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∗ IMMC, Université catholique de Louvain, 2 place Sainte Barbe,
1348 Louvain-la-Neuve, Belgium
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1. INTRODUCTION

Thermodynamic systems, and among them chemical re-
action systems, are usually nonlinear dynamical systems.
They can therefore have a complex behaviour and be
difficult to analyze and to control. Stability analysis of non-
linear systems requires the use of abstract mathematical
tools such as the two Lyapunov methods or the passivity
theory. Over the past years, several works have combined
those abstract concepts with the underlying physical phe-
nomena giving rise to the dynamical behaviour of the sys-
tem (see e.g. Eberard et al. (2005, 2006); Favache (2009);
Jeltsema et al. (2004); Ortega et al. (2001)). The aim is
to use the physical understanding for designing physics-
based control systems that specifically act one the physical
origins of the undesired behaviour. The non-isothermal
continuous stirred tank reactor (CSTR) is a classical study
case of nonlinear systems. Indeed the dynamical behaviour
exhibits complex features, such as multiple equilibrium
points. Up to now no precise physical interpretation of
the complex behaviour of the non-isothermal reactor has
been found (Favache and Dochain (2009b)).

Power-shaping control (Ortega et al. (2003)) has been
developed in the past years as an extension of energy-
balancing passivity-based control (Jeltsema et al. (2004);
Ortega et al. (2001)). Power-shaping control has been
introduced, firstly for the stabilization of nonlinear RLC
circuits (Ortega et al. (2003)). The starting point is the
Brayton-Moser formulation of the dynamics of electrical
circuits (Brayton and Moser (1964)). When writing the
dynamics in this particular form a special function, called
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the potential function, appears. In the case of electrical
circuits the potential function is related to the power
dissipated in the resistors and stored in the inductors and
capacitors. In the power-shaping control approach, control
is achieved by reshaping this potential function by the
means of the control input. The power-shaping approach
has subsequently been applied to mechanical systems and
then to any system, as far as its dynamics can be written
in the Brayton-Moser form (Garćıa-Canseco et al. (2010)).

In previous work we have already applied the power-
shaping approach to the CSTR study case (Favache
and Dochain (2009a); Favache (2009)). However in those
works, no systematical methodology for applying this ap-
proach to general reacting systems has been found and
the Brayton-Moser form has not been linked precisely to
thermodynamics. In this paper we show how the Brayton-
Moser formulation of a general CSTR can be deduced from
thermodynamic considerations. We shall first give a brief
overview of the power-shaping approach (Section 2). Sec-
tion 3 presents the dynamical model of the CSTR. Then
in Section 4 we shall show how the thermodynamic theory
can be used to find the Brayton-Moser representation of
a general CSTR. Finally in Section 5 some comments on
the previously used assumptions shall be presented.

Notations All vectors (including the gradients) are col-
umn vectors. The notation xt denotes the transpose of the
vector or the matrix x.

2. POWER-SHAPING CONTROL

In this section we briefly explain the basic principles of
the power-shaping approach. The statements are given
without any proof. For more details, the reader can refer
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to Garćıa-Canseco et al. (2010); Jeltsema and Scherpen
(2007); Ortega et al. (2003).

2.1 The Brayton-Moser formulation

Let us consider a dynamic system of dimension N with
m inputs. The state of the system is given by the vector
x ∈ R

N and the input is given by vector uc ∈ R
m.

As already said, the power-shaping approach rests on
on a particular formulation of the dynamics, namely the
Brayton-Moser formulation (Brayton and Moser (1964)).
The system dynamics are of following form:

Q (x)
dx

dt
= ∇P (x) + G (x) uc (1)

where Q (x) : R
N → R

N × R
N is a non-singular square

matrix, P (x) : R
N → R is a scalar function of the state

and G (x) : R
N → R

N × R
m. Additionally the symmetric

part of the matrix Q (x) is negative semi-definite, i.e.:

Q (x) + Qt (x) ¹ 0. (2)

The function P (x) is called the potential function. In
electrical and mechanical systems, the potential function
has the units of power and is related to the dissipated
power in the system. In the first one it is related to the
so-called content and co-content of the resistances; in the
latter it is related to the Rayleigh dissipation function
(Jeltsema and Scherpen (2007); Ortega et al. (2003)).

