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Abstract: Estimation theory finds a wide variety of applications in process engineering. Most
chemical processes exhibit highly nonlinear dynamics, and the extended Kalman filter (EKF)
has been widely used to solve the estimation problem in chemical processes. However, it is
claimed that the EKF performs poorly when the noise sequences are non-Gaussian(NG). Owing
to high nonlinearity of chemical process dynamics, it is likely that innovation sequences are non-
Gaussian. Nonlinear estimators such as the unscented Kalman filter (UKF) and particle filters
(PF) have been developed to address the theoretical limitations of the EKF. In this paper,
we study the effect of filter assumptions on their practical performance. Different estimation
algorithms are applied onto a methyl methacrylate (MMA) continuous stirred tank reactor
(CSTR) under different scenarios of state and measurement noise and plant-model mismatch.

Keywords: Nonlinear estimation, EKF, UKF, PF, MMA polymerization.

1. INTRODUCTION

State estimation is a fundamental problem in most fields
of science and engineering. It is a method of combining
the information from measurement sensors with a dynamic
model of the system under consideration to predict its
states. The need for increased estimation accuracy has
led to the development of numerous algorithms based
on various mathematical fundamentals. Fig. 1 provides a
schematic of the different estimation techniques developed
to date. In process industries, estimation is widely used
to infer accurate measurements from noisy sensor data, as
a soft sensor to predict variables that are not measurable
online, estimate parameters to obtain accurate dynamic
process models and for model predictive control. This
not only provides improved control, but assists in fault
detection and process monitoring.

It is well known that the Kalman filter provides an op-
timal solution to the state estimation problem for linear
stochastic systems. It is however important to note that
most chemical processes exhibit non-linear dynamics. The
development of an estimator that provides an exact opti-
mal solution to all nonlinear stochastic systems remains
an open problem. The EKF is the most traditional and
widely used estimator in chemical processes (Kiparissides
et al. (2002),McAuley and MacGregor (1991)). While the
EKF has been successfully used to solve many industrial
problems, it has been demonstrated to perform poorly
in the case of non-Gaussian posterior estimates obtained
when state equations are non-linear (Daum (2005)). The
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EKF requires that the local linearization of the dynamic
model to which the Kalman Filter is applied remains good
over the entire operating region of the process, which may
not hold true in all cases. Moreover, it requires that the
nonlinear function vectors be smooth and once differen-
tiable, which is not exhibited by many hybrid systems that
involve continuous and discrete states (Patwardhan et al.
(2007)). Therefore, though the EKF works well in many
cases, there are scenarios where an alternate estimator
needs to be applied to provide a better solution to the
estimation problem. Estimation algorithms like the UKF
and PF which rely on fitting an approximate solution
to the dynamic equations rather than solving the linear
equations obtained by approximating the system dynamics
(like EKF), may be of use in scenarios where the EKF
might exhibit poor performance. The literature relating
application of these filters in chemical process engineering
is recent. Imtiaz et al. (2006) applied the PF to a two
state CSTR. Chen et al. (2005) used PF for state and
parameter estimation in batch processes. Romanenko and
Castro (2004) demonstrated the superiority of the UKF
over the EKF in a simulated CSTR. In this paper, we
study the use of three estimators in different scenarios
for chemical processes. We attempt to address the need
for different estimation algorithms in chemical processes.
EKF, UKF and PF algorithms have been applied onto
a MMA polymerization CSTR under different cases of
measurement noise, state noise and plant-model mismatch.
All estimators have been studied under similar tuning
rules. Section 2 describes the filters that have been chosen
for this study. Section 3 introduces the MMA model under
consideration. In section 4, the case studies for different
scenarios of noise and plant-model mismatch have been
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discussed. Section 5 summarizes the results of the case
studies.

