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Abstract: This paper studies the problem of designing output feedback controllers for enlarging the 
stability region of continuous stirred microbial bioreactors, in the presence of biomass decay.  A specific 
application is in anaerobic digestion, where the stability region can be very small if the operating steady 
state is selected to maximize the methane production rate. A proportional output feedback control law is 
proposed and the size of the stability region of the closed-loop system is estimated using Lyapunov 
methods. The results show that, even though stability is not global, the guaranteed stability region is large 
enough to ensure proper operation of the reactor in the presence of physically realistic disturbances.  
Keywords: Stabilization, Lyapunov methods, Bioreactor control, Nonlinear analysis, Process control. 

 

1. INTRODUCTION 

Continuous stirred microbial bioreactors, often called 
chemostats, cover a wide range of applications; specialised 
“pure culture” biotechnological processes for the production 
of specialty chemicals (proteins, antibiotics etc.) as well as 
large-scale environmental technology processes of mixed 
cultures such as wastewater treatment.  The dynamics of the 
chemostat is often adequately represented by a simple 
dynamic model involving two state variables, the microbial 
biomass x  and the limiting organic substrate s .   
A general model for chemostat dynamics that accounts for 
cell mortality is of the form (see e.g. Smith and Waltman, 
1995, Chapter 1; Bailey and Ollis, 1986): 
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where D  is the dilution rate, 0S  is the feed substrate 
concentration, /x sY  is a biomass yield factor, dK  is the 
mortality rate constant and ( )sμ is the specific growth rate, a 
given function of s . The most widely used expressions for the 
specific growth rate are the Andrews or Haldane equation 
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and the Monod equation 
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where maxμ  is the maximum specific growth rate, SK  the 
Monod kinetic constant and IK  the substrate inhibition 

kinetic constant. The Monod kinetics (2b) is a special case of 

Andrews kinetics (2a) corresponding to 1 0=
IK

. 

For the control of a chemostat, the manipulated input is the 
dilution rate D  and the objective is to regulate the chemostat 
at specified design conditions. The problem of chemostat 
stabilization and control has received considerable attention 
in recent literature (see e.g. De Leenheer and  Smith, 2003; 
Gouze and Robledo, 2006;  Harmard et al., 2006; Karafyllis 
et al., 2008). 

One important class of applications is related to anaerobic 
digestion, which is a key process in wastewater treatment, 
sludge management, energy from biomass, etc. Anaerobic 
digestion is a complex biochemical process, in which organic 
compounds are mineralised to biogas (a useful energy 
product), consisting primarily of methane and carbon dioxide, 
through a series of reactions mediated by several groups of 
microorganisms. Under normal (or balanced) operation, the 
rate of production of the intermediates is matched by their 
consumption rate; hence there is very little accumulation of 
these compounds.  However, disturbances such as an increase 
in the concentration of organic compounds in the feed 
(organic overload), an increase in feed flow rate (hydraulic 
overload), presence of toxins in the feed, and temperature 
fluctuations, can cause an imbalance in the process 
(Switzenbaum et al., 1990), which results in accumulation of 
volatile organic acids.  These acids cause a drop in the pH, 
inhibiting methanogenesis and the reactor fails.  Such a 
failure has major consequences in the process economics 
since digester recovery can be a very cumbersome and costly 
process.  For this reason, the development of appropriate 
control schemes for anaerobic digesters has received 
significant attention in the literature (Perrier and Dochain, 
1993; Pullammanappallil, 1998; Antonelli and A. Astolfi, 
2000; Pind et al., 2003; Mailleret et al., 2003; Syrou et al., 
2004).  
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For the description of the dynamics of anaerobic digestion, 
the mathematical model (1) can be used.  This system of 
equations describes methanogenesis, the ultimate step in 
anaerobic digestion, which is rate limiting and is usually the 
most sensitive step.  In other words, it is assumed that the 
bioconversion of organics into fatty acids (hydrolysis and 
acidification) has fast kinetics.   
The measured output of the system is the methane production 
rate 
              ( )= mQ Y s xμ                                                         (3) 

where mY  is the yield coefficient for methane production. 

The purpose of this work is to study the problem of output-
feedback stabilization of a bioreactor whose dynamics 
follows (1) with measured output of the form (3), the 
motivation coming from control problems for anaerobic 
digestion processes. Section 2 examines the equilibrium and 
stability properties of the open-loop system (1), calculates the 
optimal operating conditions where the system must be 
regulated, and explains the nature of the control problem. In 
Section 3, a simple proportional output feedback controller is 
studied and the stability properties of the resulting closed-
loop system are established via Lyapunov analysis (Khalil, 
1996).  
 

2. OPEN-LOOP SYSTEM PROPERTIES AND OPTIMAL 
OPERATING CONDITIONS 

Consider the dynamic system (1), with ( )sμ  given by (2a) or 
(2b), where the dilution rate D  is the input variable of the 
system and 0 max, , , , ,d x s S IS K Y K Kμ are constant parameters. 
The following assumption will be made throughout this 
paper: 
                          

0( )d SK μ<                                   (H) 
 
2.1 Equilibrium curve  
 

The system steady states can be calculated from the set of 
equations: 
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Only positive steady states ( )0, 0, 0s s sx s D> > >  are 
physically meaningful and need to be considered. 
 
