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Abstract: Robust explicit/multi-parametric controllers are designed for constrained, linear
discrete–time systems with box-constrained states and inputs, involving uncertainty in the
left–hand side (LHS) of the Model Predictive Control (MPC) optimization model. Based on
previous results, this work presents a new algorithm that features: (i) a dynamic programming
reformulation of the MPC optimization, (ii) a robust reformulation of the constraints that
accounts for uncertainty and (iii) a multi–parametric programming solution step where the
controls are obtained as an explicit function of the states.
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1. INTRODUCTION

In the last decades significant advances have been achieved
in the areas of Robust Model Predictive Control (MPC)
(see Zafiriou, 1990; Bemporad and Morari, 1999; Rawlings
and Mayne, 2009, and references within) and explicit/multi–
parametric MPC (mp–MPC) (Pistikopoulos et al., 2007b,a).
Robust MPC has been popular mainly for its ability to
explicitly handle for the uncertainties in the control pro-
cess while explicit/multi–parametric MPC for its ability to
obtain the control inputs as explicit functions of the system
states. Nevertheless, the area of robust explicit/multi–
parametric MPC has received rather limited attention
compared to the two former methods (Bemporad et al.,
2003; Pistikopoulos et al., 2009). This is obvious from
the limited number of publications, with the key pub-
lications presented in Table 1. Since, even for the case
of linear MPC, the resulting optimization model of the
robust explicit MPC formulation is nonlinear (due to the
uncertainties appearing in the left and right hand side
of the optimization constraints), this imposes significant
difficulties for the direct application of existing multi–
parametric programming techniques to robust MPC.

Dynamic programming (DP) based methods have been
proposed for the solution of the explicit/multi–parametric
MPC problem, where the mp–MPC optimization problem
is recast as a multi–stage problem and is decomposed into
a number of smaller optimization problems (Bemporad
et al., 2003; Pistikopoulos et al., 2007a). However, the main
issue of applying DP to the mp–MPC problem, especially
for the case of problems with quadratic objective func-
tions, is that a nonlinear multi–parametric programming
problem has to be solved for each stage of the mp–MPC
problem, thus requiring the use of global optimization. In
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(Pistikopoulos et al., 2009) a new method was proposed
that overcomes this problems and only solves a multi–
parametric Quadratic Programming (mp–QP) problem for
each stage of the mp–MPC, thus overcoming the need for
global optimization.

In this work, we propose a new method, based on the
work of (Pistikopoulos et al., 2009), for the explicit/multi–
parametric MPC of “boxed–constrained” linear discrete–
time systems, i.e. when the state and input constraints
are described by upper and lower bounds of the state and
control variables. More specifically, we focus on the Robust
Explicit Model Predictive Control (MPC) problem

V ∗(x) =min
U

J(U, x)

=min
U

N−1
∑

t=0

{xT
t Qxt + uT

t Rut}+ xT
NPxN (1)

s.t. xt+1 = Axt +But (2)

A = A0 +∆A, B = B0 +∆B (3)

∀ ∆A ∈ A, ∆B ∈ B (4)

xt ∈ X = {x ∈ R
n | xmin ≤ x ≤ xmax} (5)

u ∈ U = {u ∈ R
m | umin ≤ u ≤ umax} (6)

t = 0, 1, . . . , N − 1

xN ∈ Xf , x = x0 (7)

where N is the prediction time horizon, x0 is the initial
state, U = [uT

0 . . . uT
N−1] is the sequence of current and

future control variables, Q,P � 0 and R ≻ 0 are
symmetric matrices, (5) and (6) are the state and input
constraints and Xf = {x ∈ R

n|Tx ≤ τ} is the terminal
constraint set. The system (2) is uncertain in that the
system matrices A,B are given by (3) where A0, B0 are of
known constant values but the values of matrices ∆A,∆B
are not known but are bounded and given by
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∆A ∈ A = {∆A ∈ R
n×n| − εa|A0| ≤ ∆A ≤ εa|A0|}

∆B ∈ B = {∆B ∈ R
n×n| − εβ |B0| ≤ ∆B ≤ εβ |B0|}

where ǫa, ǫβ ∈ [0, 1). The objective is to obtain the control
sequence U, and in extension the control variable ut, as
explicit functions of the state variable xt, such that the
state and input constraints are satisfied for all values of the
uncertain matrices ∆A ∈ A, ∆B ∈ B. Such a solution of
the explicit/multi–parametric MPC problem will be called
a robust solution.

