
Control of PM10 concentrations over a

regional domain

C. Carnevale
∗
V. Filisina G. Finzi E. Pisoni M. Volta

∗ Department of Information Engineering, University of Brescia, Via
Branze 38, 25123 - Brescia, Italy (Tel: +39-030.3715449; e-mail:

carneval@ing.unibs.it).

Abstract: The air quality control is a challenging task, due to nonlinear processes that
brings to pollution formation and accumulation in the troposphere. Control theory provides
useful methodologies and tools to solve this problem. In this paper we propose a two-objective
problem to control particulate matter exposure in the troposphere. The approach is based on
the minimization of two objectives, namely the Air Quality Index and the emission abatement
costs, depending on the decision variables (precursor emission reductions). In particular, this
paper focuses on a novel source-receptor model structure able to describe the link between
emission and concentration needed by the optimization procedure to describe the Air Quality
Index. The methodology has been applied to Northern Italy, a region affected by PM10 levels,
often exceeding the EU limit value established for health protection.

1. INTRODUCTION

The air quality control is a complex task, due to nonlin-
ear formation and accumulation processes involving pol-
lutants (mainly ozone and PM10) in the troposphere. In
particular, concentrations of these pollutants are related
to meteorological condition and to the emissions of the
precursors, volatile organic compounds (VOC), nitrogen
oxides (NOx), ammonia (NH3), primary particulate mat-
ter (PPM) and sulfur oxides (SOx). Different techniques
are available in literature to properly identify emission re-
ductions, such as (a) scenario analysis (Lim et al. (2005));
(b) cost-benefit analysis (Reis et al. (2005), Schrooten
et al. (2006)); (c) cost-effectiveness analysis (Schöpp et al.
(1999), Amann et al. (2004)); (d) multi-objective optimiza-
tion (Guariso et al. (2004), Carnevale et al. (2007)). The
multi-objective approach allows calculating alternative op-
timal emission reduction strategies that consider the trade-
off among different targets, in this case the air quality
improvement and the cost due to the implementation of a
particular emission reduction policy. The multi-objective
approach is not often applied in air quality control due to
the difficulties to include in the optimization problem the
non-linear dynamics involved in pollutants formation. In
fact, the pollution-precursor relationship can not be simu-
lated by deterministic 3D modeling systems, due to their
high computational costs. So the identification of models
capturing the relationship between the precursor emis-
sions and secondary pollutant concentrations is required.
For this purpose, source-receptor relationships have been
implemented using isopleths (Flagen and Seinfeld (1988),
Loughlin (1998)), and reduced form models such as (a)
simplified models, adopting semi-empirical relations cal-
ibrated with experimental data as in Venkatram et al.
(1994), or (b) statistical models, identified on the results
of complex 3D transport-chemical model simulations as in
Schöpp et al. (1999), Friedrich and Reis (2000), Guariso
et al. (2004).

This work formalizes and applies a two-objective problem
to select effective emission abatement strategies in the Po
Valley. The optimization procedure is performed consid-
ering both (a) an air quality objective (the winter mean
of PM10 concentrations), and (b) a cost objective (the
costs due to the reduction of PM10 precursor emissions).
The methodology proposes a source-receptor model able to
describe the whole 3D domain and to estimate long term
air quality indexes in a single simulation step, in contrast
to previous works where different models for different cells
were used (increasing the computational cost of the prob-
lem), and daily simulations were performed (Pisoni et al.
(2009)). Such new approach allows the source-receptor
models to handle more complex input patterns than the
previous proposed one, in particular considering the preva-
lent wind direction over the area and its effects on PM10
concentrations.

2. PROBLEM FORMULATION

The decision model is formalized as a two-objective opti-
mization problem, including the effectiveness of emission
reduction policies on an Air Quality Index (AQI) and their
costs (RC). The problem can be formalized as follows:

mi
θ
n J(E(θ)) =mi

θ
n[AQI(E(θ)) RC(E(θ))] (1)

θ ∈ Θ

where E represents the precursor emissions, θ are the
decision variables, namely the emission reductions, con-
strained to assume values in Θ, AQI(E(θ)) is the air qual-
ity objective and RC(E(θ)) are the reduction costs, both
depending on precursor emissions and emission reductions.
In this section the formalization of the the control variables
(2.1), the air quality (2.2) and the cost objectives (2.3) are
presented. In particular, the methodology is applied to the
case of particulate matter.
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2.1 Control Variables

