Proceedings of the 9th International Symposium on
Dynamics and Control of Process Systems (DYCOPS 2010),
Leuven, Belgium, July 5-7, 2010

TuAT4.4

Mayuresh Kothare, Moses Tade, Alain Vande Wouwer, llse Smets (Eds.)

Nonlinear System Identification from Small
Data Sets

R. Bhushan Gopaluni* Devin Marshman *

* Department of Chemical and Biological Engineering, University of
British Columbia, Vancouver, Canada V6T 1Z3 (Tel: 604 827 5668;
e-mail: bhushan.gopaluni@ubc.ca, dmarshman@chbe.ubc.ca).

Keywords: Nonlinear Systems, Maximum Likelihood Parameter
Estimation, Compressed Sensing.

Abstract: We propose a novel algorithm for identification of structured nonlinear
systems using a compressive sampling approach. Compressive sampling is an approach
to reconstruct randomly sampled signals from small data sets. The proposed algorithm
provides empirical evidence to suggest that parameters can potentially be estimated
from small data sets using compressive sampling. This approach is illustrated through a

simulated example.

1. INTRODUCTION

Nonlinear system identification has been an ac-
tive area of research for many years (Ljung [1999],
Haber and Keviczky [1999], Bates and Watts [1998],
Gopaluni [2008], Varziri et al. [2008]). A majority
of these identification techniques rely on some form
of maximum likelihood estimation (MLE). It is well
known that for consistency and minimum variance of
parameter estimates, maximum likelihood approaches
require large amounts of data. For small data sets,
MLE often leads to biassed parameter estimates
(Casella and Berger [1990]). A recently developed
sampling and signal reconstruction paradigm called
compressive sampling (Candes and Wakin [2005]) can
potentially be used to estimate reliable parameters
from very small data sets.

Let us consider a commonly used representation of
nonlinear state space models with linear measurement
equation

Tip1 = f(@e, ug, 0) + wy
Yr =x + v (1)

where x; € R™! is the n-dimensional state vector,
u; € R¥! is the s-dimensional input vector, y; €
R™*! is the m-dimensional output or measurement
vector, and w;, v; are independent and identically
distributed Gaussian noise sequences of appropriate
dimension and variances ) and R respectively, 6 €
RP*! is a p-dimensional parameter vector and f(.) is
some nonlinear function that describes the dynamics
of the process. The subscript ¢ in the above variables
indicates the time. The nonlinear function f(.) is
typically obtained using physical laws such as energy
and mass balance expressions for the process. In some
processes, due to their complexity, it is difficult to
develop accurate and reliable nonlinear functions. In
such processes, either unstructured approximations of

Copyright held by the International Federation of Automatic Control

f(.) or an input-output model of the following form is
used,

Yt = h(yt717yt727 oy Yt—dy, Ut—1, 0 7ut7du) + vt

(2)

where d,, and d,, represent the number of past outputs
and inputs used in the model. A(.) is some nonlinear
function of the inputs and the outputs. Whether a
process is given by a structured or an unstructured
state-space model or an input-output model, often the
functions f(.), and h(.) are approximated using a set
of basis functions. This article provides an algorithm
for parameter estimation in such models from smaller
data sizes than those required in traditional estima-
tion procedures that use some form of least squares.

Identification of input-output models can often be
transformed to a problem of curve fitting using a
set of basis functions (for instance wavelets, laguerre-
volterra models etc.). Typically, input-output models
are obtained by choosing a large number of basis
functions and then dropping those corresponding to
smaller coefficients. The coefficients of the basis func-
tions are often obtained by minimizing the 2-norm of
prediction errors. Since the coeflicients of significant
basis functions are not known a priori, this approach
often involves estimating a large number of coefficients
while a small portion of them are ultimately used in
a model. As is well known, the larger the number
of estimated coefficients, the larger should the data
set be for good variance properties on the estimated
coefficients (or parameters). In other words, a large
number of coeflicients are estimated despite knowing
the fact that only a small portion of them will be
used. Using the technique of compressive sampling it
is possible to estimate only the significant coefficients
and thus avoid the requirement of large number of
samples.