2. ESTIMATION METHODS

Consider the following nonlinear state space model :
o = f(Tr—1,up-1) + wy (1)
Yk = g(xr) + vk (2)

The objective of state estimation is to sequentially calcu-
late the state vector x; given the measurement y; at each
time instant. Sometimes, not all the states are measureable
online (hidden states) , hence the estimator would not only
filter out the noise vy, but also provide estimates of the
hidden states (soft-sensing ability).

In our study, the traditional EKF, the unscented transform
based UKF and the Bayesian Sequential Monte Carlo es-
timator SIR-PF(Sequential Importance Resampling) have
been used. The algorithms for these estimators are de-
scribed in the following sections.

2.1 Extended Kalman Filter

The EKF is the most widely used estimator in chemical
processes. It involves application of the traditional linear
Kalman filter to the linearized system model at each time
instant. The EKF works well when local linear models
accurately represent the dynamics of the process. The
EKF algorithm as explained by Lee and Ricker (1994) is
summarized below.

The EKF algorithm requires an initial guess of the state
vector, and state and disturbance covariances.

&g = Elzo] (3)

Py = E[(xo — &o)(zo — #0)"] (4)

Time update:

The prior estimates are obtained by propagating the
estimates from the previous time step through the non-
linear differential equations. The Jacobian of the nonlinear
dynamics is used to estimate the prior covariance matrices.

g1 = Fop_1,up—1,w) (5)
OF (x,up_1,w

Ap—1 = % |2k (6)

ka/k—l = Ak—lPﬂﬁkaAg—l (7)

Measurement update:
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The state vector and state covariance matrices are updated
using the available measurement. The Kalman gain is
the variable that defines the extent to which the esti-
mator trusts the measurement or the estimates. For high
magnitudes of measurement innovations, the Kalman gain
accquires low values, indicating more trust in the state
estiamtes. Low measurement innovations result in a high
Kalman gain indicating complete trust in the measure-

ments. 3G( )
T, w

Ck - T |:I)k-,1 (8)

Ki =P, . ,CL(CiPr,,, ,CF + Ry)™! (9)

Ty = Tpp—1 + Kilyw — H(Tp/p—1,w)] (10)

Eq. 10 is solved recursively at each time step thus mak-
ing it a recursive minimum mean squared error esti-
amtor (MMSE). The EKF is computationally expensive
for higher order systems as it requires calculation of the
Jacobain at each time step. Bad initial state estimates
or high plant-model mismatch might cause the filter to
diverge. However, the EKF exhibits superior performance
in scenarios where its underlying assumptions hold good.

2.2 Unscented Kalman Filter

The UKF is based on the unscented transform (UT), which
provides a deterministic sampling technique to approxi-
mate a distribution using a minimum number of points
(sigma points) around the mean. As described by Julier
and Uhlmann (1997) , the UT is based on approximating a
Gaussian distribution, which is considered easier than ap-
proximating a nonlinear function or transformation. Wan
and van der Merwe (2000) give a comprehensive review of
the algorithm used in the UKF.

The UKF requires an initial guess of the state and co-
variance matrices, as represented by Eq. 3 and Eq. 4.
In the following algorithm, the variable x represents the
augmented states, i.e. system states and the disturbance
which is also modelled as a state.

Calculation of sigma points:

Sigma points along with their corresponding weights pro-
vide a deterministic method of representing the state dis-
tribution. X’ represents the sigma points, while W repre-
sents the weights.

Xoo1 = [Er_1 p_1 £ /(L + N Pp_i] (12)
W™ = A/(L + A) (13)

W = AL+ XN+ (1-a?+p) (14)
W™ =Wl =1/(2(L+ X)) i=1,..2L 15)

L represents the number of states. A\ = o?(L + k) — L
is a scaling parameter where x (generally set to 0) and
B (incorporates knowledge of prior distribution of x) are
secondary scaling parameters. The number of sigma points
is 2L + 1.

Time update:

This step involves calculation of the prior estimates, ob-
tained by propagating the sigma points through the non-
linear system dynamics.

