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Abstract: Fault detection and diagnosis (FDD) is a critical approach to ensure safe and efficient
operation of manufacturing and chemical processing plants. Multivariate statistical process
monitoring (MSPM) has received considerable attention for FDD since it does not require a
mechanistic process model. The diagnosis of the source or cause of the detected process fault
in MSPM largely relies on contribution analysis, which is ineffective in identifying the joint
contribution of multiple variables to the occurrence of fault. In this work, a missing variable
analysis approach based on probabilistic principal component analysis is proposed for fault
isolation. Furthermore, a branch and bound method is developed to handle the combinatorial
nature of the problem involving finding the variables, which are most likely responsible for the
occurrence of fault. The efficiency of the method proposed is shown through a case study on
the Tennessee Eastman process.

Keywords: Branch and bound, combinatorial optimization, multivariate contribution analysis,
multivariate statistical process monitoring, probabilistic principal component analysis.

1. INTRODUCTION

Fault detection and diagnosis (FDD) is a critical ap-
proach to ensure safe and efficient operation of manufac-
turing and chemical processing plants. Within this broad
area of FDD, multivariate statistical process monitoring
(MSPM) has received considerable attention in terms of
both methodological research and industrial applications
[Qin, 2003, Venkatasubramanian et al., 2003]. The success
of MSPM may be attributed to the fact that a large
amount of historical process data is usually available,
and thus the developed model attains high accuracy in
detecting any deviation from established normal operating
conditions (NOC).

In traditional MSPM, principal component analysis (PCA)
or partial least squares (PLS) are applied to model
the data collected under NOC. Subsequently, monitoring
statistics like Hotelling’s T 2 and squared prediction error
(SPE) are used for fault detection. The subsequent step
of MSPM, i.e. the diagnosis of the source or cause of the
detected fault, is relatively more difficult. If additional in-
formation, such as historical data of separate faulty modes,
is collected, pattern recognition technique can be used to
classify the detected fault. In absence of such information,
the primary tool used for fault diagnosis in MSPM is
contribution analysis, which quantifies the contribution of
individual variables to T 2 and SPE [Miller et al., 1998].
However, the contribution plots based on T 2 and SPE

can identify different sets of faulty variables making the
decision subjective to operators’ experience. Furthermore,
contribution analysis investigates individual variables one
by one and is ineffective in isolating multiple variables
which jointly contribute to the occurrence of fault.

More recently, the need to use a unified monitoring statis-
tic, as opposed to using T 2 and SPE individually, has
been well recognized. One way is to combine T 2 and
SPE algorithmically [Chen et al., 2004, Yue and Qin,
2001]; the other approach is to rely on fully probabilistic
model to provide a single likelihood-based statistic [Chen
et al., 2006, Chen and Sun, 2009]. A single monitoring
statistic offers a clearer interpretation of the contribution
plots. In addition, these studies suggested an alternate
approach to quantifying the contribution by using the idea
of missing variables [Yue and Qin, 2001, Chen and Sun,
2009]. However, the major difficulty is the large number
of possible variable combinations that are required to be
evaluated. Therefore, Yue and Qin [2001] made a restric-
tive assumption that the combinations of faulty variables
are specified a priori according to known faulty modes,
and thus contribution analysis only needs to be conducted
on these combinations. Due to lack of an appropriate tool
to tackle the combinatorial issue, Chen and Sun [2009]
focussed on the analyzing the contribution of individual
variables towards the faults. Therefore, the multivariate
contribution problem was still left unsolved.

Proceedings of the 9th International Symposium on
Dynamics and Control of Process Systems (DYCOPS 2010),
Leuven, Belgium, July 5-7, 2010
Mayuresh Kothare, Moses Tade, Alain Vande Wouwer, Ilse Smets (Eds.)

