of the Lagrangian
in eq. (15). They are an extension of the first- and second-
order adjoint sensitivity analysis for multipoint-evaluated
ODE-embedded functionals. For a detailed discussion of
composite adjoints we refer to Hannemann and Marquardt
(2010).

According to Büskens and Maurer (2000, p. 92, eq. (30)),

the first-order composite adjoints λ̃(t, p) are a good ap-

proximation of the adjoint function from Pontryagin’s
Minimum Principle 2 :

λ̃(t, p∗) =
∂L

∂x(t, p)
≈ λ(t). (16)

Furthermore, we have the relation

ρ̃ ≈ ρ. (17)

There exists also a relation between the multipliers η̃i and
the continuous multiplier function η(t) and the junction
time multipliers ν(τi). Let [τ1, τ2] be a maximal boundary
interval with entry time τ1 and exit time τ2, K < L
integers, and tK < tK+1 < · · · < tL a finite sequence
of times with τ1 < tK−1 < tL+1 < τ2 . Then, we can state
the conjecture that

∫ tL

tK

η(t) dt ≈
L
∑

i=K

η̃i −
η̃K + η̃L

2
, (18)

and additionally, if tK ≈ τ1, tL ≈ τ2, tK−1 < τ1, τ2 < tL+1:
∫ tL

tK

η(t) dt+ ν(τ1) + ν(τ2) ≈
L
∑

i=K

η̃i. (19)

This (not yet proved) conjecture is a generalization of the
results reported by Büskens and Maurer (2000) and has
been confirmed by numerical experiments. The relations
(16) – (19) can be used to correlate information from
(OC-NLP) with the statements of Pontryagin’s Minimum
Principle. We use them to set up and initialize the cor-
responding multipoint boundary problem to further im-
prove the approximate solution resulting from (OC-NLP)
to finally obtain an exact solution of the optimal control
problem.

6. WILLIAMS-OTTO SEMI-BATCH REACTOR

The Williams-Otto semi-batch reactor, as introduced by
Forbes (1994), is optimized using

(1) direct single shooting applying an equidistant piece-
wise constant parameterization with
(a) a coarse grid (20 parameters for each control),
(b) a fine grid (200 parameters for each control),
and

(2) indirect multiple shooting in order to obtain a highly
accurate numerical solution.

In the reactor, the reactions A + B −→ C, C + B −→
P + E and P + C −→ G take place. Reactant A is
already in the reactor at initial time, whereas reactant
B is fed continuously into the reactor during operation.
The products P and E as well as the side-product G
are formed. The heat generated through the exothermic
reaction is removed by a cooling jacket, which is controlled
by manipulating the cooling water temperature TW . At the
end of the batch, the conversion to the desired products
P and E should be maximized. We have nx = 9 states
and nu = 2 controls. The manipulated control variables
2 In the past, there were different approaches to utilize NLP infor-
mation of direct methods for estimates of the continuous adjoints.
Von Stryk and Bulirsch (1992) use a full discretization approach
based on collocation and provide estimates for the adjoints variables.
Grimm and Markl (1997) provide estimates for the adjoints based
on direct multiple shooting, as introduced by Bock and Plitt (1984).
Büskens and Maurer (2000) implement the single shooting technique
to provide an a-posteriori estimate of the adjoints.
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of this process are u1(t) = TW (t) and the flow rate of B
u2(t) = FB,in(t). The batch time is 1000 seconds.

The economic objective is to maximize the yield of the
main products at the end of the batch. The dynamic
optimization problem is of the form (1) – (6) where the
pure state constraint (4) refers to the reactor temperature.

We present the results of the numerical computations by
direct single and indirect multiple shooting. The direct sin-
gle shooting method has been implemented using a fixed-
stepsize fourth-order Runge-Kutta method with equidis-
tant piecewise constant parameterization of the controls.
Indirect multiple shooting is performed by the Fortran
routine BNDSCO of Oberle and Grimm (1989).

Though in practice, we started with the direct method, we
first discuss the exact solution computed by the indirect
method. The exact control u1 and its switching function
σ1 are sketched in Figure 3. Note that the control stays
continuous when entering the boundary arc at τ2. This
behavior does not contradict the theory of necessary
conditions but is not observed often in practice. The
control u2 has a bang-bang structure (not shown). All
in all we have six switching points τ1, . . . , τ6. Setting
τ0 = t0 = 0 and τ7 = tf = 1000 we can identify seven
intervals Ik = [τk−1, τk], k = 1, . . . , 7. The structure of the
optimal solution is shown in Table 1. The bold ’l’ and
’u’ mark controls which are at its lower and upper bound,
respectively. The bold b is reserved for boundary intervals,
where the state constraint s(x(t)) ≤ 0 is active. Here, I3
is the only boundary interval. The switching times itself
are found in Table 2. As seen in Fig. 3, the control u1 is
continuous at the entry time of the boundary interval I3
and discontinuous at its exit time. According to Maurer
and Heidemann (1975), this behavior results in a nonzero
multiplier ν(τ2) in the entry and a zero multiplier ν(τ3) in
the exit time, as it is confirmed by the numerical values
given in Table 3.