Assumption (H) is sufficient to guarantee the existence of 
positive steady states. In particular, under assumption (H), the 
equilibrium curve (locus of points ( , )s sx s  with 

0, 0, 0> > >s s sx s D ) has the shape shown in Figure 1. 
 

In Figure 1, *s  represents the smallest root of the equation 
( ) ds Kμ = : 
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Figure 1.  Equilibrium curve of the open-loop system 
 

In the special case of Monod kinetics 1 0
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is the unique root of ( ) ds Kμ = .   
 

Remark: For 1 0
IK

≠ , the equation ( ) ds Kμ =  has two roots, 

which are both real and positive; the smallest root *s  is 
given by (6a) and the largest root is 
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Assumption (H) implies that 
 
 

     { }0* min , s IK KSs < ⋅   and  { }0
* max , s IK KSs > ⋅  

 

For 1 0
IK

=  (Monod kinetics), assumption (H) implies that 

the unique root *s  of ( ) ds Kμ =  satisfies 0* Ss < .   
 

Finally, it is important to point out that in practice, 
max

1dK
μ

 

(usually significantly less than 0.1), therefore, in practice, 
* sis a small fraction of Ks . Typically, *s is a couple of 

orders of magnitude smaller than 0S . 
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2.2 Optimal steady state for methane production  
 

For a given feed, there is a value of the dilution rate that 
maximises the methane production rate. The steady state that 
corresponds to the maximization of methane production rate, 
i.e. 0( ) ( ( ) )( )x s d ss m s s m sQ Y s x Y Y s K S sμ μ= = − − , draws 
technical interest. The methane production rate is maximized 
when: 

0
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Substituting ( )sμ from (2a) to the above expression, leads to 
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For 1 0
IK

≠ , the above is a quartic equation. Only one of its 

roots corresponds to a positive steady state ( 0, 0> >s sx s ) 

and it represents the optimal steady state value opt
ss .  

In the special case of Monod kinetics 1 0
IK
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⎝ ⎠
, the above 

simplifies to a quadratic equation and the optimal steady state 
value is given by 
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For the following values of the parameters: 
1

0

1
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0.5 , 100 , 4000

−

−

= = =

= = =
x s d

S I

S mg l Y mg mg K d

d K mg l K mg lμ
  

the optimal steady state is 519.148=opt
s mg ls . This 

corresponds to 411.355=sx mg l  and 10.328097 −=sD d .  
The above numerical values of the parameters and the 
resulting optimal steady state conditions will be used in the 
numerical calculations throughout this paper. 
 
2.3 Local asymptotic stability 
 

The eigenvalues of the linearization of the open-loop system 
(1) are the roots of the quadratic polynomial  
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Since every positive steady state satisfies the 

inequalities
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determines its local stability characteristics. In particular, a 
positive equilibrium will be  

• locally asymptotically stable if ( ) 0>s
d
ds
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• unstable if  ( ) 0<s
d
ds

sμ       

Note that, because 0
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( ) ( ) 0
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S s s K
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the optimal steady state is always locally asymptotically 
stable. 
 
2.4 The need for control   
 

Figure 2 depicts the phase portrait of the system dynamics 
under constant dilution rate D, in particular for 

10.328097sD D d −= = , which is the optimal steady state 
value. In the diagram, the points S and U represent the 
corresponding stable and the unstable steady states of the 
system, which are the solutions of equations (5). Notice that 
the optimal steady state S is locally asymptotically stable but 
the stability region is very small. This makes the optimal 
operation of the biochemical reactor very sensitive to 
disturbances. 
The goal of control is the stabilization of the system in the 
sense of enlargement of the stability region. 

 
 

Figure 2.  Phase portrait of the open-loop dynamics 
 

3. OUTPUT FEEDBACK CONTROL – ESTIMATION OF 
THE STABILITY REGION 

3.1 Control law in the absence of biomass decay 
 

Consider the dynamic system (1), with measured output 
being given by (3). The control objective is to stabilize the 
system at a given design steady state, e.g. the optimal steady 
state that corresponds to maximal methane production rate. 
Previous work in the literature (Mailleret and Bernard, 2001; 
Syrou et al., 2004; Karafyllis et al., 2008) has studied the 
special case of dK =0.  In particular, in Syrou et al. (2004), a 
control-Lyapunov function approach was formulated, that led 
to the following control law: 
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where des
ss is the value of the substrate concentration at the 

design steady state. It was shown that the resulting closed 
loop system is asymptotically stable, with stability region the 
entire open first quadrant. Moreover, it was shown that the 
control law (9) is robust with respect to bounded errors in 0S  
(Karafyllis et al., 2008).  