While the literature on nonlinear system identification
is replete with algorithms for identification of input-
output models, there are very few results on iden-
tification of nonlinear state-space models (Gopaluni
[2008]). Identification of nonlinear state-space models
is more challenging due to the hidden states. If the
state and measurement dynamics are linear and the
noise is Gaussian, then parameters can be estimated
using subspace identification methods (Van Overschee
and Moor [1996]) or the expectation maximization
algorithm (Shumway and Stoffer [2000]). On the other
hand, if the state and measurement dynamics are non-
linear and if the noise is non-Gaussian, then approxi-
mations of expectation maximization algorithm have
to be employed for parameter estimation (Gopaluni
[2008], Schoén et al. [2006], Goodwin and Agiiero
[2005]). All these approaches to identification of non-
linear state-space models require large sets of data for
consistent estimation of parameters.

In many chemical engineering processes, especially
biotechnology processes, only a small number of mea-
surements are available. In this article, we propose
a novel algorithm that makes use of small number
of samples for parameter estimation and yet is ex-
pected to perform as well as standard identification
techniques.

This article is divided into following sections: In sec-
tion 2, a short introduction to the recently developed
sampling paradigm called compressive sampling is
presented. In section 3, the main algorithm is pre-
sented and applied to states-space models. In section
4, illustrative examples are presented and the article
is concluded with a summary in section 5.

2. COMPRESSIVE SAMPLING

Compressive sampling or compressed sensing is a
recently developed sampling paradigm that allows one
to reconstruct a time series signal from a small fraction
of samples. Consider a time series signal {y;} for t =
{1, , T} where y; represents the signal value at time
t and T is the total number of sample times at which
an estimate of the signal, y; is desired. Let us assume
that a set of basis functions, {¢1(t), -, ¢n(t)} where
N denotes the total number of basis functions, can be
used to represent this time signal. Then one can write
the time series signal, y; as a linear combination of
basis functions as follows:

N
ye=_ citi(t) (3)

i=1
where ¢; are some constant coefficients and they are
denoted by a vector, ¢ = [c; en]. In chemical
engineering, wavelet basis functions and radial basis
functions have been widely used for data compression,
signal reconstruction, and black-box modeling. Most
time series signals, while dense in time domain, can be
represented compactly using some basis functions. In
general, these time series signals can be represented
by an extremely sparse vector c. In other words, only
a small fraction of the constants ¢; are nonzero (and
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significant) and the rest are either zero or close to
zero (or insignificant). Typically, we do not know
these constant coefficients nor do we know to which
basis functions the non-zero constant coefficients cor-
respond to. Hence, the commonly used approach to
estimate the coeflicients, ¢;, is linear least squares.

Given the time series sequence of y;, it is possible to
formulate a linear least squares problem that has a
unique solution if T > N. However, if T' < N then it
is well known that the set of linear equations (in terms
of ¢; in (3)) do not have a unique solution. In problems
where only a limited amount of data (or measure-
ments) are available, such an under determined sys-
tem is a common occurrence. The linear least squares
objective function to estimate the constant, ¢, is the 2-
norm of the difference between the predicted, y;, and
the actual measurements. This is a quadratic objective
function of the following form

Jis(€) =Y (e = 9:(0)) (e — () (4)

t=1

where ¢;(c) is the predicted value of the measurement
y; and is a function of the coefficient vector. Now
using vector notation, and denoting the vector of
measurements with Y and the vector of predictions

by }A/(c), the quadratic objective function in (4) simply
becomes the following 2-norm

Jis(e) =Y =Y (93 (5)