MoMT4.4

Copyright held by the International Federation of Automatic Control 121



This paper extends the missing-variable based contribu-
tion analysis to consider the joint effect of multiple vari-
ables, namely multivariate contribution analysis. In this
study, we choose probabilistic PCA (PPCA) [Tipping and
Bishop, 1999, Kim and Lee, 2003] for modelling normal
operating data and on-line process monitoring. Based on
the PPCA under NOC, a statistical criterion is derived to
quantify contribution of multiple missing variables. Using
the criterion, when a fault condition is identified through
on-line process monitoring, the fault diagnosis can then be
conducted by solving a series of subset selection problems.
The combinatorial difficulty of the subset selection prob-
lem is tackled by a numerically efficient branch and bound
(BAB) algorithm developed to isolate the set of faulty
variables based on the criterion derived. The efficiency of
the proposed method is demonstrated by its application to
the Tennessee Eastman Process Plant [Downs and Vogel,
1993].

2. PROBABILISTIC PRINCIPAL COMPONENT
ANALYSIS

Principal component analysis (PCA) [Jolliffe, 2002] is a
general multivariate statistical projection technique for
dimension reduction. The central idea of PCA is to project
the original r-dimensional data, x, onto a space where
the variance is maximized: x = Wt + x̄ + e. Here W
refers to the eigenvectors of the sample covariance matrix
corresponding to the q (q ≤ r) largest eigenvalues, t is the
q-dimensional scores, x̄ is the mean of the data, and e is
the noise term.

Recently, Tipping and Bishop [1999] proposed a proba-
bilistic formulation of PCA (PPCA) from the perspective
of a Gaussian latent variable model. Specifically the noise
is assumed to be Gaussian: e ∼ G(0, σ2I), which implies
x|t ∼ G(Wt + x̄, σ2I). Furthermore, by adopting a Gaus-
sian distribution for the scores, t ∼ G(0, I), the marginal
distribution of the data is also Gaussian: x ∼ G(x̄,C),
where the covariance matrix is C = WWT + σ2I. The
model parameters, {x̄, W, σ2}, can be estimated using the
maximum likelihood algorithm; see [Tipping and Bishop,
1999] for details. Later, PPCA was applied for process
monitoring with improved fault detection capability [Kim
and Lee, 2003].

The probabilistic framework of PPCA provides a single
statistic for fault detection, as opposed to T 2 and SPE in
traditional PCA. It was shown by Chen and Sun [2009]
that the data point x should be considered as out-of-
control when the monitoring statistic

M2 = (x − x̄)TC−1(x − x̄) > χ2
r(β) (1)

where χ2
r(β) is the β-fractile of the χ-square distribution

with r degrees of freedom.

For the purpose of contribution analysis, Chen and Sun
[2009] suggested a missing variable approach in the PPCA
framework. In particular, consider that the measurement
vector x is partitioned into n-dimensional xo and d-
dimensional xm as

xT =
[

xT
o xT

m

]

(2)

where the subscripts o and m refer to observed and missing
variables, respectively. Similarly, let the mean (x̄) and
covariance matrix (C) be partitioned as

x̄ =

[

x̄o

x̄m

]

; C =

[

Coo Com

Cmo Cmm

]

(3)

The conditional mean (x̄m|o) and covariance matrix
(Cm|o) of xm given xo are

x̄m|o = x̄m + CmoC
−1
oo (xo − x̄o) (4)

Cm|o = Cmm − CmoC
−1
oo Com (5)

Then, the conditional mean (x̄|o) and covariance matrix
(C|o) of whole x given xo are

x̄|o =

[

xo

x̄m|o

]

; C|o =

[

0 0
0 Cm|o

]

(6)

Therefore, the re-calculated monitoring statistic with miss-
ing values is given by

E[M2] = tr(C−1((x̄|o − x̄)(x̄|o − x̄)T + C|o)) (7)

where E[·] denotes the expectation operator.