The control variables are defined as emission reduc-
tions in the so-called CORINAIR macrosector, a Euro-
pean classification based on the following 11 macrosectors
(EMEP/CORINAIR, 1999):

(1) public power, cogeneration and district heating plants;
(2) commercial, institutional and residential combustion

plants;
(3) industrial combustion;
(4) production processes;
(5) extraction and distribution of fossil fuels;
(6) solvent use;
(7) road transport;
(8) other mobile sources and machinery;
(9) waste treatment and disposal;
(10) agriculture;
(11) nature.

The control variables of the decision problem are the

emission percent reductions θ =
{

θp,s
}p∈P

s∈S
, for each

PM precursor p = {V OC,NOx, NH3, PM, SOx} and
CORINAIR macrosector s; so in principle there are 55
control variables (emission reductions).

2.2 Air quality objective

The full description of the relationship between PM and its
precursors should be given by the application of determin-
istic 3D modeling systems; however these models are not of
practical use in an optimization problem due to their high
computational requirements. For this reason simplified
source-receptor models have been identified through the
processing of a limited number of simulations performed
by a deterministic modeling system.

Air quality index The air quality index is defined as
the PM10 exposure index over a grid domain and it is
a function of emissions. The emissions are expressed with
respect to a reference scenario and split into the CORI-
NAIR macrosectors (EMEP/CORINAIR, 1999). Since a
regional Authority can impose different reduction to dif-
ferent emission macrosectors, the air quality index (AQI)
can be expressed stressing the emission dependence of the
exposure index function (Ψ) for cell (i, j), as follows:

AQI(E(θ)) = Ψ
(

Ep,s
i,j (θ

p,s)
)

(2)

where Ep,s
i,j is the emission of the p precursor species for

macrosector s in the cell (i, j);

Deterministic approach PM10 concentrations are typi-
cally simulated by three-dimensional deterministic mod-
eling systems. In this work the Gas Aerosol Modeling
Evaluation System (GAMES) (Volta and Finzi, 2006)
has been used. It consists of three main modules as
shown in Figure 1: (a) the multi-phase Eulerian 3D model
TCAM (Carnevale et al., 2008); (b) the meteorological
pre-processor PROMETEO; (c) the emission processor
POEM-PM (Carnevale et al., 2006). The general mass
balance equation for a generic pollutant h, whose concen-
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Fig. 1. The GAMES modeling system.

tration is Ch [µg m−3] (in spatial-temporal coordinates
x, y, z, t), is then given by:

∂Ch (x, y, z, t)

∂t
= Th +Rh +Dh + Sh (3)

h = 1, 2, . . . , nspecies

where:

• Th is the transport term [µg m−3 s−1];
• Rh is the reaction term [µg m−3 s−1];
• Dh is the deposition term [µg m−3 s−1];
• Sh is the source (emissions) term [µg m−3 s−1].

Equation 3 written for all considered species is the basis
for the development of the air quality models. More details
about the model can be found in Carnevale et al. (2008).
Input and output of the deterministic model simulations
are then used to identify source-receptor model, that
implements the Air Quality Index in the optimization
procedure. A daily simulation, performed over a three-
dimensional domain of 64x41x11 cells, takes 40 minutes
of CPU times.

Source-receptor approach As previously stated, the func-
tion linking precursor emission levels to PM10 concentra-
tion has been here estimated through stochastic models
formalized by means of neural networks, identified using
deterministic model simulation scenarios (see Section 3.2
for more details). In particular, the feed-forward neural
network (Figure 2) has been used in this study. This
network computes a vector function fNN : R

Q → R
L

where Q and L are the dimensions of the net input and
output vectors of the net respectively; the l-th element of
the vector function fNN is defined as (M is the number of
the neurons in the hidden layer):

fNN (v) = af2(

M
∑

m=1

(OWl,m · am) + gl) (4)

where:

am = af1(

Q
∑

q=1

(IWm,q · vq) + bm) (5)

where af1 and af2 are real continuous functions, called
activation function of the hidden layer (af1) and of the
output layer (af2). The matrices IW (M × Q) and OW
(L × M) are the input and output matrix respectively,
and b (M × 1) and g (L × 1) vectors are the bias terms.
Neural networks learn on a training data set, tuning
the parameters IW , OW , b and g by means of a back-
propagation algorithm.
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Fig. 2. Feed-forward neural network scheme.