Jis is convex and has a unique solution when T° > N.
However, if T < N, then there is more than one
vector, ¢, that satisfies (3). Minimizing Jis(¢) will
only provide one such c¢ that is not necessarily the
true c. In other words, there is a high chance that
the least squares estimate of ¢ will be biased. On
the other hand, over the last few years it has been
shown (Candes and Wakin [2005]) that if the vector
¢ is sparse (as is usually the case with most physical
time series signals), then solving the following 1-norm
optimization will result in a unique unbiased sparse
solution of ¢ for some T > S where S is of the order
of Klog(N) with K being the number of non-zero
coefficients in ¢,

min ||c|1 (6)
subject to Y = Y (¢) (7)

If K is much smaller than N, then S will be much
smaller than N and hence it is possible to obtain a
unique sparse solution of the vector ¢ using 1-norm
instead of the commonly used 2-norm in minimizing
the error between actual measurements and the pre-
dictions. Moreover, it is easy to see that the above
optimization with respect ¢ is a convex problem and
hence there are many efficient algorithms for its min-
imization.

However, not all T > S samples of the signal will
provide an unbiased estimate of c¢. It was shown in

Candes and Wakin [2005] that any T randomly sam-
pled measurements will allow us to find an unbiased



estimate of ¢ by minimizing (7), if certain conditions
on the basis functions are satisfied.

In summary, the idea behind compressive sampling is
to sample the time signal completely randomly and
then reconstruct it using a 1-norm objective function.
If the original time signal can be expressed as a linear
combination of basis functions using a sparse vector
¢, then it is possible to reconstruct time signal from a
small randomly sampled data set with a high degree of
accuracy. The number of random samples (T') required
to reconstruct a signal depend both on the number of
non-zero coefficients in ¢ (K) and the total number of
basis functions being used (V). Therefore, if a signal
from a process can be represented using a sparse c
vector and some known basis functions, then a small
number of samples would often suffice to reconstruct
the signal.

In fact, this result can be extended to treat noisy sig-
nals (please see Candes and Wakin [2005] for details).
Let us consider a time signal, y;, that can be expressed
as follows:

N
Ye = Z cipi(t) + vt (8)

Then the vector ¢ can be identified highly accurately
by solving the following convex optimization problem,

min ||c||;
subject to ||[Y — Y (¢)|? < o2 (9)

where 02 is a constant proportional to the covariance
of v;. The optimization problem in (9) is often called
basis pursuit with denoising. In the next section, we
present an algorithm that makes use of this idea
behind compressed sensing to identify parameters in
nonlinear models of the form described in (1),(2). It
must be pointed out that this presentation of com-
pressive sampling is over-simplified. There are other
technical constraints that the process of sampling and
the basis functions need to satisfy for an accurate
estimation of c¢. In particular, the combination of
sampling and basis function “matrices” need to satisfy
the so-called Restricted Isometry Property for reliable
estimation of ¢. The presentation in this article does
not provide theoretical guarantees for accurate recon-
struction of c. However, the approach appears promis-
ing and we provide empirical evidence to support it.

3. PROPOSED ALGORITHM

The state equation in (1) is nonlinear, while the
measurement, equation is linear. Since the states are
corrupted with noise in the state dynamic equation,
even though the measurement equation is linear, it is
not possible to estimate the parameters using non-
linear least squares. However, maximum likelihood
approaches such as those developed in Gopaluni [2008]
can be used for parameter estimation if the structure
of the function f(.) is known and if large sets of
data are available. These maximum likelihood meth-
ods fail if the available data is small compared to
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the missing data. In such a scenario, a compressed
sensing based algorithm, developed below, is expected
to provide better estimates than maximum likelihood
approaches.