The criterion (7) is applicable to any number of missing
variables. In the original method of Chen and Sun [2009],
each individual variable of x is regarded as missing, and
the monitoring statistic in (7) is re-calculated. If a variable
contributes significantly to the data being detected as
faulty, then the re-calculated statistic will be dramatically
reduced. Furthermore, if E[M2] is smaller than the confi-
dence bound, then we can say that by removing the corre-
sponding variable, the process would return to the normal
operating region. However, this approach is not capable of
studying the joint contribution of multiple variables.

From the fault diagnosis point of view, the original source
of a fault should correspond to a small set of measure-
ments. Therefore, the objective becomes to select a min-
imum number of missing variables, whose re-calculated
monitoring statistic is below the confidence bound. The
flow of the method is given by the following algorithm:

Algorithm 1. Initially set d = 1.

(1) Select d missing variables such that the re-calculated
monitoring statistic is minimized.

(2) If the minimum statistic is below the confidence
bound, then the corresponding variables are isolated
as the source of fault, and the algorithm can be
terminated.

(3) Otherwise, set d = d + 1, and return to Step 1.

The selection of d-dimensional xd from r-dimensional x
in Step 1 of Algorithm 1 is a combinatorial optimization
problem, which is NP-hard. One of the main contributions
of this work is the development of a branch and bound
(BAB) algorithm to solve this optimization problem effi-
ciently, as discussed in the next section.
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3. BRANCH AND BOUND METHOD

3.1 General principle

Let Xr = {xi|i = 1, 2, · · · , r}, be an r-element set. A
subset selection problem with the selection criterion φ
involves finding the optimal solution, X∗

n, such that

φ(X∗
n) = min

Xn⊂Xr

φ(Xn) (8)

For this problem, the number of alternatives is Cn
r =

r!
(r−n)!n! , which grows very quickly with r and n rendering

exhaustive search unviable. BAB approach can provide
globally optimal solution for the subset selection problem
in (8) without exhaustive search. In this approach, the
original problem (node) is divided (branched) into several
non-overlapping subproblems (sub-nodes). If any of the
n-element solutions of a sub-problem cannot lead to the
optimal solution, the sub-problem is not evaluated further
(pruned), else it is branched again. The pruning of sub-
problems allows the BAB approach to gain efficiency in
comparison with exhaustive search.

root

1 2 3 4 5

665654654365432

search

direction

Fig. 1. Solution tree for selecting 2 out of 6 elements

The solution tree required for implementation of BAB
approach for subset selection based on the monitoring
statistic in (7) is shown in Figure 1. In this solution tree,
each node has a fixed set Ff and a candidate set Cc,
which have f and c elements, respectively. The relationship
between the fixed and candidate sets of a node and its ith

sub-node (branching rule) is given as follows:

F i
f+1 = Ff ∪ xi; Ci

c−i = Cc \ {x1, · · · , xi} (9)

where F i
f+1 and Ci

c−i denote the fixed and candidate sets

of the ith sub-node and i = 1, 2, · · · , f + c − n + 1. Based
on (9), it can be noted that Ff is gradually expanded
using the elements of Cc, until the dimension of Ff reaches
the target subset size n. An example of the solution tree
obtained by recursively applying the branching rule in (9)
is shown in Figure 1. For the root note in this solution
tree, we have Ff = ∅ and Cc = Xr. The label of the
nodes denote the element being moved from Cc to Ff .
The solution tree has Cr

n terminal nodes, which represent
different n-element subsets of Xr. As the subset size is
gradually increased in this solution tree, the corresponding
BAB method is called upwards BAB method [Cao and
Kariwala, 2008, Kariwala and Cao, 2009, 2010]. The reader
is referred to [Narendra and Fukunaga, 1977, Yu and Yuan,
1993, Cao and Saha, 2005] for details on downwards BAB
method.

To describe the pruning principle, let X denote the en-
semble of all n-element subsets, which can be obtained by
expanding Ff using (9), i.e.,

X = {{Ff , Xn−f}|Xn−f ⊂ Cc} (10)

and φ(Ff ) be the lower bound on φ computed over all
elements of X , i.e.