AOSTA

TORINO

MILANO

GENOVA

TRENTO

BOLOGNA

FIRENZE

VENEZIA

TRIESTE

VERONA

PIACENZA

MODENA

BRESCIA

RAVENNA

260000 360000 460000 560000 660000 760000 860000

UTM 32 [m]

4780000

4880000

4980000

5080000

5180000

U
T

M
 3

2
 [
m

]

-200

0

200

400

600

800

1000

1200

1400

1600

1800

2000

2200

2400

2600

2800

3000

3200

3400

3600

3800

Fig. 3. Study domain (with orography and road network).

2.3 Cost objective

The cost objective of PM10 control can be formulated as
follows:

RC(θ) =
∑

p

∑

s

RCp,s
(

Ep,s(θp,s), ucp,s(θp,s)
)

(6)

where:

• RCp,s represents the total cost associated to reduc-
tion of precursor p in macrosector s;

• Ep,s is the total annual emission of the p precursor
species for macrosector s in the reference case;

• ucp,s represent the cost functions, that link emission
reductions and unit cost, for each p precursor species
and macrosector s.

The cost functions are polynomial cost curves, identified
starting from the RAINS dataset (Amann et al., 2004)
and encompassing all the technologies available to reduce
pollutant emissions in every European country. More de-
tails about the methodology to derive cost objective are
provided in Carnevale et al. (2007).

3. CASE STUDY

The methodology has been applied to Northern Italy
(Figure 3), a region affected by PM10 levels often exceeding
the EU limit value established for health protection. In
particular, high concentrations characterize the central
part of the domain, where the most important industrial
and residential areas are located. A winter period (January
2004 - February 2004) has been selected for the simulation
with the deterministic model, in order to only consider
months with remarkable PM10 concentrations.

In the following subsections control variables selection
(3.1), air quality objective (3.2) and cost objective (3.3),
formalized in Section 2, will be presented for the selected
case study.

3.1 Control variables

Control variables are the emission reductions for each
CORINAIR macrosector. For PM10 in principle the prob-
lem should consider 55 control variables, eleven for each of

PM10 precursor emission reductions, that is to say V OC,
NOx, NH3, primary PM and SO2. The optimization
problem solution, however, does not consider the reduc-
tion of all the decision variables, due to the fact that in
some CORINAIR macrosectors it is not possible to reduce
emissions (i.e. biogenic emissions in macrosector 11 can
not be abated), or there are no emissions on a particular
macrosector. In Table 1, this information is summarized.
Θp,s is the maximum feasible reductions allowed by the
available technologies for pollutant p in the CORINAIR
macrosector s (in the Table 1 ’N.A’. means ’not applica-
ble’). It is important to underline the case of macrosector
7 and 8. Technologies of these macrosectors can reduce at
the same time V OC, PM and NOx. To take into account
this fact, in the optimization problem NOx reductions are
taken into consideration as decision variables, while V OC
and PM emission reductions are constrained to NOx ones
using polynomial functions linking V OC to NOx and PM
to NOx abatement efficiencies (Carnevale et al., 2007).

3.2 Air quality objective

The Air Quality Index, representing the value of PM10

concentration over the grid domain, has been evaluated
through a source-receptor model based on a feed-forward
neural network (Figure 2). Such network has been identi-
fied and validated by processing the results of the deter-
ministic model TCAM, performed in the frame of Quitsat
project (DiNicolantonio et al. (2009)). In particular, total
emissions of NOx, VOC, NH3, primary PM and SO2 have
been used as input of the networks, and the corresponding
average of PM10 as output. The datasets are referred to 11
scenarios: the basecase, assumed as the reference scenario,
and 10 scenarios computed by reducing the precursors
emissions. Table 2 presents the percentage of emissions
reductions with respect to the Quitsat base case. Starting
from these data, the target of the source-receptor models
is to accurately estimate, for the whole domain, the winter
average of pollutant given the precursors total emissions
over the same period. One single neural network has been
identified for the whole domain. This allows to speed up
the whole procedure, without losing capability to repro-
duce local features (in fact even if there is a single neural
network, its input change depending on the selected cell).