Xijho1 = F(X_1) (16)
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Vise—1 = G(Xi/r-1) (17)
2L
Tpp—1 = Z Wi(m)Xi,k/k—l (18)
i=0
2L
Pyjr—1 = Z Wi(c) [ k1 — Erepr1) (X yr1 — Bryi—1]”
i=0
(19)
2L
Yk /-1 = ZWi(m)yi,k/k:q (20)
i=0

Measurement update:

The measurement update in the UKF is similar to the
Kalman update except that the cross-covariances are used
rather than the auto-covariance. It has however been
shown that there is an increased efficiency of the measure-
ment update step in the case of the UKF (Kandepu et al.
(2008)). Posterior estimates of the state are calculated
by using the Kalman gain to weight the measurement
innovations with the state estimates.

K= Pey P, (21)
Tk = Trp—1 + KWk — Or/p—1) (22)
Py = Pyjj—1 — KPy,y KT (23)

The UKF estimates are said to be accurate upto 37¢
order statistics for Gaussian distributions and upto 2"?
order statistics for non-Gaussian distributions (Julier and
Uhlmann (1997)). The true mean and covariance estimates
of the UKF are more accurate than those obtained through
the EKF. In addition, it does not require computation of
the Jacobian, thereby reducing the computational com-
plexity of the problem.

2.3 Particle Filter

Particle filtering is a method of recursive Bayesian filtering
of Monte Carlo simulations. The algorithm is based on
calculating the entire posterior distribution of the state
rather than finding a single estimate at each sampling
instant. Random samples (particles) are obtained from
a distribution which are then propagated through the
nonlinear differential equations to give prior particles. The
measurement information which is then available is fused
with this prior distribution of particles to generate the
posterior distribution. The particle filtering algorithm is
variously known as bootstrap filtering or condensation
algorithm (Arulampalam et al. (2002) and Gordon et al.
(1993)). Various algorithms have been developed by ex-
tending the generic PF. In our study , the SIR-PF, which
resolves the degeneracy problem of generic PFs, has been
used. It includes an importance resampling step which
ensures that particles formed are of equal weights (each
of 1/N), thus avoiding having particles of lower weights
during computation.

To calculate the estimate at time step k, first random sam-
ples are generated from p(xg—_1|yp—1), 1.6 p(Tp—1|yp—1) is
approximated by a set of N (fixed) particles z%,i =1,..., N
with associated weights w},i =1,...,N. The weights are
normalized such that 25\7:1 wi = 1. These particles are
propagated through the nonlinear differential equations
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to obtain prior particles which represent the density
P(k|Yk—1).

The key step in the importance sampling algorithm is
to define an importance density ¢(zx_1|yr—1), drawing
samples from which would be equivalent to drawing sam-
ples from the posterior distribution. The weights of the
particles from the importance distribution would be
o P(@)_1|yr—1)
T g lyk-)
The SIR-PF makes an assumption that the prior is an
approximation of the posterior, i.e. the prior is the impor-
tance density (Arulampalam et al. (2002)). The impor-
tance weights would then be obtained from the likelihood.
From the derivation from Bayes rule as stated below, the
prior density is fused with the measurement density at
time step k (p(yx|z%)) to obtain the posterior distribution
of the state.

Posterior « likelihood x prior

p(xrlyr) = p(yklzr) x p(erlyr-1)

(24)

(25)
(26)

The estimated state vector is calculated as the mean of
p(zk|yk). The particle filter algorithm does not make any
assumptions about the distribution of the states. It is
claimed to work much better than the other estimators
where noise distributions are non-Gaussian. The chal-
lenges in PF lie in reducing its computational complexity
and choice of its importance density.