φ(Ff ) = min
Xn∈X

φ(Xn) (11)

Assume that B is an upper bound of the globally optimal
criterion, i.e. B ≥ φ(X∗

n). Then,

φ(Xn) > φ(X∗
n) ∀Xn ∈ X , if φ(Ff ) > B (12)

Hence, any Xn ∈ X cannot be optimal and can be pruned
without further evaluation, if φ(Ff ) > B.

3.2 Application to fault isolation problem

Through lengthy but straightforward manipulations, it
can be shown that the monitoring statistic in (7) can be
alternately expressed as

E[M2] = (xo − x̄o)
T C−1

oo (xo − x̄o) + d (13)

which is more amenable to the application of BAB method.

In Algorithm 1, d = r−n is constant during every iteration.
Thus, variable selection can be carried out by minimizing
the first term in (13). Furthermore, x̄o can be subtracted in
a preprocessing stage to simplify calculations. By defining
y = x − x̄, the n observed variables can be selected
(equivalent to selecting d missing variables) by solving the
following problem:

min
Xn⊂Xr

φ(Xn) = yT
Xn

(CXn,Xn
)−1yXn

(14)

where Xr = {1, 2, · · · , r}, yXn
denotes the elements of y

with indices in Xn and CXn,Xn
represents the principal

submatrix of C with rows and columns indexed by Xn.

The use of BAB for solving the optimization problem
in (14) requires a lower bound on the selection criteria,
calculated over all X in (10). This lower bound is derived
in the next proposition.

Proposition 1. Consider a node with fixed set Ff and
candidate set Cc. For X in (10),

φ(Ff ) ≤ min
Xn∈X

φ(Xn) (15)

Proposition 1 implies that the non-optimal nodes can
be pruned based on φ(Ff ). Although this lower bound
allows the development of an efficient BAB algorithm,
further efficiency can be gained by pruning the sub-nodes
directly [Cao and Kariwala, 2008, Kariwala and Cao, 2009,
2010]. The next proposition relates the selection criteria of
a node with its sub-nodes, which in turn enables pruning
of sub-nodes.

Proposition 2. Consider a node with fixed set Ff and
candidate set Cc. For xi ∈ Cc, i = 1, 2, · · · , c,

φ(Ff ∪ i) = φ(Ff ) + αi (16)

where

αi =

(

yi − yFf
C−1

Ff ,Ff
CFf ,i

)2

(Ci,i − CT
Ff ,iC

−1
Ff ,Ff

CFf ,i)2
(17)
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The evaluation of (16) requires inversion of only one
matrix CFf ,Ff

, which is the same for all i ∈ Cc. Thus,
the use of (16) to obtain the selection criteria for all
sub-nodes together is computationally more efficient than
directly evaluating the selection criteria for every node.
In summary, the following BAB algorithm can be used as
Step 1 of Algorithm 1 for fault isolation purposes.

Algorithm 2. Initialize f = 0, Ff = ∅, Cc = Xr, φ(Ff ) = 0
and B = ∞. Call the following recursive algorithm:

(1) If φ(Ff ) > B, prune the current node and return, else
perform the following steps.

(2) Calculate αi in (17) ∀i ∈ Cc. Prune the subsets with
φ(Ff ) + αi > B.

(3) If f = n, go to next step. Otherwise, generate the c
sub-nodes according to the branching rule in (9) and
call the recursive algorithm in Step 1 for each sub-
node. Return to the caller after the execution of the
loop finishes.

(4) Find Jmin = φ(Ff )+mini∈Cc
αi. If Jmin < B, update

B = Jmin. Return to the caller.

4. TENNESSEE EASTMAN PROCESS

To demonstrate its effectiveness and efficiency, the pro-
posed approach is applied for fault isolation of the Ten-
nessee Eastman (TE) process [Downs and Vogel, 1993].
This process has 5 main units, which are the reactor,
condenser, separator, stripper and compressor. Streams of
the plant consists of 8 components; A, B, C, D, E, F, G
and H. Components A, B and C are gaseous reactants
which are fed to the reactor to form products G and H.
The flowsheet of the TE process is shown in Figure 2.