Table 1. Robust Explicit/Multi–parametric
Model Predictive Control – Main develop-

ments

Robust mp-MPC - Para-

metric Model Uncertainties

Bemporad et al. (2003); Man-
thanwar et al. (2005); Kouramas
et al. (2009); Pistikopoulos et al.
(2009)

Robust mp-MPC - Additive
disturbances

Sakizlis (2003); Sakizlis et al.
(2004); Kerrigan & Maciejowski
(2004); De la Peña et al. (2005)

Robust tracking control and
disturbance rejection

Sakizlis et al. (2004)

Robustification of explicit
control laws

Olaru & Ayerbe (2006)

2. A METHOD FOR ROBUST
EXPLICIT/MULTI–PARAMETRIC MPC

The proposed approach for the solution of the robust
explicit MPC problem (1) is realized in three main steps
(Fáısca et al., 2008; Pistikopoulos et al., 2009)

i) dynamic programming step: the MPC optimization
(1) is recast in a multi–stage optimization setting

ii) robust reformulation of the constraints: the optimiza-
tion constraints at each stage of the resulting multi–
stage problem are reformulated to account for the
worst–case uncertainty, and

iii) multi–parametric programming: the reformulated stage
optimization problems are solved as multi–parametric
problems

These steps of the proposed procedure are presented in the
following sections.

2.1 Dynamic programming – multi–stage optimization

Following the method presented in Fáısca et al. (2008)
and Pistikopoulos et al. (2009), problem (1) can be ex-
pressed as a multi–stage optimization problem and can be
decomposed into a set of stage-wise problems of smaller
dimensions(Bellman, 2003; Bertsekas, 2005; Pistikopoulos
et al., 2009)

Vt(xt) = min
ut∈U

N−1
∑

i=t

{xT
i Qxi + uT

i Rui}+ xT
NPxN (8)

s.t. xi+1 = Axi +Bui, i = t, . . . , N

∀ ∆A ∈ A, ∆B ∈ B

xmin ≤ xt ≤ xmax, umin ≤ ut ≤ umax

xmin ≤ xt+1 ≤ xmax

xt+1 ∈ X t+1

where the optimization variable for (8) is only the current
input variable ut and only the state and input constraints

at times t and t + 1 are considered. The smaller problem
(8) is solved at each stage t, starting from t = N − 1 and
ending at t = 0, to derive the control inputs u0, . . . , uN−1,
instead of solving the multi–stage problem as a single
large–scale optimization problem. The set X t+1 is the set
of all states xt+1 for which a solution ut+1 ∈ U exists for
the problem (8) at stage t+1 and is known as the feasibility
set (Pistikopoulos et al., 2009). If a control input ut exists
that satisfies the constraint xt+1 ∈ X t+1 then a control
input ut+1 exists that satisfies the constraints of problem
(8) for stage t+ 1. The use and method for obtaining the
feasibility set will be further discussed in Section 2.5.

In (Fáısca et al., 2008) it was shown that (8) can be solved
as a multi–parametric Quadratic Programming (mp–QP)
problem for the case ∆A = ∆B = 0. However ,the
presence of the uncertain matrices ∆A, ∆B do not allow
for the use of the known multi–parametric programming
methods to solve (8) and derive the input variable ut as an
explicit function of the state. We will show in Sections 2.4,
2.5 a procedure to reformulate (8) to an mp–QP problem
and derive the input variable as an explicit function of the
state.

