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Abstract: This work presents a model-based networked control structure with an adaptive
communication policy for managing Distributed Energy Resources (DERs) over a shared,
resource-constrained communication network. The central objective is to find a state-dependent
strategy for establishing and terminating communication between the supervisor and the DERs
in a way that minimizes network resource utilization without jeopardizing the desired stability
and performance properties. To this end, a bounded robust Lyapunov-based controller that
enforces constrained closed-loop stability in the absence of communication suspension is initially
designed for each DER. A dynamic model of each DER is then included within the supervisor
to provide estimates of the states of the DER when measurements are not transmitted through
the network. To determine when communication between a given DER and the supervisor
must be re-established, the evolution of the Lyapunov function is monitored within the DER’s
stability region such that if it begins to breach a state-dependent stability or performance
threshold at any time, the sensor suite is prompted to send its data over the network to
update its corresponding model in the supervisor. Communication is then suspended for as
long as the Lyapunov function satisfies the specified threshold. The underlying idea is to use the
Lyapunov stability constraint for each DER as the basis for adaptively switching on or off the
communication with the supervisor. Finally, the results are illustrated through an application
to a solid oxide fuel cell example.

Keywords: Distributed energy resources, Model-based control, Communication networks,
Adaptive communication logic, solid oxide fuel cells.

1. INTRODUCTION

Distributed Energy Resources (DERs) are a suite of on-
site, grid-connected or stand-alone power generation sys-
tems that can be integrated into residential, commercial,
or institutional buildings and/or industrial facilities. Ex-
amples include micro-turbines, fuel cells, and renewable
systems such as photovoltaic arrays and wind turbines.
Such distributed resources offer advantages over conven-
tional grid electricity by offering end users a diversified
fuel supply; higher power reliability, quality, and efficiency;
lower emissions and greater flexibility to respond to chang-
ing energy needs (Borbely and Kreider (2001)).

With the increase in number and diversity of DERs in
recent years, it has become evident that traditional super-
visory control and data acquisition systems with central-
ized control rooms, dedicated phone lines, and specialized
operators, are no longer cost effective to coordinate and
timely dispatch a large number of DERs spread over the
grid, and that advanced communication and control tech-
nologies are needed to enable the integration and inter-
operability functions of a broad range of DERs. While
managing DERs over a communication network offers an
appealing solution to the control of distributed power gen-
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eration, it poses a number of challenges due to the inherent
limitations on the information transmission and processing
capabilities of communication networks, such as band-
width limitations, network-induced delays, data losses,
signal quantization and real-time scheduling constraints,
which can interrupt the connection between the central
control authority, the generation units and the loads, and
consequently degrade the overall power quality supplied if
not properly accounted for in the control system design
(see, for example, Zhang et al. (2001); Walsh et al. (2002);
Hespanha et al. (2007); Munoz de la Pena and Christofides
(2008) for some results and references on control over
communication networks). The fact that the distributed
power market is primarily driven by the need for super-
reliable, high-quality power implies that the impact of
even a brief communication disruption (e.g., due to local
network congestion or server outage) can be substantial,
and provides a strong incentive for the development of
robust control and communication strategies that ensure
the desired levels of power supply and quality with mini-
mal communication requirements between the supervisor
and the DERs in order to minimize their susceptibility to
communication losses.