The proposed algorithm for parameter estimation in
nonlinear structured state-space models is presented
below:

e Step 1: Estimate the state sequence x; assuming
that it can be written compactly as follows

N
Ty = Z ci¢i(t) (10)
i=1
by solving the optimization problem
min |||y
subject to [|Y — X (¢)||? < 02 (11)

where X (c) is a vector of estimated states, #; !
e Step 2: Once an estimated state sequence is ob-

tained, the parameter vector is obtained by solv-

ing the following nonlinear optimization problem

N-1
min Y (Eern = f(Eeue, 0)) (Ren = f (0, ur,0))
t=1

(12)

In the first step of the algorithm the idea behind
compressed sensing is used to reconstruct the un-
known state signal. If this state signal is sparse in a
known basis set, then only a small number of random
measurements of ¢, will suffice to reconstruct the state
signal. Once the hidden state is reconstructed, the
parameter vector is estimated in the second step using
standard nonlinear least squares. If the state-space
model is unstructured, an obvious extension of this
method can be used. If an input-output model (in
(2)) is desired, then the algorithm can be modified
as follows,

e Step 1: Assume that the function h(.) can be ap-
proximated using some basis functions as follows

N
Yt = Z Ci¢i(yt71> Yt—2, ", ytfdy s Ut—1, 0y utfdu)
i=1
+ vy
e Step 2: The parameter vector, ¢ is obtained
by solving the following nonlinear optimization

problem
min |||y
subject to |[Y — Y (¢)|2 < o2 (13)
where 02 is a constant proportional to the output

noise variance.

One obvious disadvantage with the above approach
is that one has to choose appropriate values for o2
and o2 while in maximum likelihood approaches, the
noise and state covariance matrices can automatically
be estimated.

1 Please note the difference between #: and z¢. ¢ is the
estimated state sequence after performing the optimization,
while z; is the state as a function of the vector c.
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Fig. 1. Example 1: Reconstructed signal. The solid
stable line is the reconstructed signal using com-
pressed sensing algorithm, the dotted line is the
signal of interest, and the solid unstable line is
the least squares reconstructed signal.

4. ILLUSTRATIVE EXAMPLES
4.1 Example 1

The first example is designed to show the power of
compressed sensing in reconstructing a signal from
a very small data set. A simulated time signal is
randomly sampled and reconstructed by solving the
optimization problem in (7). A large number of radial
basis functions (1000) are used in reconstructing this
signal. The original signal shown in figure 1 consists
of 1000 samples. However, only about 202 random
samples are measured and used to reconstruct the
original 1000 sample signal. The signal reconstructed
using (7), as seen in figure 1, approximates the orig-
inal signal very well. On the other hand, the signal
reconstructed using (4) is very poor and the predic-
tions of the reconstructed signal are unstable. The
instability of the predictions from the model obtained
using standard least squares algorithm is due to the
ill-conditioned regression matrix (which in turn is due
to too few samples and too many basis functions).

4.2 Biological Example

In the second example, a signal transcription pathway
that is defined by four nonlinear differential equations
and has four parameters is used. The Janus family
of kinases (JAK) - signal transducer and activator of
transcription (STAT) pathway describes a series of
reactions taking place across cytoplasm and nucleus
of a cell to trigger the transcription of key genes.
The signaling pathway occurs through multiple cell
surface receptors, including the erythropoietin recep-
tor (EpoR). EpoR plays an important role in the
proliferation and differentiation of erythroid progeni-
tor cells (Swameye et al. [2003]), which refer to cells
that are able to grow into a specific type of cell -
in this case, red blood cell - through cell-division
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Fig. 2. JAK-STAT signal transduction pathway dia-
gram (Swameye et al. [2003]).