Let us now assume the system dynamics is given by the
following relation:

dx

dt
= f (x) + g (x) uc (3)

where f (x) : R
N → R

N and g (x) : R
N → R

N × R
m. The

system (3) can be written in the form (1) if there exists
a non-singular matrix Q (x) fulfilling (2) and that solves
following partial differential equation 1 :

∇ (Q (x) f (x)) = ∇t (Q (x) f (x)) (4)

P (x) is the solution of the following partial differential
equation system:

∇P (x) = Q (x) f (x) (5)

and the function G (x) is given by G (x) = Q (x) g (x).

2.2 Controller design

Let us assume that the system dynamics can be expressed
by using the Brayton-Moser equations presented before.
The desired equilibrium state is denoted by x∗. The
principle of power-shaping control is to choose the input
uc (x) such that in closed loop the system dynamics are
given by the following relation:

dx

dt
= ∇Pd (x) (6)

where Pd (x) : R
N → R is the re-shaped potential

function. The desired equilibrium point x∗ must be a local
minimum of the potential function Pd (x) in order to be
locally asymptotically stable. The function Pd (x) can be
used as a Lyapunov function for the closed-loop system.

1 This condition is equivalent to the existence of the potential
function P (x).

The function Pd (x) cannot be chosen arbitrarily since the
following relation must be fulfilled:

g⊥ (x) Q−1 (x)∇Pa (x) = 0 (7)

where Pa (x) = Pd (x) − P (x) and

g⊥ (x) : R
N → R

N−m × R
N

is a full-rank left annihilator of g (x) (i.e. g⊥ (x) g (x) = 0
with rank

(
g⊥ (x)

)
= N − m). Under these conditions, a

control input u (x) that re-shapes P (x) into Pd (x) can
be found.

3. THE CSTR DYNAMICAL MODEL

3.1 The dynamical model

We shall use here the dynamic model of the CSTR pre-
sented in Favache and Dochain (2009b). This model is
more correct from a thermodynamic point of view than
the usual model (e.g. Aris and Amundson (1958)). In
particular our model has less underlying assumptions such
as the constant heat capacity of the mixture. It is derived
directly from the mass and internal energy balances. Let us
consider a CSTR in which a reaction in a liquid medium
takes place and involves two chemical species A and B:
A ⇋ νBB where νB is a stoichiometric coefficient. The
reactant and the product are dissolved in an inert I. The
reactor is connected to a jacket in which a cooling fluid is
circulating.

Let us consider the following modelling assumptions.

(1) The reactor is perfectly mixed.
(2) The inlet and outlet volume flow rates are equal.
(3) The concentrations of A and B in the reactor and in

the inlet flow are very low compared to the concentra-
tion of the inert I so that only the molar volume vI of
I has to be taken into account for the determination
of the total volume. The molar volume vI is constant
and in particular it is independent of the quantity of
the dissolved species A and B or of the temperature.

(4) The molar constant pressure heat capacity Cpi
of each

species is constant.
(5) The thermodynamic model considered here is that of

an ideal liquid mixture.
(6) The time evolution is a quasi-static process.
(7) The global reaction rate r depends only on the tem-

perature T of the mixture, and on the concentration
of the involved species, i.e. A and B. More precisely
the reaction rate is in fact composed of two indi-
vidual reaction rates, one for the forward reaction
(A → νBB), rf , and one for the backward reaction
(νBB → A), rb. The global reaction rate is given
by r (·) = rf (·) − rb (·). r > 0 if the net reaction
is such that A is consumed, whereas r < 0 if A is
produced. The case r = 0 corresponds to the chemical
equilibrium. Each reaction rate is a strictly increasing
function of the concentration of its reactant, i.e. A for
the forward reaction and B for the backward reaction,
but it does not depend on the concentration of its
respective product. The reaction rates are equal to
zero if the concentration of their reactant is equal to
zero.