Over the past decade, several efforts have been made
towards the development and implementation of control
strategies for DERs (e.g., Paradkar et al. (2004); Marwali
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and Keyhani (2004); Macken et al. (2004); Dimeas and
Hatziargyriou (2005); Lasseter (2007)). While the focus
of these studies has been mainly on demonstrating the
feasibility of the developed control algorithms, the explicit
characterization and management of communication con-
straints in the formulation and solution of the DER control
problem have not been addressed. An effort to address
this problem was initiated in Sun et al. (2009) where a
model-based networked control approach was developed.
The main idea was to reduce the rate at which the data
are exchanged between the DER and the supervisor as
much as possible (without sacrificing the desired stability
and performance properties) to reduce network utilization.
A dynamic model that supplies the supervisor with the
needed DER state information when communication is
suspended over the network was embedded in the super-
visor. The state of the model was then updated using the
actual state that is provided by the DER sensors at dis-
crete time instances. A key feature of the communication
logic used in this case is that it is static in the sense that
the communication rate is constant and can be computed
off-line prior to DER operation. An alternative approach
is to design the networked control system in a way such
that the necessary communication rate can be determined
and adjusted on-line (i.e., during DER operation) based
on the state of the DERs. An advantage of this dynamic
(feedback-based) communication policy is that it is more
robust to unpredictable disturbances and allows the super-
visor to respond quickly in an adaptive fashion to a DER
that requires immediate attention. Another advantage of
this approach is that it ultimately leads to a more efficient
utilization of network resources since the communication
rate is increased only when necessary to maintain the
desired closed-loop stability or performance level.

Motivated by these considerations, we present in this work
a model-based networked control structure with a state-
dependent communication policy for managing distributed
energy resources over a shared, resource-constrained com-
munication network. The rest of the paper is organized
as follows. Following some preliminaries in Section 2, we
initially synthesize in Section 3 for each DER a robust
nonlinear controller that enforces the desired closed-loop
stability and performance properties in the absence of
communication outages. To reduce the necessary sensor-
controller communication, we include within the super-
visor a dynamic model of the DER to provide estimates
of its states when communication is suspended and mea-
surements are not transmitted through the network. An
adaptive communication policy in which a Lyapunov sta-
bility constraint is used as the basis for switching on or off
the communication between the sensors and the supervisor
is then devised. The results are illustrated in Section 4
through a simulation example.

2. PRELIMINARIES AND PROBLEM
FORMULATION

We consider an array of DERs managed by a higher-
level supervisor over a communication network. Each DER
is modeled by a continuous–time system with uncertain
variables and input constraints with the following state–
space description:

ẋi = fi(xi) + Gi(xi)ui + Wi(xi)θi(t)

‖ui‖ ≤ umax
i , ‖θi‖ ≤ θmax

i

(1)

where xi ∈ IRpi denotes the vector of state variables
associated with the i–th DER (e.g., exhaust temperatures
and rotation speed in turbines and internal combustion
engines, operating temperature and pressure in fuel cells),
ui ∈ IRqi denotes the vector of manipulated inputs as-
sociated with the i–th DER (e.g., inlet fuel and air flow
rates in fuel cells, shaft speed in turbines), which is con-
strained by ‖ ui ‖ ≤ umax

i , where ‖ · ‖ denotes the standard
Euclidean norm of a vector and umax

i is a positive real
number, θi ∈ IRri denotes the vector of uncertain (pos-
sibly time-varying), but bounded, variables, and satisfies
‖ θi ‖ ≤ θmax

i where θmax
i is a positive real number. The

uncertain variables may describe time-varying parametric
uncertainty and/or exogenous disturbances. Without loss
of generality, it is assumed that the origin is an equilibrium
point of the nominal system (i.e., with ui ≡ 0, θi ≡ 0),
the uncertain variables are non-vanishing (i.e., the nominal
and uncertain systems do not share the same equilibrium
point) and that the nonlinear functions fi(·), Gi(·), and
Wi(·), are sufficiently smooth.

Each DER has local (on-board) sensors and actuators with
some limited built-in intelligence that gives the DER the
ability to run autonomously for periods of time when no
communication exists with the remote software controller
(the supervisor). The local sensors in each DER transmit
their data over a shared communication network to the su-
pervisor where the necessary control calculations are car-
ried out and the control commands are sent back to each
DER. Based on load changes, changes in utility grid power
prices and the state and capacity of each DER, the super-
visor regulates and coordinates power generation among
the DERs. Our objective is to devise a networked control
strategy that robustly stabilizes the individual DERs at
or near the desired set-points with minimal utilization of
network resources. Specifically, we consider the configura-
tion in which the network interrupts the sensor-controller
communication links, while the controller and actuator
are assumed to be co-located (i.e., the controller-actuator
communication is continuous). Extensions to more general
configurations in which the network also interrupts the
controller-actuator are conceptually straightforward.