In more details, the output of the neural network are,
for each domain cell, the PM10 concentration computed
by TCAM model, while the input are the total precur-

Table 1. Maximum feasible reductions allowed
by technologies, for PM10 precursors).

CORINAIR ΘV OC,s ΘNOx,s ΘNH3,s ΘPM,s ΘSO2,s

macros.

1 N.A. 0.76 N.A. 0.24 0.72
2 0.68 0.39 N.A. 0.59 0.56
3 N.A. 0.34 N.A. 0.09 0.60
4 0.19 0.80 N.A. 0.40 0.80
5 0.33 N.A. N.A. N.A. N.A.
6 0.33 N.A. N.A. N.A. N.A.
7 0.47 0.29 N.A. 0.41 0.76
8 0.06 0.25 N.A. 0.39 0.59
9 0.06 N.A. N.A. 0.82 N.A.
10 N.A. N.A. 0.58 N.A. N.A.
11 N.A. N.A. N.A. N.A. N.A.
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Table 2. Reductions applied to PM10 precur-
sors emissions, with respect to Quitsat case
base, for the 10 reduced emissions scenarios.

Scenario ID NOx VOC PM SO2 NH3

1 30.89% 27.26% 21.45% 26.70% 35.85%
2 61.78% 54.52% 42.90% 53.40% 71.70%
3 61.78% 27.26% 21.45% 26.70% 35.85%
4 30.89% 54.52% 21.45% 26.70% 35.85%
5 30.89% 27.26% 42.90% 26.70% 35.85%
6 30.89% 27.26% 21.45% 53.40% 35.85%
7 30.89% 27.26% 21.45% 26.70% 71.70%
8 30.89% 54.52% 21.45% 53.40% 35.85%
9 61.78% 54.52% 21.45% 53.40% 71.70%
10 61.78% 27.26% 42.90% 26.70% 35.85%

Table 3. Identification and validation datasets
sizes for the PM10 source-receptor model.

Feature Value

Training 20 x 18304
Validation 20 x 2112

sors emission over 4 surrounding triangular-shaped zones,
defined as described by Figure 5. The purpose of this
configuration is to separately exploit (as input for the
network) the information coming from 4 areas representa-
tive of the main wind directions. The N-S (North-South)
direction is relevant due to the local breezes mountain-
plain. The E-W (East-West) direction is the main wind
direction over the domain. Consequently, 4 input for each
precursor are required by the network to estimate the value
of PM10 in each domain cell. In this work, a triangle height
equal to 100 km has been selected. The main feature the
corresponding neural network is summarized in Table 4.

A validation dataset has been selected by choosing approx-
imately the 10% of the cells, distributed over the domain
as shown in Figure 4. According to this, identification and
validation datasets are characterized by the sizes reported
in Table 3. Performances have been evaluated comparing
the values of the AQI computed by the source-receptor
model with the ones simulated by TCAM (as shown in
Figure 6) providing good results. Statistical indexes com-
puted for the validation dataset (Table 5) evidence how an
accurate description of PM10 field is achieved.

Fig. 4. Selected cells for the validation of the PM10 source-
receptor model.

3.3 Cost objective

Abatement cost curves have been estimated on the ba-
sis of a large data set collected for Italy by IIASA
(http://www.iiasa.ac.at). For each macrosector an emis-
sion abatement cost function has been estimated within

Fig. 5. Scheme representing, for a generic domain cell,
the 4 areas (Z1, Z2, Z3, Z4) on which the emissions
(ton/year) are considered as input of the Source-
receptor model.

Table 4. Neural network structure of the PM10

source-receptor model.

Dataset Pattern

No. neurons in the hidden layer (M) 20
Activation function hidden layer (af1) logsig
Activation function output layer (af2) purelin
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lated by TCAM and the ones computed by the source-
receptor model

Table 5. Performance indexes of the neural net-
work (NN) model computed for the validation

dataset.