We first consider the following state and input transfor-
mations

x̄ = x− xmin , ū = u− umin (9)
By substituting (9) in the optimization problem (8) we
obtain the following transformed optimization problem

Vt(x̄t) = min
ūt∈Ū

N−1
∑

i=t

{(x̄i + x̄min)
TQ(x̄i + x̄min) (10)

+ (ūi + ūmin)
TR(ūi + ūmin)}

+ (x̄N + x̄min)
TP (x̄N + x̄min)

s.t. x̄i+1 = Ax̄i +Būi + ḡ, i = t, . . . , N (11)

0 ≤ x̄t ≤ xmax − xmin (12)

0 ≤ x̄t+1 ≤ xmax − xmin (13)

0 ≤ ūt ≤ umax − umin (14)

x̄t+1 ∈ X̄ t+1 (15)

for all ∆ ∈ A, ∆B ∈ B and where ḡ = (A−I)xmin+Bumin

and the set X̄ t+1 is obtained by substituting (9) into the
feasibility set X t+1. Note that the objective function in
(10) is a convex quadratic function of x̄+xmin and ū+umin

and hence the minimization in (10) forces x̄k → −xmin and
ūk → −umin and therefore, from relations (9), xk → 0 and
uk → 0.

Remark 1. Note that if the solution of (10) is ūt then the
solution of (8) is ut = ūt + umin.

Furthermore, an mp–QP formulation of (10) can be de-
rived by (i) considering ut as the optimization variable,
(ii) considering θ̄t =

[

xT
t uT

t+1 . . . uT
N−1

]

as the vector

of parameters, (iii) combining the feasibility constraint X̄
and the state constraints 0 ≤ x̄t ≤ xmax − xmin into the
inequality constraints

Gt+1xt+1 ≤ bt+1 (16)

(iv) incorporating the linear system model (11) into the
constraints, and (v) incorporating the nominal system
dynamics ((11) with ∆A = ∆B = 0) in the objective
function (objective penalizes the nominal system perfor-
mance). Following the above steps we obtain the following
multi–parametric programming problem
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Vt(x̄t) = min
ūt∈Ū

{

1

2
ūT
t Hūt + θ̄Tt Fūt + LT

u ū

}

(17)

+ θ̄Tt Y θ̄t + LT
θ̄
θ̄ + c

s.t. Gt+1A0x̄t + Gt+1∆Ax̄t + Gt+1B0ūt

+ Gt+1∆Būt + Gt+1ḡ ≤ bt (18)

0 ≤ x̄t ≤ xmax − xmin

0 ≤ ūt ≤ umax − umin

where ∆A ∈ A and ∆B ∈ B. The matrices H, F ,
Lu, Y , Lθ and c are of appropriate dimensions and are
obtained after substituting the nominal system model in
the objective function of (10). Note that since the objective
function of (10) is a convex quadratic function of ūi and
x̄i, i = t, . . . , N − 1, the objective function of (17) is
also a convex quadratic function of ui, i = t, . . . , N − 1
and x0. Note also that the matrix coefficients in (18) are
uncertain, hence problem (17) is a robust mp–QP problem
(Kouramas et al., 2009). In order for a control input ūt to
be a robust solution of (17), the constraint (18) has to be
satisfied for all values of the uncertainty.

2.2 Robust Reformulation

In order to ensure that the constraints of (17) are satisfied
at all stages t and for all possible values of the uncertain
matrices ∆A, ∆B, we apply the following robust reformu-
lation (Ben-Tal and Nemirovski, 2000) of (18)

Gt+1A0x̄t + Gt+1B0ūt + Gt+1ḡ ≤ bt+1 (19)

Gt+1A0x̄t + ǫa|G
t+1||A0||x̄t|+ Gt+1B0ūt (20)

+ǫb|G
t+1||B0||ut|+ Gt+1ḡ ≤ bt+1 + δmax{1, |bt+1|}

where inequality (19) ensures that the problem is feasible
for the nominal system while inequality (20) represents
the realization of the first constraint in (17) for the worst–
case value of the uncertainty. The variable δ is a measure
of the tolerated infeasibility i.e. how much the constraint
can be relaxed to ensure a feasible solution. Obviously, no
infeasibility is allowed when δ = 0.