3. ROBUST MODEL-BASED NETWORKED
CONTROL STRUCTURE

3.1 Bounded robust feedback controller synthesis

To realize the desired networked control structure, the
first step is to synthesize for each DER a feedback con-
troller that satisfies the control constraints and enforces
robust closed-loop stability with an arbitrary degree of
asymptotic attenuation of the effect of the uncertainty on
the closed-loop system in the absence of communication
suspension (i.e., when the sensors of each DER transmit
their data continuously to the supervisor). As an example,
we consider here bounded Lyapunov-based control tech-
niques (Christofides and El-Farra (2005)) to synthesize the
controller; in general, however, any other controller design
method that achieves these objectives can be used. Using
a robust control Lyapunov function Vi(xi) (Freeman and
Kokotovic (1996)) for the i-th DER, the following bounded
robust nonlinear controller can be designed:

ui = pi(x) = ki(xi, u
max
i , θmax

i , ρi, χi, φi)(LGi
Vi)

′, (2)

for i = 1, 2, · · · , n, where:
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ki(·) = −
L∗

fi
Vi +

√
(L∗∗

fi
Vi)2 + (umax

i ‖ (LGi
Vi)′ ‖)

4

‖ (LGi
Vi)′ ‖2

[
1 +

√
1 + (umax

i ‖ (LGi
Vi)′ ‖)

2

] (3)

when ‖ (LGi
Vi)

′ ‖ 6= 0, and ui = 0 when ‖ (LGi
Vi)

′ ‖ = 0,
where

L∗∗
fi

Vi = Lfi
Vi + ρi‖ xi ‖ + χi‖ (LWi

Vi)
′ ‖θbi (4)

L∗
fi

Vi = Lfi
Vi +

(
L∗∗

fi
Vi − Lfi

Vi

)(
‖ xi ‖

‖ xi ‖ + φi

)
(5)

and Lfi
Vi = (∂Vi/∂xi)fi(xi), LGi

Vi = [Lgi,1
Vi · · · Lgi,qi

Vi],

Lgi,j
Vi = (∂Vi/∂xi)gi,j(xi), gi,j(xi) is the j-th column

of Gi(xi), LWi
Vi = [Lwi,1

Vi · · · Lwi,ri
Vi], Lwi,j

Vi =

(∂Vi/∂xi)wi,j(xi), wi,j(xi) is the j-th column of Wi(xi),
and ρi, χi, φi are tunable parameters that satisfy ρi > 0,
χi > 1 and φi > 0.

Let Πi be the set defined by:

Πi := {xi ∈ IRpi : L∗∗
fi

Vi ≤ umax
i ‖ (LGi

Vi)
′ ‖} (6)

and consider the subset:

Ωi(u
max
i , θmax

i ) := {xi ∈ Πi : Vi(xi) ≤ cmax
i } (7)

for some cmax
i > 0. Then, it can be shown using standard

Lyapunov arguments that if xi(0) ∈ Ωi(u
max
i , θmax

i ), there

exists a positive real number φ̃i such that if φi ≤ φ̃i, the
time-derivative of Vi along the trajectories of the closed-
loop system of (1)-(3) satisfies:

V̇i ≤ −
ρi

‖xi ‖
2

‖xi ‖+φi[
1 +

√
1 + (umax

i ‖ (LGi
Vi)′ ‖)

2

] := −βi(xi) < 0

∀ ‖ xi ‖ ≥ δi := φi(χi − 1)−1, i = 1, 2, · · · , n

(8)

which implies that the closed-loop state of the i-th DER
remains bounded and converges in finite-time to a termi-
nal neighborhood of the origin whose size can be made
arbitrarily small by appropriate selection of the controller
tuning parameters φi and χi.