For fault isolation, the TE process is considered under
closed-loop control as described by Downs and Vogel
[1993]. The 41 available measurements and 11 out of 12
manipulated variables (MVs) are collected for 21 oper-
ational modes, which correspond to the normal and 20
faulty operation modes. These 52 measured variables are
listed in Table 1. Eleven out of these 20 operational faults,
listed in Table 2, can be clearly identified using the PPCA
approach [Chen and Sun, 2009, Tipping and Bishop, 1999,
Kim and Lee, 2003] and are adopted for the case study.
The identified variables for these eleven faults studied are
listed in Table 3.

Table 3. Possible Fault responsive variables
detected by the branch and bound algorithm

Fault IDs Variables eliminated

1 {x16}
2 {x24}
4 {x9, x51}
5 {x22}
6 {x1, x44}
7 {x4, x6, x9, x16, x22, x45, x51}
8 {x37}

11 {x51}
12 {x22}
13 {x37}
14 {x9, x51}

As indicated in Table 3, most of the faults result in only
one and two responsible variables. An exception is Fault 7,
for which BAB method indicates that there are up to seven

measured variables responsive to this fault. To select 7 out
of 52 measured variables, there are C7

52 = 133, 784, 560
alternatives. If one had to evaluate all alternatives to
find the minimum criterion value, it would take several
days to get the conclusion even if each evaluation takes
only one millisecond. However, it only takes about 3.37
seconds for the BAB algorithm to find the subset on a
PC with Intelr CoreTM2 CPU T5200 (1.60GHz, 2038MB,
32-bit Operating System) using MATLABr R2006. This
indicates that the proposed algorithm is suitable for on-
line FDD to identify the root cause of a fault under
investigation in a short time so that the consequent loss
due to the fault can be minimised.

To better appreciate the proposed fault diagnosis algo-
rithm, the variation of the monitoring statistic with the
number of variables to be observed n is shown in Figure 3.
The horizontal line in Figure 3 is the upper control limit
calculated as χ2

r(β) with r = 52 and β = 0.99. It is shown
that for n ≤ 45 (left to the dashed line), the minimum
criterion value is less than the upper control limit, whilst
for n ≥ 46, (right to the dotted line) the criterion is
above the upper control limit. Therefore, the maximum
number of non-responsive variables is 45 and the number
of possible responsive variables to Fault 7 is 52 − 45 = 7.
The actual deviations from corresponding means of these 7
variables are x4 = −14.5015, x6 = −3.8761, x9 = −3.1665,
x16 = −4.2085, x22 = −3.4847, x45 = 4.4334, and
x51 = −4.4255. The corresponding locations of these 7
variables and the fault are marked in Figure 2.
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Fig. 3. The minimum M2 against number of variables (n)
observed for Fault 7.

A physical explanation of the propagation of fault to the
identified variables is as follows: Fault 7 reflected in Fig-
ure 2 involves C Header Pressure Loss - reduced availabil-
ity (step change in stream 4), resulting in a decrease in the
Total Feed in stream 4 (x4) and a corresponding increase in
the MV to Total Feed Flow in stream 4 (x45) to counter the
effect of the fault occurrence through the corresponding
flow control loop of the plant. The decrease in the Total
Feed in stream 4 (x4) results in a corresponding decrease in
the Recycle back to the reactor through stream 6, thereby
reducing the Reactor Feed Rate in stream 6 (x6) as well as
the Reactor Temperature (x9). This decrease in the Reac-
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Fig. 2. Flowsheet of the TEP Plant showing detected variables for Fault 7