The inequality (20) is nonlinear with respect to x̄ and
ū and hence replacing it in (17) will result in a multi–
parametric nonlinear programming problem. However,
since from (12), (14) we have that x̄t ≥ 0, ūt ≥ 0, we
can replace the absolute values |x̄t| and |ūt| in (20) by x̄t,
ūt and re–write the inequality (20) as a linear inequality
of x̄, ū

Gt+1A0x̄t + ǫa|G
t+1||A0|x̄t + Gt+1B0ūt (21)

+ǫb|G
t+1||B0|ūt + Gt+1ḡ ≤ bt+1 + δmax{1, |bt+1|}

(21) is then substituted in (17) to obtain the following
mp-QP formulation of (17)

Vt(x̄t) = min
ūt∈Ū

{

1

2
ūT
t Hūt + θ̄Tt Fūt + LT

u ū

}

(22)

+ θ̄Tt Y θ̄t + LT
θ̄
θ̄ + c

s.t. Gt+1A0x̄t + Gt+1B0ūt + Gt+1ḡ ≤ bt+1

Gt+1A0x̄t + ǫa|G
t+1||A0|x̄t + Gt+1B0ūt

+ ǫb|G
t+1||B0|ūt + Gt+1ḡ ≤ bt+1 + δmax{1, |bt+1|}

0 ≤ x̄t ≤ xmax − xmin , 0 ≤ ūt ≤ umax − umin

where ūt is the optimization variable and θ̄t is the vector
of parameters. Problem (17) is a mp–QP reformulation of
the stage optimization problem (8).

If ūt is a solution for (22) then ūt satisfies (19)–(20) and
hence it satisfies the constraint (18) for all values of ∆A,
∆B. This implies that ūt is a robust solution for (17)
and hence for (10). In addition, since (10) is obtained
by applying the linear transformation (9) on (8), then
ut = ūt + umin is also a robust solution of (8). We can
now state the following Lemma

Lemma 2. If ūt is a feasible solution for (22) then it is also
a robust solution for (10) and ut = ūt + umin is a robust
solution for (8).

Remark 3. In (Pistikopoulos et al., 2009) it was shown
that the nonlinear inequality (20) can be relaxed to
the set of linear inequalities Gt+1A0x̄t + ǫa|G

t+1||A0|zt +
Gt+1B0ūt+ǫb|G

t+1||B0|ωt+Gt+1ḡ ≤ bt+1+δmax{1, |bt+1|},
−zt ≤ x̄t ≤ zt, −ωt ≤ ūt ≤ ωt, zt, ωt ≥ 0 by introduc-
ing two new optimization variables zt, ωt and four extra
inequalities, thus increasing the number of constraints in
(22). However, as we showed above, this is not anymore
necessary since x̄, ū are positive and (20) can be replaced
only by (21) without increasing the number of constraints
in (22).

2.3 Multi–parametric procedure

Since (22) is an mp–QP problem, the solution to (22) is
given by the following explicit form (Pistikopoulos et al.,
2007b,a)

ūt = Ki
t θ̄t + cit, if θ̄t ∈ CRi

t, CR
i
t = {θ̄t | H

i
t θ̄t ≤ hi

t}
(23)

ūt = f∗
t (θ̄t) = f∗

t (x̄t, ūt+1, . . . , ūN−1) (24)

where i = 1, . . . , st, Ki
t , cit are matrices of appropriate

dimensions and CRi
t ⊂ R

n are the corresponding critical
regions. The expression (23) describes the relation between
the solution ūt at the current stage and the solutions ūt+1,
. . ., ūN−1 at the previous stages. However, our objective
is to obtain the input ūt as an explicit function of the
incumbent state x̄t. Hence, in the following we present a
procedure for deriving i) ūt as an explicit function of the
state x̄t and ii) the feasibility set X̄ t.