3. PROCESS DESCRIPTION

A free-radical MMA polymerization process has been used
for this study. Polymerization takes place in a CSTR with
azo-bis-isobutyronitrile (AIBN) as an initiator and toluene
as a solvent. Fig. 2 describes the reactor. The reactions are
exothermic and a cooling jacket is used to remove the heat
of reaction. The details of the model can be obtained from
Silva and Flores (1999).The reaction mechanism for MMA
free-radical polymerization is as follows:

Initkiationz
I — R
R+ M 25 p;
Propagation:

k
P+ M — P,
Monomei Transfer:
P+ M =3 P+ D,
AdditionkTermination:
P + P; =% Diy;
Disproportionation Termination:
P+ P; M Dy D,

A mathematical model of the process is developed based

on the following assumptions: (a) constant volume of the
reactor, (b) reactor contents are perfectly mixed, (¢) no
gel effect, (d) uniform cooling fluid temperature, (e) heat
capacity and density of cooling fluid and reactor mixture
remain constant. The mass and energy balance equations
are as follows:
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dOm F(Omz‘n - Cm)

ek —(kp + kfm)CmPo + % (27)
dCy (FiCrin — F'Cy)
ar _ M lin 7 2T 2
- kiCr + % (28)
dT  (—=AH)k,C,, P, UA N, F(Tin =T
7:( )p 0o (T—Tj)+¥
dt pCy pCpV 4
(29)
D FD
% = (05kie + kd)P§ + kpConPo = = (30)
D FD
% = Mm(k, + kym)C,,, Py — % : (31)
dT§  Fow(Two — Tj) UA
@ _ T —T; 32
dt Vo * chpwvb( J) (32
2f*Crky
Py=/ 2= 33
Vet =

Table 1 lists the design and operating parameters. f*
is the initiator efficiency. The temperatures (7j,T) are
the measured states, while the reactor concentrations
(Cm, Cr) and polymer moments (Dg, D1) are considered
as the hidden states (to be estimated). A parameter
estimation problem can be considered for any of the kinetic
parameters (k;, kp, krm. kic, kia)-

Table 1. Operating Parameters

F =1.0m3/h

F; = 0.0032m3/h

Fey = 0.1588m3 /h

Cinin = 6.4678kgmol /m3
Crin = 8.0kgmol/m?
T = 350K

Two = 293.2K

U = 720kJ/(h.K.m?)

U = 2.0m?

V =0.1m3
Vo = 0.02m3
p = 866kg/m?

pw = 1000kg/m3>
Cp = 2.0kJ/ (kg.K)
Cpw = 4.2kJ/ (kg.K)

Mm = 100.12 kg/kgmol

f* = 0.58

R = 8.314 kJ/(kgmol.K)

—A H = 57800 kJ/kgmol

E, = 1.8283 x 10%kJ/kgmol

Er = 1.2877 x 105k.J/kgmol

Efpm = 7.4478 x 10*kJ/kgmol
Eite = 2.9442 x 103kJ/kgmol

Eyq = 2.9442 x 103kJ/kgmol

Ap = 1.77 x 109m3 /(kgmol.h)

Ap =3.792 x 1081 /h

Ay = 1.0067 x 1015m3 /(kgmol.h)
Age = 3.8223 x 1019m3 /(kgmol.h)
Apg = 3.1457 x 1011m3 /(kgmol.h)
Apg = 3.1457 x 1011m3 /(kgmol.h)

4. CASE STUDIES

The model is tested for various scenarios of Gaussian
and non-Gaussian state and measurement noise sequences,
and plant-model mismatch. Using these case studies, we
establish the scenarios in which significant difference in
filter performance is exhibited. In each case study, same
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Fig. 3. No state noise. Gaussian measurement noise. 10%
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noise sequences and filter tuning parameters have been
used for all filters. Measurement noise has been considered
on the reactor and coolant temperatures. State noise is
added to the system dynamic equations of the monomer
and initiator concentrations. The polymer moments have
not been used to compare filter performance as they are
unobservable states.

4.1 Case 1

This case represents the simulation for Gaussian noise on
the measurements (temperatures). Fig. 3 indicates that
the EKF works extremely well when the estimator is
used to filter the measurement noise. It also tracks the
concentrations (hidden states). It is important to note that
there is an exact match of plant and model in this case.
Analysis of this case reveals that the Kalman gain goes
to zero thereby trusting the model estimates completely.
This shows the importance of good process models in
estimation.