3.2 Model-based networked control of DERs

In order to reduce sensor-controller communication over
the network, we embed a dynamic model of each DER
in the supervisor to provide it with an estimate of the
evolution of the states of the DER when measurements are
not available. The use of a model at the controller/actuator
side to recreate the dynamics of each DER allows the on-
board sensors to transmit their data at discrete time in-
stances and not continuously (since the model can provide
an approximation of the DER dynamics) thus allowing
conservation of network resources. The computational load
associated with this step (e.g., model forecasting and con-
trol calculations) is justified by the capabilities of modern
computing systems used by the central control authority.
Feedback from the DER is then performed by updating the
state of the model using the actual state that is provided
by its sensors at discrete time instances.

Under this architecture, the networked control law for each
DER is implemented as follows:

ui(t) = ki(x̂i, u
max
i , θmax

i , ρi, χi, φi)(LGi
Vi(x̂i))

′

˙̂xi(t) = f̂i(x̂i(t)) + Ĝi(x̂i(t))ui(t), t ∈ (tik, tik+1)

x̂i(t
i
k) = xi(t

i
k), k = 0, 1, 2, · · ·

(9)

where x̂i is an estimate of xi, f̂i(·) and Ĝi(·) are nonlinear
functions that model the dynamics of the i-th DER. Note
that the models used by the supervisor to recreate the
behavior of the DERs do not necessarily match those used

for controller synthesis. Furthermore, a choice of f̂i = O,

Ĝi = O corresponds to the special case where in between
consecutive transmission times, the corresponding model
acts as a zero-order hold by keeping the last available
measurement from the sensor suites until the next one is
available from the network. The notation tik is used to
indicate the k-th transmission time for the sensor suite of
the i-th DER in the collection. The model state is used by
the controller as long as no measurements are transmitted
over the network, but is updated (or re-set) using the
true measurement whenever it becomes available from the
network.

3.3 A state-dependent communication policy

A key parameter in the analysis of the control and update
laws in (9) is the update period for each DER, hi := tik+1

−

tik, which determines the frequency at which the sensor
suite of the i-th DER collects and sends measurements to
the supervisor through the network to update the corre-
sponding model state. The update period (the reciprocal
of which is the communication rate) is an important mea-
sure of the extent of network resource utilization since a
larger hi

k indicates a larger reduction in sensor-controller
communication. In Sun et al. (2009), we developed a static
communication policy in which the update period was
considered constant and the same for all the units (i.e.,
tik+1−tik := h, i = 1, 2, · · · , n) and thus could be calculated
off-line.

Our aim in this section is to devise a dynamic communica-
tion policy that allows the local sensor suite to determine
and adjust the necessary communication rate on-line (i.e.,
during operation) based on the state of each DER. The
main idea is to use the Lyapunov stability condition de-
rived in Section 3.1 as a guide for establishing and suspend-
ing communication. Specifically, consider the i-th DER of
(1) subject to the model-based networked controller of (9).
Evaluating the time-derivative of the Lyapunov function,
Vi, along the trajectories of the networked closed-loop
system for t ∈ (tik, tik+1) yields:

V̇i = Lfi
Vi(xi) + LGi

Vi(xi)pi(x̂i) + LWi
Vi(xi)θi

≤ −βi(xi) + LGi
Vi(xi) [pi(x̂i) − pi(xi)]