Reduction of the mp–QP solution: We will first demon-
strate the procedure for deriving an expression ut = f∗

t (xt)
from (23) for the stages t = N − 1 and t = N − 2. For the
stages N − 1 and N − 2 the control variables are ūN−1

and ūN−2 while the parameters are θ̄N−1 = x̄N−1 and
θ̄N−2 = [x̄N−1 ūN−1]

T . The expression (23) for ūN−1 and
ūN−2 are then given by

ūN−1 = Ki
N−1x̄N−1 + ciN−1, if x̄N−1 ∈ CRi

N−1 (25)

ūN−2 = K
j
N−2

x̄N−2 + L
j
N−2

ūN−1 + c
j
N−2

,

if x̄N−2, ūN−1 ∈ CRj
N−2

(26)

where i = 1, . . . , sN−1 and j = 1, . . . , qN−2. Note that
ūN−1 is an explicit PWA function of the state xN−1 while
ūN−2 is a function of x̄N−2 and ūN−1. In order to obtain
ūN−2 only as an explicit function of x̄N−2, we apply the
following steps to eliminate uN−1 from (26) (Fáısca et al.,
2008; Pistikopoulos et al., 2009): i) first, the system model
x̄N−1 = A0x̄N−2 + B0ūN−2 + ḡ is incorporated in (25) in
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order to express ūN−1 as a function of x̄N−2 and ūN−2

and ii) (25) and (26) are combined for all i, j to obtain a
set of piecewise affine (PWA) expressions with respect to
x̄N−2, ūN−2 and ūN−1

ūN−1 =Ki
N−1A0x̄N−2 +Ki

N−1B0ūN−2 +Ki
N−1ḡ

+ciN−1 (27)

ūN−2 =K
j
N−2

x̄N−2 + L
j
N−2

ūN−1 + c
j
N−2

(28)

x̄N−2, ūN−2 ∈ CRi
N−1 , x̄N−2, ūN−1 ∈ CRj

N−2
(29)

Then, by: i) directly substituting (27) in (28) and (29) and
solving for ūN−2 or ii) using elimination methods such as
orthogonal projection or Fourier-Motzkin elimination to
eliminate ūN−1 from (27), (28) and (29), the control input
ūN−2 can be obtained as an explicit function of x̄N−2

ūN−2 = f∗
N−2(x̄N−2)

ūN−2 = K
j
N−2

x̄N−2 + c
j
N−2

, if x̄N−2 ∈ CRj
N−2

(30)

where j = 1, . . . , sN−2 and CRj
N−2

is the critical region
in which (30) is valid. Note that expressions (27)–(29) are
obtained for all possible combinations i, j of the critical
regions of (25) and (26), and correspond to feasible values
of x̄N−2, ūN−2 and ūN−1 for problem (22). It is possible
that some combination of i, j is not realizable, which
implies that no feasible solutions exists.

The same procedure is applied for all stages t. Let ūt+1 =
f∗
t+1(x̄t+1), . . ., ūN−1 = f∗

N−1(x̄N−1) be the solutions of

the (22) for stages t + 1, . . ., N − 1 and ūt = f∗
t (θ̄t) the

solution for the stage t given by (24). Then, i) by replacing

xk with x̄k = Ak−t
0 x̄t+

∑k−1−t

i=0
A

j
0B0ūk−1−j in the control

variables ūk = f∗
k (x̄k) for all k = t + 1, . . . , N − 1 and ii)

by combining the critical regions and control expressions
of all control variables we obtain the following set of PWA
expressions on xt, ut, ... , uN−1

ūN−1 = f∗
N−1(x̄t, ūt, . . . , ūN−2), . . . , (31)

ūt+2 = f∗
t+2(x̄t, ūt, ūt+1), ūt+1 = f∗

t+1(x̄t, ūt) (32)

ūt = f∗
t (x̄t, ūt+1, . . . , ūN−1) (33)

Then the variables ūt+1, . . ., ūN−1 are eliminated either
by i) substituting (31)-(32) in (33) and solving for ūt or ii)
applying elimination techniques on (31)–(33), to obtain ūt

as an explicit function of the state x̄t, ūt = f∗
t (x̄t) where

ūt = Ki
t x̄t + cit, if x̄t ∈ CRi

t , i = 1, . . . , st (34)

and CRi
t is the critical region where the control (34) is

valid.