Figure 3 depicts the phase portrait of the closed loop system 
for dK =0 and all the other parameter values as in Section 2.2, 
with the design steady state being the optimal steady state. 
 

 
Figure 3.  Phase portrait of closed-loop dynamics for dK =0 
 
When 0dK ≠ , it is still possible to derive stabilizing 
controllers for the system (1) with stability region the entire 
open first quadrant, but the necessary control law is state 
feedback (Karafyllis et al., 2009).  

Because of the significant practical advantages of output 
feedback, the focus of the present work will be to examine 
whether output feedback is capable of guaranteeing a large 
enough stability region. In what follows, the same output 
feedback control law (9) will be studied, in the presence of 
death rate 0dK ≠ . 

 
3.2 Stability analysis in the presence of biomass decay 
 

Application of control law (9), or equivalently             
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to the dynamic system (1) results in the following closed-
loop system:  
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The closed-loop system (10) has a unique positive equilibrium 
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which is exactly the design steady state for the bioreactor. 
The question concerns its asymptotic stability and moreover, 
obtaining an estimate of the size of the stability region. We 
will prove the following 
 
Proposition: Assume that ( )sμ given by (2a) or (2b) and 

0( )dK Sμ< . Then, the set         
                { }2 0, ( )( , ) | dx s KI x s μ> >= ∈  

is contained in the stability basin of (10). 
 

Note that for Andrews kinetics (2a), the above set is the strip 
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The proof of the Proposition will be based on two Lemmas: 
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Proof of Lemma 1:  The equations (10) of the closed loop 
system can be rearranged to 
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Computing the time derivative of V along the trajectories of 
the system, we find 
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Proof of Lemma 2:  Considering the flow on the boundaries 
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Proof of the Proposition:  For every initial condition 
( (0), (0)) ∈x s I , there is an 0>ε  such that ( (0), (0)) ∈x s Iε , 
hence, by Lemma 2, the system trajectory is wholly 
contained in ⊂I Iε . Hence I  is a positively invariant set. 
Moreover, because  

2
max

2

max max max

max max

max

max max

*

2

2

1 1 4

1
des
s

I

d

d d s d

I

d d

d

d d

s

s s s s
K

K

K K KK
K

K K
K

K K

s K

K K K s

μ

μ μ μ

μ μ
μ

μ μ

⋅
⎛ ⎞⎛ ⎞ ⎛ ⎞ ⎛ ⎞
⎜ ⎟⎜ ⎟ ⎜ ⎟ ⎜ ⎟⎜ ⎟⎝ ⎠ ⎝ ⎠ ⎝ ⎠⎝ ⎠

⋅ ⋅ ⋅
⋅+

− + − −

≥ > >
−

=

=

   

 

it follows that ⊂I E . Hence, by Lemma 1, the positive 
definite quadratic function V given by (12) has negative 
definite V on the positively invariant set I , hence the result. 
 
The following Figure depicts the phase portrait of the closed 
loop system, for the parameter values and optimal design 
steady state of Section 2.2. 

 
Figure 4.  Phase portrait of closed-loop dynamics for ≠dK 0 
 
At a first glance, the phase portrait of Figure 4 looks quite 
similar to the one of Figure 3, and it seems to suggest that 
closed-loop stability has been achieved over the entire first 
quadrant. However, constructing a phase portrait in a region 
close to the origin (see Figure 5), shows that this is not the 
case. In particular, we see from Figure 5 that for small 
enough s (0), trajectories terminate on the s -axis, instead of 
being directed to the design steady state. In other words, the 
result is death of the cells, when the initial substrate 
concentration is too small. 
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Figure 5.  Detail of phase portrait of Figure 4 
 
Note that, for the parameters used, *s =11.114 mg l , 
therefore the previously derived stability region estimate 
 

             { }*
*

2 0,( , ) | x s s sI x s > < <= ∈  

is not conservative on the low end.  
Similar behavior to Figure 5 is observed for substrate initial 
conditions larger than *s , with trajectories terminating on 
the s -axis (phase portrait not shown because of space 
limitations). For the parameters used, * 35988.89=s mg l , 
which is significantly larger than 0S .  
 

5. CONCLUSIONS 

The present work studied the problem of designing an output 
feedback controller for the purpose of enlarging the stability 
region of continuous stirred microbial bioreactors, in the 
presence of biomass decay.  The theory was motivated by 
application problems in anaerobic digestion, where the 
stability region can be very small if the operating steady state 
is selected to maximize the methane production rate. For 
output measurement proportional to the biomass growth rate, 
the proposed control law is a simple proportional output 
feedback controller. A non-conservative estimate of the 
stability region of the closed-loop system under the proposed 
controller was derived using Lyapunov methods.   

The conclusion from the stability analysis is that, although 
the proposed output feedback controller does not stabilize the 
system globally over the entire 1st quadrant, the region of 
stability is very large from a practical point of view. 
Instability can only occur under extreme conditions that are 
highly unlikely to occur in practice. 
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