The approximated control ũ1 computed by means of the
coarse control grid is presented in Fig. 4. In accordance
with eqs. (8) and (9), we introduce the discrete switching
functions

σ̃i(t) = σi(x̃(t, p), λ̃(t, p)), i = 1, . . . , nu, (20)

which will serve as measures for the solution quality of the
control grid. Fig. 4 also presents σ̃1 for the coarse grid.
If we analyze the trajectories of σ̃1 and ũ1 with respect
to eqs. (10) and (11), we discover inconsistencies: on the
interval [τ2, τ3] the control ũ1 seems to be on a boundary
interval but σ̃1 does not vanish. Hence the chosen control
grid is not suited to reflect the true solution.

In contrast, visual inspection of Fig. 5 reveals that ũ1

of the fine control grid is a good approximation to the
”true“ solution and that eqs. (8) and (9) are at least
satisfied approximately. In the following, we provide some
further investigations of the relations between the exact
and the approximated solution on the fine control grid.
These relations were used to setup the right MPBVP for
the computation of the exact solution by means of indirect
multiple shooting.

Figs. 1 and 2 illustrate the relation of the discrete and
continuous multipliers η̃ and η(t). Though the correspon-
dence of the multipliers is not visible at first sight because
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1

k

η̃
k

Fig. 1. Discrete multipliers η̃k (fine grid), k = 0, 1, . . . , 400
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0.015
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η
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)

t

Fig. 2. Exact multiplier function η(t)

Table 1. Structure of the optimal control

I1 I2 I3 I4 I5 I6 I7

u1(t) l u b u u l u

u2(t) u u u u l l l

l: ui = umini, u: ui = umaxi, b: u1 = u1(x)

Table 2. Switching times

τ1 0.52337586E+02
τ2 0.14825782E+03
τ3 0.35986598E+03
τ4 0.51867220E+03
τ5 0.53868488E+03
τ6 0.85879617E+03

of the different scalings and numerical artifacts, relation
(19) is verified in Table 4. Note that the “jump” of η̃k at
k = 58 in Fig. 1 approximates the multiplier ν(τ2) given
in Table 3 and is used as an initial guess for the indirect
method. Table 6 presents the multipliers for the endpoint
condition (5), which are in accordance with eq. (17). The
initial values of the composite and exact adjoints are given
in Table 5. They confirm eq. (16) and show that first-order
composite adjoints constitute a good approximation of the
adjoints of the continuous problem.
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Fig. 3. Exact optimal control u1 (left) and its switching function (right) computed by the indirect method
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ũ
1

τ1 τ2 τ3 τ5 τ6 0 1000

−0.2

−0.1

0

0.1

0.2

0.3

t

σ̃
1

τ1 τ2 τ3 τ5 τ6

Fig. 4. Piecewise constant approximation of control u1 with 20 parameters (left) and its discrete switching function
(right)
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Fig. 5. Piecewise constant approximation of control u1 with 200 parameters (left) and its discrete switching function
(right)
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Table 3. Multiplier for junction times

ν(τ2) 0.82948591E+00
ν(τ3) 0

Table 4. Multiplier functions

indirect direct (fine grid)
∫

τ3

τ2

η(t) dt+ ν(τ2) + ν(τ3)

L
∑

i=K

η̃i

= 4.57382 = 4.58857

Table 5. Composite (direct, fine grid) and
exact (indirect) adjoints

i indirect λi(t0) direct λ̃i(t0)

1 -0.468420E+03 -0.467945E+03
2 -0.313515E+04 -0.313509E+04
3 -0.172955E+04 -0.172936E+04
4 0.516053E+04 0.516086E+04
5 0.164392E-29 0.000000E+00
6 -0.258480E-28 0.000000E+00
7 0.121051E+00 0.121705E+00
8 0.119475E+04 0.119625E+04
9 0.100000E+01 0.100000E+01

Table 6. Endpoint constraint multipliers

indirect ρ direct ρ̃ (fine grid)
0.135189E+04 0.135325E+04

7. NOVEL STOPPING CRITERION

The results of the following section give rise to a modified
adaptive control vector parameterization which is sketched
in Table 7. By now the decision in step 5, whether

Table 7. Modified adaptive control vector pa-
rameterization

(1) Create an initial control grid.
(2) Solve (OC-NLP) on the current control grid.
(3) Check based on the discrete switching functions in eq.

(20) whether the relations (8),(9) are (nearly) fulfilled.
If yes then goto 5. else goto 4.

(4) Apply the grid refinement algorithm according to
Schlegel et al. (2005) and goto 2.

(5) STOP. Solution quality is sufficient.
(6) If desired setup the proper MPBVP and solve it for

example by indirect multiple shooting to verify the
approximate and to compute the exact solution.

the solution quality is sufficient, is taken manually but
our group works on the automatization of the stopping
criterion.

8. CONCLUSIONS

We computed the optimal control of the Williams-Otto
semi-batch reactor by means of single shooting. We showed
that the dual information of the (OC-NLP) of direct single
shooting, especially the information of the composite ad-
joints, corresponds one to one to the dual information of
the continuous solution. We utilized this insight to propose
a modified adaptive control vector parameterization with
a new stopping criterion which further allows to set up the
correct MPBVP to facilitate the computation of the exact
solution.
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