Calculation of the feasibility constraint set: Once the
explicit solution (34) has been obtained, the feasibility
constraint set X̄ t for stage t can then be obtained from
the following expression

X̄ t =

st
⋃

i=1

CRi
t (35)

Since (22) is a convex multi–parametric quadratic pro-
gramming problem, the set of all critical regions in the
combined PWA expressions (31)–(33) is a convex polyhe-
dral set. Moreover, the set of all critical regions CRi is also
a convex polyhedral set, since it is obtained by performing

linear operations on (31)–(33), and hence can be described
by a set of linear inequalities

X̄ t = {x̄ ∈ R
n | Htx̄ ≤ ht} (36)

Remark 4. The use of the feasibility constraints x̄t+1 ∈
X̄ t+1 is very important since it ensures that the future
state xt+1 lies in the set of states for stage t + 1, for
which a feasible and robust control ūt+1 = f∗

t+1(x̄t+1)
exists. Therefore, by applying ūt to the system (11), it
will guarantee that a feasible control ūt+1 = f∗

t+1(x̄t+1)
can be obtained at the next time t+ 1.

The control input ut can then be obtained by substituting
(9) in (34)

ut = µt(xt) = ūt + f∗
t (xt − xmin) (37)

Note from (37) that ut is also an explicit function of
the state xt. Specifically, µt(xt) is a PWA function of
xt since f∗

t (xt − xmin) is a PWA function of xt. Finally,
the feasibility set X t+1 can be obtained by substituting
x̄ = x− xmin in (36).

Remark 5. Note that the proposed algorithm, although
it is based on DP methods, does not follow the conven-
tional DP approaches (Bemporad et al., 2003). If conven-
tional DP methods were used, then the solutions ūt+1 =
f∗
t+1(x̄t+1), . . ., ūN−1 = f∗

N−1(x̄N−1) from the previous
stages should be first incorporated in the formulation of
problem (22) which would then become a non-linear multi–
parametric programming problem, thus requiring a global
optimization procedure for its solution (Fáısca et al., 2008;
Pistikopoulos et al., 2009). On the other hand, the pro-
posed procedure takes into account the convexity of (22)
with respect to the control variables ūi, i = t, . . . , N − 1
and state xt, to solve an mp–QP problem (22) at each
stage. The explicit solution (34) is then derived by per-
forming a set of linear algebraic manipulations ((31)–(33)).

2.4 Algorithm for robust explicit/multi–parametric MPC
for linear system with “box”–constraints

Based on the proposed procedure that was described in
Sections 2.3–2.5, we can now propose a DP–based algo-
rithm for robust explicit/multi–parametric programming
which is shown in Table 2. In Step 1 of the proposed
algorithm, problem (22) is solved for stage t = N − 1
and uN−1 = fN−1(xN−1) is obtained as a function of
xN−1. The algorithm then proceeds iteratively by applying
Steps 2i. – 2iv. for each stage t. In Step 2i the mp–QP
problem (22) is solved to obtain ūt = f∗

t (θt). In Step 2ii the
reduction procedure described in section 2.5 is applied and
the control variable ūt is obtained as an explicit function
of the state ūt = f∗

t (xt). In step 2iii. the control input
ut = µt(xt) is obtained from expression (37) and finally
in step 2iv. the feasibility set X̄t is obtained from (35).
The algorithm then proceeds to the next stage t − 1 and
terminates when stage t = 0. After repeating all the steps
of the proposed algorithm we obtain a sequence of control
laws U = {ut, . . . , uN−1} = {µ0(x0), . . . , µN−1(xN−1)}.