∀ ‖ xi ‖ ≥ δi, i = 1, 2, · · · , n

(10)

where we have used the bound in (8) to derive the above
inequality. Examining this inequality and comparing it
with the inequality of (8) obtained in the case of the non-
networked DER (i.e., under continuous communication)
reveals explicitly the perturbation effect of suspending
communication between the DERs and the supervisor on
stability. Specifically, the discrepancy between pi(x̂i) and
pi(xi), which arises due to the reliance of the supervisor on
the states of the uncertain model of the i-th DER during
periods of communication suspension, alters the rate at
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which the Lyapunov function decays. As the model esti-
mation error grows, the error in the implemented control
action grows as well and may become large enough so as
to dominate the stability margin (the negative term) thus
causing growth of the Lyapunov function and rendering
the closed-loop system potentially unstable. When this
happens, communication with the local sensor suite of
the i-th DER must be re-established to allow updating
the states of the model embedded in the supervisor in a
way such that the plant-model mismatch can be corrected
in time to avert instability. This communication policy
is formalized in the following theorem. The proof follows
directly from (10).

Theorem 1. Consider the nonlinear DERs of (1), for
which the Lyapunov functions Vi, i = 1, · · · , n, satisfy
(8) when state measurements are exchanged continuously
between the DERs and the supervisor. Consider also the
i-th DER subject to the model-based networked controller
of (9). If at any time tik such that xi(t

i−
k ) ∈ Ωi(u

max
i , θmax

i )

and ‖ xi(t
i−
k ) ‖ > δi := φi(χi−1)−1 the following condition

holds:
V̇i(xi(t

i−

k )) ≥ 0 (11)

where xi(t
i−

k ) = lim
t→ti−

k

xi(t), then the update law given

by x̂i(t
i
k) = xi(t

i
k) ensures that V̇i(xi(t

i
k)) < 0.

Remark 1: The implementation of the dynamic com-
munication policy described in Theorem 1 requires that
each DER monitor the evolution of the corresponding
Lyapunov function within the constrained stability region
to determine when the model’s states must be updated and
communication re-established. Specifically, if Vi begins to
increase at any time while the state is inside the stability
region and outside the terminal region, the sensor suite
of the i-th DER is prompted to send its data over the
network to update the corresponding model embedded in
the supervisor. Communication from the sensor suite of the
i-th DER to the supervisor is then suspended for as long
as the Lyapunov function Vi continues to decay. In this
way, only DERs that require attention (i.e., those on the
verge of instability) transmit measurement updates over
the network, while the other units sharing the network
do not. This targeted update strategy helps reduce overall
network utilization further.

Remark 2: The update law given in Theorem 1 applies
when the monitored local state xi is inside the stability
region Ωi but has not yet entered the terminal set. By en-
suring that the time-derivative of Vi along the trajectories
of the i-th networked closed-loop DER remains negative-
definite for all times that xi is outside the terminal set,
this law acts to enforce stability and ultimate boundedness
and guarantees that the state of this DER also converges
in finite-time to the terminal set. Once the closed-loop
state enters the terminal set, however, a different criterion
for terminating and establishing communication need to
be employed since the time-derivative of Vi (even for the
non-networked system) is no longer expected to remain
negative inside the terminal set. Specifically, the transmis-
sion of measurements from the i-th DER to the supervisor
can be suspended for as long as xi remains confined within
the terminal set. As soon as xi starts to escape this set,
however, the local sensor suite of the i-th DER is prompted
to send its measurements to update the corresponding

model within the central controller and keep xi confined
within the terminal set.

Remark 3: In addition to stability considerations, per-
formance specifications can also be incorporated into the
proposed communication logic by appropriate modifica-
tion of the update law. For example, if x(ti−k ) ∈ Ωi, an
update law of the form:

x̂i(t
i
k) = xi(t

i
k), where

V̇i(xi(t
i−

k )) ≥ −(1 − α)βi(xi), ‖ xi(t
i−

k ) ‖ > δi

(12)

where α ∈ (0, 1), ensures not only that Vi decays monoton-
ically along the trajectories of the i-th networked closed-
loop system, but also that it does so at a certain minimum
rate (which is a fraction of the rate prescribed for the non-
networked DER per (8)). By examining (10), it can be
seen that an update law of the form of (12) with α 6= 1
imposes a stronger restriction on the growth of the model
estimation error than the stability-based logic of Theorem
1 in that it limits the extent to which model estimation er-
rors (resulting from communication suspensions) can slow
down the non-networked closed-loop response. This in turn
implies that accommodating the additional performance
requirements may come at the expense of an increase in
the rate at which the sensor suite of the i-th DER needs
to send measurement updates to the supervisor.