As it can be seen in Favache and Dochain (2009b) and in
Favache (2009) these assumptions imply that the volume
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and the quantity of I are constant. The reaction rate r is
a function of the temperature T and the concentrations of
A and B, i.e. nA

V
and nB

V
. But the volume is constant and

hence the concentrations of A and B are proportional to
the quantity of matter nA and nB . For the sake of notation
simplicity, we shall therefore denote the dependence of the
reaction rate as r (T, nA, nB) (= rf (T, nA) − rb (T, nB))
instead of the usual way that would be r

(
T, nA

V
, nB

V

)
.

This leads to the following dynamical model:






dnA

dt
=

F

V

(
Cin

A V − nA

)
− r

(

T̂ (nA, nB , U) , nA, nB

)

V

dnB

dt
=

F

V

(
Cin

B V − nB

)

+ νBr
(

T̂ (nA, nB , U) , nA, nB

)

V

dU

dt
=

F

V

(

hinV − Ĥ (nA, nB , U)
)

+ Q̇

(8)
where nA, nB and U stay respectively for the quantity of
A, B and for the internal energy of the mixture; F is the
volumetric flow rate; Cin

A , Cin
B and hin are respectively

the inlet concentrations of A and B and the volumetric
enthalpy of the inlet flow; Q̇ is the heat exchange flow
rate. T̂ (nA, nB , U) and Ĥ (nA, nB , U) are respectively the
temperature and the enthalpy as the function of nA, nB

and U and are given by the thermodynamic model (here
the ideal liquid). In the sequel we shall use the following

notation: r̂ (nA, nB , U) = r
(

T̂ (nA, nB , U) , nA, nB

)

.

Contrary to what has been done in Favache and Dochain
(2009b) and in Favache (2009) we shall consider consider
two control inputs to our system: the heat exchange flow
rate Q̇ and the dilution rate F

V
. This corresponds to the

system studied in Ramı́rez et al. (2009) where the authors
considered CSTR model with the usual assumptions for
some particular reaction network. However, as the authors
mention, they did not manage to extend their result
to more general cases. Using the notations of (3) with

uc =
[

F
V

, Q̇
]t

, we have:

f (nA, nB , U) =

(
−r̂ (nA, nB , U) V
νB r̂ (nA, nB , U) V

0

)

(9)

and

g (nA, nB , U) =






Cin
A V − nA 0

Cin
B V − nB 0

(

hinV − Ĥ (nA, nB , U)
)

1




 .

3.2 The unforced system equilibria

For the unforced system (uc = 0), the equilibrium points of
(8) are given by the set

{(
n̄A, n̄B , Ū

)∣
∣ r̂

(
n̄A, n̄B , Ū

)
= 0

}
.

As a consequence there are an infinity of equilibrium
points.

The trajectories are such that:

U = U (t = 0)

νBnA + nB = νBnA (t = 0) + nB (t = 0) .

As a consequence, starting from the initial point(
n0

A, n0
B , U0

)
, the only equilibrium points that can be

reached are the solution of the following system:







r̂
(
n̄A, n̄B , Ū

)
= 0

νBn̄A + n̄B = νBn0
A + n0

B

Ū = U0

(10)

Lemma 1. (10) has an equilibrium in the physically ad-
missible domain, i.e. nA ≥ 0, nB ≥ 0.

Proof. An equilibrium point is the solution of (10) only
if n̄A is the solution of the following equation:

r̃ (n̄A) = r̂
(
n̄A, νB

(
n0

A − nA

)
+ n0

B , U0
)

= 0.

The solution is located in the physically admissible do-
main if and only if r̃ (nA) has a root in the interval
[

0;n0
A − nA +

n0

B

νB

]

. We have lim
nA→0

r̃ (nA) = −rb < 0 and

lim
νBnA→νBn0

A
+n0

B

r̃ (nA) = rf > 0.