Each of the control inputs ut = µi(xt), t = 0, . . . , N − 1 is
a robust solution of (8), hence the constraints of (8) are
satisfied for all values of the uncertain matrices ∆A,∆B
(see Lemma 2). This also implies that the control inputs
ut = µi(xt), t = 0, . . . , N − 1 satisfy the state and inputs
constraints (5)–(6) for all values of ∆A,∆B which are also
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the constraints for (1). Therefore, the control sequence U
satisfies the constraints of the explicit/multi–parametric
MPC problem (1) for all values of ∆A,∆B.

Lemma 6. The control sequence U = {ut, . . . , uN−1},
where ut = µi(xt), t = 0, . . . , N − 1, is a robust solution
of the explicit/multi–parametric MPC problem (1).

Key features of the proposed robust explicit/multi– para-
metric MPC method: The key features of the proposed
robust explicit MPC method are summarized as follows:
(i) the proposed method obtains a sequence of robust ex-
plicit control laws ut = µi(xt), t = 0, . . . , N − 1 which
guarantee that the state and input constraints are always
satisfied for all values of the uncertainty (Lemma 6), (ii)
a convex mp–QP problem is solved for each stage of the
proposed DP procedure, without the need to solve a Global
Optimization problem (Remark 5), and (iii) the number
of optimization variables and constraints for each stage
optimization problem (22) is not increased compared to the
previous methods (Fáısca et al., 2008; Pistikopoulos et al.,
2009) (Remark 3).

Note that the proposed algorithm was developed for the
case of linear discrete–time system with the state and
input constraints described by (5)–(6). Note also that
at each stage t of the proposed algorithm, the number
of parameters θ̄t = {x̄t, ūt+1, . . . , ūN−1} involved in (22)
increases as t decreases from N − 1 to 0. Also the number
of expressions (31)–(33) increases as t decreases hence
increasing the complexity of the algebraic manipulations
required to eliminate ūt+1, . . . , ūN−1 from (31)–(33) and
derive the control law (34). In addition if a relatively larger
number of critical regions is obtained at each stage for (34)
then this might increase the complexity of the calculations
for obtaining the feasibility set from (35).

On–line Implementation: The on–line implementation
of the explicit/ multi–parametric MPC can be realized
with two approaches. In the first approach, the whole
control sequence U = {u0, u1, . . . , uN−1} is applied to the
system, with each control input ut = µt(xt) applied at the
corresponding time instant t. With the second approach,
only the first control u0 = µ0(x0) of the control sequence
U is applied at each time t, by considering the current
state x as the initial state x0.

Table 2. Algorithm for Robust Explicit Multi–
Parametric MPC

Step 1. Set k = N − 1: solve the mp-QP problem (22) with
xN−1 being the parameters and obtain uN−1 =
f∗

N−1
(xN−1) (Eq. (25)) and X̄N−1 (Eq. (36)).

Step 2. Set k to the current stage:

i. solve the kth stage–wise mp–QP problem (22) with
x̄k, ūk, . . . , ūN−1 being the parameters and obtain
ūk = f∗

k
(x̄k, ūk, . . . , ūN−1),

ii. obtain ūk = f∗

k
(x̄k) by eliminating ūk+1, . . . , ūN−1

from (31)–(33),
iii. obtain ut = µt(xt) from (37)
iv. calculate the feasibility set Xk from Eq. (35)

Step 3. Set k = k − 1: if k = 0 stop, else go to Step 2.