4.2 Case 2

In addition to Gaussian measurement noise on the tem-
peratures, Gaussian state noise is introduced on the con-
centrations. Fig. 4 indicates the superiority of the PF and
UKF performance over the EKF. The Kalman gain goes
to zero no more, thus weighting the measurement inno-
vations and the estimates. The soft-sensing ability of the
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EKEF is limited as it diverges completely in concentration
estimation.

4.8 Case 3

Non-Gaussian measurement and non-Gaussian state noise
is introduced into the system. Fig. 5 indicates that the re-
sults are similar to that of Case 2. This demonstrates that
any Gaussian state noise transforms into non-Gaussian
form after passing through the non-linear dynamics.

4.4 Case 4

Non-Gaussian measurement noise is introduced. No state
noise is introduced. It is seen that the EKF works ex-
tremely well in tracking the true measurement (Fig. 6).
This reiterates what was concluded in case 1, that for any
measurement noise and exact plant-model match, the EKF
gives good estimates.

4.5 Case 5

Plant-model mismatch is introduced in the termination
rate constant. There is no state noise, but non-Gaussian
measurement noise is introduced. The model uses a fixed
value of the termination rate constant while the parameter
is made to vary in the plant equations. A plot of the
measured reactor temperature indicates that the EKF
gives biased estimates unlike the UKF and PF (Fig. 7).
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4.6 Case 6

In this case, we try to capture the plant-model mismatch
by estimating the unknown kinetic parameter. The ini-
tiation rate constant has been used for this study as the
reactor is highly sensitive to this parameter. Small changes
of this parameter causes wide variations in the monomer
and initiator concentrations, in turn affecting the polymer
moments. Fig. 8 indicates the superiority of the UKF and
PF over the EKF. Though the RMSE values are small, it
can be argued that small changes in this parameter value
could affect the system in a large way.
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5. CONCLUSION

Table 2 summarizes the case studies. There is no plant-
model mismatch when the model captures the system
dynamics including the state noise sequences. For perfect
plant-model match, the EKF is capable of providing good
estimates. This is because the Kalman gain approaches
zero, thus trusting the model estimates completely (Cases
1 & 4). Any state noise translates into non-Gaussian form
after passing through the non-linear dynamics causing the
EKF to perform poorly (Cases 2 & 3). For plant-model
mismatch, UKF and PF perform better than the EKF.
It can however be seen that the EKF works well when
the linear approximation of system equations represent
system dynamics and performs poorly during sudden jump
in process variables (Case 5). Parameter estimation can be
treated as a form of plant-model mismatch, and the UKF
and PF work better than the EKF (Case 6).

The UKF and PF seem to be similar in performance
behavior, however, for extreme non-Gaussian behavior,
difference in estimator performance may be seen. Estima-
tor performance varies based on degree of non-linearity
of system dynamics, state and measurement noise levels
and degree of plant-model mismatch. The above analysis
shows that for chemical processes, the UKF and PF exhibit
superior performance over the EKF. This is because the
linearization approximation of the EKF does not capture
highly nonlinear process dynamics accurately. Highly non-
linear dynamics is exhibited when noise covariances are
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high, there is a sudden jump in process variables and for
large state systems. In these scenarios, it is important to
consider the UKF and PF as choice of estimators.

Table 2. Tabulation of case studies (G = Gaus-
sian ; NG = Non-Gaussian)

Case | Measurement | State | Plant-Model Conclusion
Noise Noise Mismatch (choice of filter)
1 G - - EKF, UKF, PF
2 G G - UKF,PF
3 NG NG - UKF,PF
4 NG - - EKF UKF, PF
5 NG - In parameter UKF, PF
6 NG - Parameter UKF,PF
Estimated
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