Table 1. Measured variables

ID Description ID Description

x1 A Feed (Stream 1) x27 Component E (Stream 6)
x2 D Feed (Stream 2) x28 Component F (Stream 6)
x3 E Feed (Stream 3) x29 Component A (Stream 9)
x4 Total Feed (Stream 4) x30 Component B (Stream 9)
x5 Recycle Flow (Stream 8) x31 Component C (Stream 9)
x6 Reactor Feed Rate (Stream 6) x32 Component D (Stream 9)
x7 Reactor Pressure x33 Component E (Stream 9)
x8 Reactor Level x34 Component F (Stream 9)
x9 Reactor Temperature x35 Component G (Stream 9)

x10 Purge Rate (Stream 9) x36 Component H (Stream 9)
x11 Product Separator Temperature x37 Component D (Stream 11)
x12 Product Separator Level x38 Component E (Stream 11)
x13 Product Separator Pressure x39 Component F (Stream 11)
x14 Product Separator Underflow (Stream 10) x40 Component G (Stream 11)
x15 Stripper Level x41 Component H (Stream 11)
x16 Stripper Pressure x42 MV to D Feed Flow (Stream 2)
x17 Stripper Underflow (Stream 11) x43 MV to E Feed Flow (Stream 3)
x18 Stripper Temperature x44 MV to A Feed Flow (Stream 1)
x19 Stripper Steam Flow x45 MV to Total Feed Flow (Stream 4)
x20 Compressor Work x46 Compressor Recycle Valve
x21 Reactor Cooling Water Outlet Temperature x47 Purge Valve (Stream 9)
x22 Separator Cooling Water Outlet Temperature x48 MV to Separator Pot Liquid Flow (Stream 10)
x23 Component A (Stream 6) x49 MV to Stripper Liquid Product Flow (Stream 11)
x24 Component B (Stream 6) x50 Stripper Steam Valve
x25 Component C (Stream 6) x51 MV to Reactor Cooling Water Flow
x26 Component D (Stream 6) x52 MV to Condenser Cooling Water Flow
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Table 2. Operational Faults

Fault ID Description

1 Step in A/C Feed Ratio, B Composition Constant (stream 4)
2 Step in B composition while A/C ratio is constant (stream 4)
4 Step in Reactor Cooling Water Inlet Temperature
5 Step in Condenser Cooling Water Inlet Temperature
6 A Feed loss (step change in stream 1)
7 C Header Pressure Loss - reduced availability (step change in stream 4)
8 Random variation in A,B,C Feed Composition (stream 4)

11 Random variation in Reactor Cooling Water Inlet Temperature
12 Random variation in Condenser Cooling Water Inlet Temperature
13 Slow drift in Reaction Kinetics
14 Sticking Reaction Cooling Water Valve

tor Temperature (x9) results in a decrease in the Reactor
Cooling Water Flow (x51). Also, the decrease in the Total
Feed in stream 4 (x4) into the Stripper results in a decrease
in the Stripper Pressure (x16) and consequently, a decrease
in the Separator Cooling Water Outlet Temperature (x22).
From the above explanation, it can be concluded that
the results obtained through the BAB algorithm is also
supported by the analysis through a physical understand-
ing of the plant. Therefore, this proposed approach will
be practically useful for fault isolation associating with
condition monitoring.

5. CONCLUSIONS

In contrast to fault detection, the isolation of the variables
responsible for the fault using considerable attention paid
to multivariate statistical process monitoring techniques
can be difficult. It is for the first time that a multivari-
ate missing-variable approach and an efficient branch and
bound algorithm are proposed to efficiently identify the
joint contribution of multiple variables to the occurrence
of the fault. Although the focus of this paper is on us-
ing probalistic principal component analysis (PPCA), the
framework developed in this work can be easily extended
to adopt other criteria for fault diagnosis. The numerical
case study on the Tennessee Eastman process shows that
the proposed method is able to find the minimum set of
variables, which are affected by the fault, in a short time.
This computational efficiency can give operators more
time to identify and further deal with the fault in order to
minimize the consequent loss due to the occurrence of the
fault.
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