2.5 Example

We illustrate the proposed algorithm for the following
example,

A0 =

[

1 1
0 1

]

, B0 =

[

0
1

]

,

[

−10
−10

]

≤ xk ≤

[

10
10

]

εa = εβ = 0.2 , −1 ≤ uk ≤ 1

Q =

[

1 0
0 1

]

, R = 1 , P =

[

2.6005 2.081
2.081 3.3306

]

, N = 3

We also assume that δ = 0. By applying the proposed
algorithm the control variables u0, u1, u2 for each stage
are obtain, where each control variables is an explicit PWA
function of its corresponding state ut = µt(xt), t = 0, 1, 2.
Each of the control laws u0, u1, u2 consists of 344, 105
and 6 critical regions, which are shown in figures 3, 2,
1 respectively. Moreover, Tables 3, 4 and 5 show the PWA
expressions of the control variables u0, u1, u2 and their
corresponding critical regions. We then implement the first
control input u0 = µ0(x0) in the system. The simulation
of these implementation is shown in Figure 3 where we can
notice that the trajectories of the system satisfy the state
and input constraints at all times.

Table 3. Explicit solution u2 = µ∗
2(x2) for

Stage 2.

Control law Critical Region

u2 = 1

−x1
2 − x2

2 ≤ 10

0.3845x1
2 + x2

2 ≤ −0.7078

−x2
2 ≤ 10, −x1

2 ≤ 10, x1
2 ≤ 10

u2 = −0.5432x1
2
− 1.4127x2

2

−0.3845x1
2 − x2

2 ≤ 0.7078

−0.3845x1
2 − x2

2 ≤ −0.0070

x1
2 ≤ 10, −x1

2 ≤ 10

u2 = −1

−0.3845x1
2 − x2

2 ≤ −1.0774

x1
2 + 0.8181x2

2 ≤ 9.0909

0.8181x1
2 + x2

2 ≤ 9.0909

x1
2 + 0.9090x2

2 ≤ 9.09

0.9090x1
2 + x2

2 ≤ 9.09

x1
2 + x2

2 ≤ 9.0909

−10 ≤ x1
2 ≤ 10

Fig. 1. Critical regions of the explicit robust MPC for stage
2 (u2 = µ∗

2(x2))

3. CONCLUSIONS

A new algorithm for robust explicit/multi–parametric
MPC was presented for the case of linear systems with
state and input constraints described by upper and lower
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bounds on the state and input variables. The algorithm
features three key steps, based on DP, robust optimization
and multi–parametric programming methods and allows
for the derivation of robust explicit control solutions to
the robust explicit MPC problem.
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Fig. 2. Critical regions of the explicit robust MPC for stage
1 (u1 = µ∗

1(x1))

Table 4. Explicit solution u1 = µ∗
1(x1) for

Stage 1.

Control law Critical Region

u1 = 1

0.2777x1
1 + x2

1 ≤ −1.2335

−x1
1 − x2

1 ≤ 10

−0.5x1
1 − x2

1 ≤ 5.5

x1
1 ≤ −0.01, x2

1 ≤ −0.01

u1 = −4411x1
1
− 1.3145x2

1

−08079x1
1 + x2

1 ≤ −0.1010

−0.3356x1
1 − x2

1 ≤ 0.7607

x1
1 ≤ −0.01

u1 = −0.3903x1
1 − 1.2028x2

1

−0.0002

−0.3245x1
1 − x2

1 ≤ 0.0085

x1
1 ≤ 0.005, x2

1 ≤ 0.005

Table 5. Explicit solution u0 = µ∗
0(x0) for

Stage 0.

Control law Critical Region

u0 = 1

0.2173x1
0 + x2

0 ≤ −1.748

−0.5x1
0 − x2

0 ≤ 5.5

−0.3333x1
0 − x2

0 ≤ 4.3333

x1
0 ≤ −0.01, x2

0 ≤ −101

u0 = −0.3005x1
0 − 1.2098x2

0

−0.8443

−0.3357x1
0 + x2

0 ≤ −5.73

−0.2484x1
0 − x2

0 ≤ 0.6896

x1
0 ≤ 10

u1 = −0.4712x1
0
− 1.3486x2

0

−x1
0 − 0.9041x2

0 ≤ −0.0789

x1
0 + x2

0 ≤ −0.01

−0.3493x1
0 − x2

0 ≤ 0.7414

Fig. 3. Critical regions of the explicit robust MPC for stage
0 (u0 = µ∗

0(x0))
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