As a consequence r̃ (nA) has at least one root in the

interval
[

0;n0
A − nA +

n0

B

νB

]

.

4. THE BRAYTON-MOSER FORM OF THE CSTR

4.1 General solution

Our aim is to find the Brayton-Moser formulation of (8).
To do this we have to solve the partial differential equation
system (4). Using (9) we write:

Q (nA, nB , U) f (nA, nB , U)

=

(
−q11 + q12νB

−q21 + q22νB

−q31 + q32νB

)

r̂ (nA, nB , U) V

where qij (nA, nB , U) is the entry in position (i, j) of
Q (nA, nB , U). With the following notations (for
i = 1, 2, 3):

ai (nA, nB , U) = νBqi2 (nA, nB , U) − qi1 (nA, nB , U)

(4) is written as follows (for i, j = 1, 2, 3):

∂

∂xj

[ai (nA, nB , U) r̂ (nA, nB , U) V ]

=
∂

∂xi

[aj (nA, nB , U) r̂ (nA, nB , U) V ] (11)

where x = [nA, nB , U ]. The general form of the solutions
is given as follows:

a1 (nA, nB , U) r̂ (nA, nB , U) V

=

∫

φ (nA, nB , U) dnB + ψ (U, nA)

a2 (nA, nB , U) r̂ (nA, nB , U) V

=

∫

φ (U, nA, nB) dnA + ϕ (U, nB)

a3 (nA, nB , U) r̂ (nA, nB , U) V

=

∫ ∫
dφ

dU
dnAdnB +

∫
dψ

dU
dnA +

∫
∂ϕ

∂U
dnB + ρ (U)

(12)

where φ (nA, nB , U), ψ (nA, U), ϕ (nB , U) and ρ (U) are
arbitrary real scalar functions. Since these functions are
arbitrary, they could have units that are not power-units.
The corresponding matrix Q (nA, nB , U) is given by the
following expression:
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Q (nA, nB , U) =

(
νBq12 (x) − a1 (x) q12 (x) q13 (x)
νBq22 (x) − a2 (x) q22 (x) q23 (x)
νBq32 (x) − a3 (x) q32 (x) q33 (x)

)

(13)
where qi2 (U, nA, nB) and qi3 (U, nA, nB) for i = 1, 2, 3 can
be chosen arbitrarily.

Inserting (12) into (5) we obtain the following expression
for the potential function P (nA, nB , U):

P (nA, nB , U) =

∫∫

φ (nA, nB , U) dnAdnB

+

∫

ψ (nA, U) dnA +

∫

ϕ (nB , U) dnB +

∫

ρ (U) dU +ω

(14)

where ω is some real constant.

4.2 Particular solution

In Section 4.1 we have presented the general solution to (4)
in the case of a CSTR. This solution is a general solution
and nearly any function can be used as the Brayton-Moser
potential since φ (nA, nB , U), ψ (nA, U), ϕ (nB , U), ρ (U)
and ω can be chosen arbitrarily. However we have only
considered the condition (4) and all the choices do not
lead to a non-singular matrix Q (nA, nB , U) that fulfills
also (2). In this section we shall use thermodynamic
considerations to find a non-singular particular solution
that fulfills (2).

The two following lemmas shall be helpful in the sequel.
Since they are rather trivial, they are given without proof.

Lemma 2. For a non-singular matrix Q (x), (2) implies
that dP

dt
≤ 0 when uc = 0.

Lemma 3. For a non-singular matrix Q (x), (2) implies
that ∇P (x̄) = 0 at the equilibrium points x̄ when uc = 0.