4. SIMULATION STUDY: APPLICATION TO A
SOLID OXIDE FUEL CELL

Fuel cells are important distributed resources due to their
high efficiency, low levels of noise and environmental pol-
lution, and flexible modular designs that match versatile
demands of customers. As an illustrative example, we
consider in this work a stack of solid oxide fuel cells
(SOFC) as a DER in a power distribution system (see
Sun et al. (2009) for the process model and parameters).
Following the methodology presented in Section 3, the
plant is initially cast in the following form:

ẋ = f(x) + g(x)u + w(x)θ(t)

where x and u are the (dimensionless) state and ma-
nipulated input vectors, respectively, defined by x =

[
xH2

−xs
H2

xs
H2

xO2
−xs

O2

xs
O2

xH2O−xs
H2O

xs
H2O

Ts−T s
s

T s
s

]′, u =

[
qin

H2
−q

in,s

H2

q
in,s

H2

qin
O2

−q
in,s

O2

q
in,s

O2

]′ where, i : H2, O2, H2O, xi and qin
i

are, respectively, the mole fraction and inlet molar flow
rate of component i, the superscript s denotes the steady
state values of the corresponding states and inputs, and
θ(t) represents the vector of uncertain variables.

Using a quadratic Lyapunov function of the form V =
x′Px, a controller of the form of (2)-(5) is initially de-
signed for the SOFC plant to enforce robust stability
and uncertainty attenuation in the presence of control
constraints when state measurements are communicated
continuously between the sensors and the supervisor. To
illustrate the controller’s robust stabilization capabilities
in this case, we consider uncertainties in the form of a time-
varying (sinusoidal) disturbance in the load current, as well
as parametric uncertainties in the valve molar constants,
and the specific heat of reaction, such that θmax = 0.35,
and choose the control constraints such that umax = 1.
The controller tuning parameters are chosen as χi = 1.1,
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ρi = 0.0001, φi = 0.1, to ensure that the closed-loop state
converges in finite time to a small neighborhood of the
desired steady-state. The solid lines in Fig. 1 depict the
SOFC temperature, power and manipulated input pro-
files when the controller is implemented under continuous
sensor-controller communication. It can be seen from this
figure that the controller satisfies the control constraints
and successfully stabilizes the closed-loop state of the
SOFC plant near the desired steady state. It can also be
seen that, compared with the open-loop profiles shown by
the dotted lines in Fig. 1, the controller enhances the speed
at which the temperature and power reach their set-points.
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Fig. 1. Closed-loop temperature, power and manipulated
input profiles under continuous communication be-
tween the controller and the sensors.

For the case when direct measurements from the sensors
to the controller can be received only through the shared
network, and in order to reduce the utilization of network
resources, instead of the actual state, an estimate is pro-
vided to the supervisor by an embedded model (which for
simplicity is chosen as the same model used for controller
synthesis). Using the state estimates, the control law is
implemented as in (9) where the estimates are used by
the supervisor so long as no measurements from the local
sensors are transmitted over the network, but are updated
using the true measurements whenever they become avail-
able from the network. Panels (a), (c) and (e) in Fig. 2
depict the resulting evolution of the closed-loop power
output profiles when the SOFC plant is operated using
the dynamic communication policy presented in Section
3 under different model uncertainties. In this case, the
evolution of the Lyapunov function is monitored within the
stability region, and a measurement update is requested
(and transmitted over the network) from the sensors only
when either (1) the Lyapunov function is on the verge of
increasing while the state is outside the terminal set, or (2)
the state is on the verge of escaping the terminal set while
inside. Fig. 2(a) corresponds to the case when the model
embedded in the supervisor is an exact representation of
the SOFC plant (i.e., no plant-model mismatch), while
Fig. 2(c) corresponds to the case where the model con-
tains parametric uncertainties of 10% in the valve molar
constants and 5% in the heat of reaction. Fig. 2(e) reflects