Index Value

Mean NN model (µg/m3) 17.59
Mean TCAM (µg/m3) 17.63
Correlation 0.98
Mean error (µg/m3) -0.05
Absolute mean error (µg/m3) 1.31
NMAE 0.07

zero and the maximum removal efficiency of technologies,
with the constraint of identifying monotonically increasing
and convex functions. Furthermore polynomial functions
linking VOC to NOx efficiency, and PM to NOx efficiencies
have been estimated, to update during optimization VOC
and PM removal efficiency using NOx removal efficiency of
macrosector 7 and 8 (see Section 3.1). The cost function
identification is described in Carnevale et al. (2007).

4. RESULTS AND DISCUSSION

The solutions of the multi-objective optimization problem
application are shown in this Section. These results are
obtained solving the multi-objective optimization problem
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by the weighted sum strategy. This means that an opti-
mization problem is solved for different vector functions
obtained as a linear combination of the 2 considered ob-
jectives (combined using a parameter α ranging between 0
and 1). These optimization problems are solved by means
of the Sequential Quadratic Programming (SQP) method
that performs, at each major iteration, an approxima-
tion of the Hessian of the Lagrangian function using a
quasi-Newtonian method. This is then used to create QP
subproblems, whose solution are used for a line search
procedure (MathWorks, 2006). In Figure 7 the Pareto
Boundary solution of the two-objective optimization ap-
proach is depicted. The Figure 7 shows in x-axis the total
costs of implementation of emission reductions, and in y-
axis represents the mean value of the Air Quality Index
(mean PM10 concentration) computed for the 50% of the
most polluted cells. The points of the Pareto Boundary
present efficient solutions. As it is clear from the Figure,
there is no single point solution of the problem, but a
set of solution, representing the scale of values of the
decision maker. In fact, possible solutions of the problem
are both the no-reduction solution (point A, with a cost of
0 euro because no reductions are implemented, and with an
Air Quality Index of 26 µg/m3), the maximum reduction
solution (point C, with a cost of 450 Meuro, and an Air
Quality Index of 15 µg/m3) and all the intermediate points
(as i.e. point C). The Figure clearly communicates the
maximum efficient cost that a decision maker can afford,
and the maximum improvement of the Air Quality Index
that can be obtained. The red diamond, in the right part
of the Figure, represents the cost and Air Quality Index
obtained implementing the Current LEgislation (CLE)
planned by European Commission at 2020. This point
represents the emissions level over the Domain at 2020, if
the on-the-pipe European legislation will be implemented.
This emission scenario is not a Pareto Efficient point for
the study domain, characterized by strong nonlinearities
in PM10 formation and accumulation.
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Fig. 7. Pareto boundary for the PM10 control problem
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projection at 2020, due to emission reduction leg-
islation implementation, do not represent a Pareto
efficient point for the study domain.

For each point of the Pareto boundary the two-objective
problem also delivers the set of emission reductions (for
precursor and pollutant) needed to obtain that particular

results. As an example Figure 8 shows the emission re-
ductions for PM, for the different macrosector, needed to
obtain the points A, B and C depicted in Figure 7. The
same kind of information, but for NOx, is shown in Figure
9.
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Figure 10, Figure 11 and Figure 12 show, for the point A,
B and C of the Pareto Boundary, the obtained results in
terms of the Air Quality Index maps allowing to appreciate
how the the Air Quality Index change spatially, choosing
different policies from the Pareto Boundary.

Fig. 10. Map of Air Quality Index (µg/m3) simulated for
the no-reductions option.

5. CONCLUSIONS

In this work a two-objective optimization procedure has
been presented, to control air quality (PM10 concentra-
tions) at a regional level. The implemented methodology
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Fig. 11. Map of Air Quality Index (µg/m3) simulated for
an intermediate option.

Fig. 12. Map of Air Quality Index (µg/m3) simulated for
the maximum reductions option.

presents a new approach to identify source-receptor models
used in the optimization procedure, based on neural net-
work fed with emissions from zones representing prevalent
wind directions over the domain. The data for the identi-
fication and validation of the neural network are provided
by a deterministic chemical transport model, run over the
same domain for different emission reduction scenarios.
The validation of the source-receptor models identified
using prevalent wind direction zones show good agreement
in comparison to the deterministic model. Using these
models the optimization problem has been solved, and
results presented. The Pareto boundary shows the efficient
solutions that a decision maker can implement, in terms
of costs and Air Quality Index, and associated emission
reductions.
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