From Lemmas 2 and 3, it is obvious that the particular
solution leads to a quantity that is decreasing along the
trajectories when the inputs are set to zero and that
has a local minimum at the equilibria. From the second
principle of thermodynamics, the entropy production is
always positive. In our case the unforced system corre-
sponds to a batch reactor, i.e. an isolated system. For such
a system, the entropy production is zero at the equilibrium
and hence the entropy production has a local minimum.
In Glansdorff and Prigogine (1964) a general evolution
criterion is given for all macroscopic systems submitted to
time independent boundary conditions. For some thermo-
dynamic systems, this criterion implies that the entropy
production is decreasing along the trajectories. Therefore
we shall use the entropy production σS as a candidate for
the Brayton-Moser potential.

For an isolated system the entropy production is equal to
the entropy variation:

σS =
dS

dt
=

∂tŜ

∂x

dx

dt
=

(µA

T
− νB

µB

T

)

r̂ (nA, nB , U) V

where Ŝ (nA, nB , U) is the entropy as a function of nA, nB ,
U and µi is the chemical potential of species i. Indeed from

thermodynamic theory we have ∂Ŝ
∂x

=
(
−µA

T
,−µB

T
, 1

T

)t

(Callen (1985)).

Assumption 1. The reaction kinetics are such that
Λr̂ (nA, nB , U) ≥ 0 where Λ = µA

T
− νB

µB

T
is the reaction

affinity, with equality if and only if both Λ = 0 and
r̂ (nA, nB , U) = 0.

This assumption is necessary to ensure that the second
principle of thermodynamics is fulfilled, namely that the
entropy production is always non-negative. It means that
the reaction evolves always in the direction of decreasing
affinity.

The time variation of the entropy production is given as
follows:

dσS

dt
= (r̂V )

(

νB

∂σS

∂nB

−
∂σS

∂nA

)

= − (r̂V )
2

(
dΛ

dnA

−
dΛ

dnB

νB

)

− Λr̂V

(
d (r̂V )

dnA

−
d (r̂V )

dnB

νB

)

. (15)

Let us first consider the term dΛ
dnA

− dΛ
dnB

νB :

dΛ

dnA

−
dΛ

dnB

νB = −
(
νB −ν2

B 0
) ∂2Ŝ

∂x2





νB

−ν2
B

0



 .

A consequence of the second principle of thermodynamics

is that the entropy function is concave, i.e. ∂2Ŝ
∂x2 ¹ 0 (see

e.g. Callen (1985)). As a consequence dΛ
dnA

− dΛ
dnB

νB ≥ 0.

However nothing can be said in general about the sign of
the second term.

Assumption 2. The reaction kinetics r (T, nA, nB) are
such that dσS

dt
≤ 0.

Assumption 3. The limit lim
r̂(nA,nB ,U)→0

Λ

r̂ (nA, nB , U)
is de-

fined and finite.

Proposition 4. The following particular solution leads to a
matrix Q (nA, nB , U) that fulfills (2) and (4):

Q (nA, nB , U) =








νB

∂σS

∂nB

1

r̂V
−

∂σS

∂nA

1

r̂V

∂σS

∂nB

1

r̂V
0

q21 q22 0

−
∂σS

∂U

1

r̂V
0 q33








(16)
with

q21 =
4α

νB

(

νB

∂σS

∂nB

1

r̂V
−

∂σS

∂nA

1

r̂V

)

−
∂σS

∂nB

1

r̂V

q22 =
4α

ν2
B

(

νB

∂σS

∂nB

1

r̂V
−

∂σS

∂nA

1

r̂V

)

q33 = β

(
∂σS

∂U
1

r̂V

)2

4 (1 − α)
(

νB
∂σS

∂nB

1
r̂V

− ∂σS

∂nA

1
r̂V

)

where 0 < α < 1 and β > 1 are two scalar constants.

Proof. First let us show that (16) fulfills (4). It is suffi-
cient to prove that (16) is a particular choice of (13). By
choosing ψ (nA, U) = ϕ (nB , U) = ρ (U) = ω = 0 and:

φ (nA, nB , U) =
∂2σS

∂nA∂nB

we have for i = 1, 2, 3:
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ai (nA, nB , U) =
∂σS

∂xi

1

r̂ (nA, nB , U) V

=
∂Λ

∂xi

+
Λ

r̂ (nA, nB , U) V

∂ (r̂V )

∂xi

Assumption 3 guarantees that this quantity is well defined.
It is easy to see that (16) is indeed of the form of (13).