the case for which parametric uncertainties of 30% in the
valve molar constants and 20% in the heat of reaction are
present. It can be seen from the figures that the closed-
loop power output can be successfully stabilized near the
desired set-point with a closed-loop response similar to the
one obtained under continuous communication.

Panels (b), (d) and (f) in Fig. 2 show the time instances
at which the model embedded in the supervisor is updated
when different model uncertainties are considered. The
variable Update takes a value of 1 when the supervisor
requires (and receives) a measurement from the sensors
to reset the state of the model, and takes a value of zero
when no updates are needed. It can be seen from Fig. 2(b)
that no communication between the supervisor and the
sensors is needed for the case when there is no plant-
model mismatch, since the model can accurately reproduce
the evolution of the fuel cell plant. Fig. 2(d) shows that
communication is needed only initially and over a short
period of time when an uncertain model of the SOFC
plant is used, and as the closed-loop power settles close
to the desired operating point (see Fig. 2(c)), no further
communication between the supervisor and the sensor
suite is required, which implies that network resources can
be further saved during this time (relative to the case of
a static communication logic). However, when the plant-
model mismatch is increased further, the supervisor has
to communicate more frequently (and even continuously)
with the sensors in order to maintain the desired closed-
loop stability and performance properties. This case is
depicted in Fig. 2(f).

In addition to closed-loop performance and network uti-
lization considerations, we have also investigated the
disturbance-handling capabilities of the dynamic commu-
nication policy in order to assess its robustness with re-
spect to disturbances during SOFC operation. To this
end, a 30% step disturbance was introduced in the load
current at time t = 500 s (i.e., after the SOFC plant
has reached the desired set-point), and this disturbance
lasts for 200 s. The solid lines in Panels (a), (c) and (d)
in Fig. 3 depict the resulting closed-loop power output
and manipulated input profiles subject to the external
disturbance. For comparison, we also implemented a static
communication policy based on the results presented in
Sun et al. (2009). In this case, the supervisor communi-
cates with the sensors over the network periodically, and
the sensors transmit their measurements at a constant rate
to update the model embedded in the supervisor (in this
example we used a constant update period h = 10 s).
It can be seen that while the control system under the
dynamic communication policy can successfully suppress
the effect of the disturbance and force the plant to return
to its steady-state (see the solid profile), the closed-loop
performance deteriorates under the static communication
policy where the states move away from the desired steady-
state significantly in the presence of the disturbance and
also there exists a significant steady-state offset after the
disturbance disappears (see the dashed profile). Fig. 3(b)
shows the update times of the model embedded in the
supervisor when the dynamic communication policy is
implemented. This plot highlights the adaptive nature of
the dynamic communication policy which is the reason for
its ability to overcome the influence of the disturbance on
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Fig. 2. Plots (a), (c), (e): Closed-loop power output profiles
under dynamic communication between the supervi-
sor and the local sensor suite when different models
are used to provide the state estimate. Plots (b),
(d), (f): Update times of the model embedded in
the supervisor when a perfect model is used (b), a
moderately accurate model is used (d), and a highly
inaccurate model is used (f).

the closed-loop plant. Specifically, it can be seen that the
dynamic policy responds to the external disturbance by
increasing the frequency of communication between the
supervisor and the local sensor suite following the onset
of the disturbance. This in turn allows the plant states
to remain close to the desired steady-state during (and
after) the disturbance following which no further commu-
nication is needed to maintain the desired stability and
performance level. By contrast, the static communication
policy with a fixed update period cannot handle the effect
of the disturbance as effectively.
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