(Lackie [2007]). Figure 2 shows the diagram of the
JAK-STAT signal transduction pathway. Through a
series of reactions, EpoR creates docking sites for
STATS5, a latent transcription factor. The mathemat-
ical model of JAK-STAT signaling pathway was orig-
inally developed in Swameye et al. [2003]. There are
four state variables which represent the concentrations
of unphosphorylated STAT5 (z1), tyrosine phospho-
rylated monomeric STAT5 (z3), tyrosine phosphory-
lated dimeric STAT5 (z3) and STAT5 within the nu-
cleus (z4). The exogenous input variable of the model,
u(t), is the concentration of EpoR. The key actions
taken by STATS5 are phosphorylation (z; to xs, in
figure 2), formation of dimers (x5 to x3, in figure 2),
and migration from cytoplasm into nucleus (z3 to x4,
in figure 2). Once present in the nucleus, STATS5 is able
to trigger the transcription of target genes. There are
several hypotheses for the termination mechanism of
JAK-STAT pathway, including degradation of STAT5
within the nucleus and migration of STAT5 from nu-
cleus back to cytoplasm.

Initially, EpoR creates docking sites for STAT5. This
triggers a series of STATS5 reactions where unphospho-
rylated monomeric STAT5 (x1) becomes phosphory-
lated monomeric STAT5 (x2), which in turn forms
phosphorylated dimeric STAT5 (x3) that migrates
into the nucleus. Once inside the nucleus, phospho-
rylated dimeric STAT5 (z4) triggers the expression of
target gene. The signal transduction pathway termi-
nates, by migration of STAT5 from nucleus back to
cytoplasm.

A model for the JAK-STAT signal transduction path-
way was adopted following the suggestion in Zi and
Klipp [2006], Quach et al. [2007] and expressed as a
set of four coupled ordinary differential equations as
follows.



dz") (1)

(4) (1)

= =01y U + 2047 Lpsoy +wy
de'?
Ti alzgl)ut - 2(I£2)>2 + wt(g),
dt
de'®
= —asey” + (@) +
dt
de®
djf = ang’) - a4$§4)[{t27} + wt(4)a (14)

where [f;>,) is an indicator function that is equal
to zero when t < 7 and is equal to one when ¢t >
7 (assumed to 200 units of time in this example).
w(® denotes noise in the ith state equation. a1, as, as
are constants whose values from literature are taken
to be 0.0515;3.39;0.35 respectively. There is a time
delay between the initial addition of EpoR into the
system that triggers the activation of STAT5S signal
transduction pathway, and the migration of STAT5S
into nucleus. 7, in the model, accounts for this time
delay. The following output variables are assumed to
be measured 2,

= 4ol

= 4ol

) =P + o,
D =20 4ol
(15)
where y,gl) and vgl) denote the corresponding mea-
surements and the associated noise for state i. 1000
samples are generated from a discretized model of
the JAT-STAT differential equation model. Using only
400 randomly chosen samples, the parameters are
estimated from the proposed method are found to be
0.0517;3.3895;0.3291. The estimated parameters are
close to the true parameters, and hence the recon-
structed states and the measurements show a good
fit. In figures 3-6 plots of z; and its reconstructed
infinite horizon estimates are shown. The initial state
is not estimated and is assumed to be zero while recon-
structing the infinite horizon estimates, and hence the
infinite horizon estimates take a few samples before
the prediction error becomes small.

5. CONCLUSIONS

A new approach to parameter estimation in nonlinear
stochastic systems is presented. This method makes
use of the idea of compressed sensing to reconstruct
the noise corrupted state signal. The reconstructed
state signal is then used in a nonlinear optimization
problem to estimate the parameter vector. This ap-
proach is illustrated through a simulation example.

2 Please note that in practice only combinations of these
outputs are measured. However, to illustrate the usefulness
of the proposed algorithm all the states are assumed to be
measured and arbitrary random binary signal is used as the
input.
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Fig. 3. The smooth line is the reconstructed state, xil),

and the noisy signal is the measurement yt(l).

Fig. 4. The smooth line is the reconstructed state, x?),

and the noisy signal is the measurement yt(g).
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Fig. 5. The smooth line is the reconstructed state, x,@,

and the noisy signal is the measurement yt(?’).
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