Using the principal minors of Q + Qt, Q + Qt ≺ 0 if and
only if:

0 > 2

(

νB

∂σS

∂nB

1

r̂V
−

∂σS

∂nA

1

r̂V

)

0 < 4

(

νB

∂σS

∂nB

1

r̂V
−

∂σS

∂nA

1

r̂V

)

q22 − (νBq22)
2

0 > 2q33

[

4

(

νB

∂σS

∂nB

1

r̂V
−

∂σS

∂nA

1

r̂V

)

q22 − (νBq22)
2

]

− 2q22

(
∂σS

∂U

1

r̂V

)2

From Assumption 2, these conditions are indeed fulfilled.

Proposition 5. If the kinetics fulfill the Assumptions 1-3,
then the system dynamics (8) can be put into the Brayton-
Moser form (1) with Q (nA, nB , U) given in (16) and
P (nA, nB , U) = σS .

Proof. This follows directly from Proposition 4 and (14).

In the electrical (mechanical) cases the matrix Q (x) can
also be given a physical interpretation since the elements
correspond to the capacitors (springs) and to the inductors
(masses) (Jeltsema and Scherpen (2007)). In the case of a
chemical system it has not been possible to find a similar
interpretation and in this work we have focused on the
physical interpretation of the potential function.

5. SOME COMMENTS ABOUT THE ASSUMPTIONS

The matrix proposed in Proposition 4 can be used only if
the Assumptions 1 to 3 are fulfilled. Otherwise the matrix
could be either not defined at some states or condition (2)
may not be fulfilled everywhere. Therefore we shall com-
ment these assumptions with regard to commonly used
kinetics. We shall consider here the most simple and usual
case, namely mass action law kinetics with Arrhenius type
dependence:

r (T, nA, nB) = kf (T )
(nA

V

)

︸ ︷︷ ︸

rf

− kb (T )
(nB

V

)νB

︸ ︷︷ ︸

rb

with kf (T ) = kf0
exp

(
Ef

RT

)

and kb (T ) = kb0 exp
(

Eb

RT

)
,

where kf0
, kb0 are the Arrhenius constants of the forward

and backward reaction, respectively, Ef and Eb are the
activation energies of the forward and backward reaction,
respectively and R is the ideal gas constant.

5.1 Assumption 1

As already said this assumption implies that the reaction
evolves always in the direction of decreasing the reaction
affinity. In particular we must have:

r (T, nA, nB) = 0 if and only if Λ = 0 (17)

For an ideal liquid mixture where A and B are very dilute,
the reaction affinity is given by the following expression:

Λ = RT ln

(
nA

CV
(

nB

CV

)νB

)

− T (−∆rS) + (−∆rH)

where C is the total molar concentration which is constant
for dilute mixtures and

(−∆rH) = (h0A
− νBh0B

) + (CpA
− νBCpB

) T

(−∆rS) = (s0A
− νBs0B

) − (CpA
− νBCpB

)
1

T
ln

(
T

T0

)

are the reaction enthalpy and entropy with T0 the reference
temperature, h0i

and s0i
the reference molar enthalpy and

molar entropy of species i. When (17) is fulfilled, we have:

RT ln

(
nA

V
(

nB

V

)νB

)

= T (−∆rS) − (−∆rH) − (νB − 1) lnC

= RT ln

(
kb (T )

kf (T )

)

This equality can be fulfilled if and only if:

Eb − Ef = (−∆rH) (18a)

CpA
− νBCpB

= 0 (18b)

ln

(
kb0

kf0

)

= −
s0A

− s0B

R
− (νB − 1) lnC (18c)

Remark 6. (18a) is a consequence of the van’t Hoff relation
for ideal mixtures. (18b) expresses the fact that (−∆rH)
and (−∆rS) are independent of the temperature, which is
often the case practically if the temperature range is not
too large.

Remark 7. Assumption 1 is necessary for the second prin-
ciple of thermodynamics to be fulfilled. In a first view,
one could therefore think that all reaction kinetics trivially
fulfill this assumption. The above considerations show that
even the simplest and most usual reaction kinetics do not
satisfy this assumption and that the additional conditions
(18) are required. This comes from the fact that the kinet-
ics models usually considered in chemical engineering very
often do not depend on the affinity: this is indeed due to
the fact that kinetics is largely based on experiments.

It can be also seen that if the above relations are fulfilled,
then the inequalities of Assumption 1 are also satisfied.

5.2 Assumption 2

As it has been explained in Section 4 this assumption

depends on the second term of (15), i.e. d(r̂V )
dnA

− d(r̂V )
dnB

νB .
This term depends only on the reaction kinetics. A
sufficient condition for Assumption 2 to be fulfilled is
d(r̂V )
dnA

− d(r̂V )
dnB

νB ≥ 0. For mass action law kinetics with

Arrhenius type dependence and using the relations (18),
we have:

∂ (r̂V )

∂nA

−
∂ (r̂V )

∂nB

νB

=
∂ (rV )

∂nA

−
∂ (rV )

∂nB

νB −
∂ (rV )

∂T

(−∆rH)

CpV

=
∂ (rfV )

∂nA

+
∂ (rbV )

∂nB

νB +
(−∆rH)

2

CpV RT 2
rbV

−
(−∆rH)

CpV

Ef

RT 2
rV
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where Cp is the total constant pressure volumetric heat
capacity (CpV =

∑

i=A,B,I Cpi
ni). All terms except the

last one are clearly positive. The last term can be positive
or negative depending on the state. It depends on the
numerical values of the parameter if this term can be
sufficiently negative such that dσS

dt
> 0.

However it can be easily seen that the following set:

{ (nA, nB , U)| (−∆rH) r̂ (nA, nB , U) V ≥ 0}

is an invariant set of the system with uc = 0 since the sets

{ (nA, nB , U)| r̂ (nA, nB , U) V ≥ 0}

and
{ (nA, nB , U)| r̂ (nA, nB , U) V ≤ 0}

are invariant sets. Hence it is always possible to restrict
the state plane to an invariant set where Assumption 2 is
fulfilled.

5.3 Assumption 3

Using (18), it is possible to write the following equality:

Λ

rV
= −

RT

kf (T ) nA

ln
(

kb(T )
kf (T )

n
νB
B

nA
V 1−νB

)

1 − kb(T )
kf (T )

n
νB
B

nA
V 1−νB

Using l’Hospital’s rule we have:

lim
r̂(nA,nB ,U)→0

Λ

rV
= −

RT

kf (T ) nA

Assumption 3 is fulfilled as a consequence of Assumption 1.

6. CONCLUSION

Applying the power-shaping methodology for designing
control systems requires first to write the uncontrolled
system dynamics in the Brayton-Moser form. This step
is often limiting since it requires the solution of a partial
differential equation system which can be difficult to solve.
In this paper we propose a general solution for this partial
differential equation system in the case of a CSTR with
control inputs being the heat exchange flow rate and the
dilution coefficient. Furthermore we propose a particular
solution based on thermodynamic considerations. This
particular solution uses the entropy production as the
Brayton-Moser potential.

This approach is only valid under some assumptions,
among them that the entropy production is decreasing
along the system trajectories. These assumptions may be
not fulfilled for all reaction kinetics. However we have
shown that in the simple case of mass action law kinetics
with Arrhenius type dependence these assumptions is
fulfilled in at least one invariant subset of the state plane.

Due to the symmetry in dynamics the solution that
has been proposed here should be easily extendable to
more complex reaction networks. However it could be
more difficult to have reaction kinetics that fulfill the
assumption of decreasing entropy production.

The next step is of course to use this Brayton-Moser
formulation to design control systems based on the power-
shaping approach, which in our case is rather an entropy
production shaping approach.
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