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Abstract: In this work, an investigation has been made in to the performance of latent
variable MPC (LV-MPC) in the specific application of reactor temperature control of an
exothermic batch process. The paper analyzes the LV-MPC control law derivation and
its performance within a batch application. The article considers both constrained and
unconstrained applications.
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1. INTRODUCTION

Batch control is a vast research field, and it has been
discussed extensively in the literature. For many batch
processes, the regulation of reactor temperature is the
primary requirement. Thermal control is often not a trivial
task, because the operating conditions vary with time,
and therefore the chemical state may change over the
batch period. dual-mode control utilizing standard PID
(proportional-integral-derivative) was an early approach
that was used to perform the desired control profile for
batch processes Shinskey and Weinstein (1965).

Iterative learning dual-mode control was proposed by Lee.
et al. (2000). Although it has met with some success,
the optimal switching time of this approach must nor-
mally be defined a priori, hence its performance can be
substantially affected when the operating conditions are
changed Cott and Macchietto (1989) and Shinskey (1996).
Cascade control is widely applied in industrial chemical
systems. It was proposed as a technique to address the
shortcoming of conventional feedback loops, where the
corrective action following a disturbance does not start
until deviation from the process set-point is measured.
Although Feedforward techniques offer some disturbance
rejection capability, they require an explicit model of the
disturbance. In contrast, cascade control does not require
a model of the disturbance Seborg et al. (2004).

Adaptive control has been successfully applied in many
fields including batch processing, where a good knowledge
of reactor state can be obtained on-line by using recursive
real time estimation techniques. Kiparissides and Shah
(1983) promoted adaptive control for batch reactors and
compared their performance with fixed gain PID regula-
tors. An adaptive pole-assignment algorithm was proposed
by Tzouanas and Shah (1989), which was applied exper-
imentally. Although the idea of the adaptive control is
theoretically attractive, it encountered several practical

problems such as the sampling rate selection and con-
straints of the manipulated variables.

Jutan and Uppal (1984) utilized a model-based approach
to estimate the heat being released in a reactor at any
given time. This information was then used in the feedfor-
ward loop to correct the resultant plant-model mismatch.
The feedback loop used a Dahlin’s algorithm Dahlin (1968)
to compensate for the process dead time, and considered
tuning the two algorithms (feedforward-feedback) sepa-
rately. Despite the fact that this technique improved the
system performance compared with the open loop strat-
egy, it did not effectively address the problem of thermal
overshoot at the beginning of the feed cycle or the drop at
the end of this cycle.

Generic Model Control (GMC) developed by Lee and
Sullivan (1988), represents an important contribution in
this area of research. The approach suggested a general
framework for process controllers, where a single-loop PI
control, feedforward, decoupling control and model-based
control over a finite horizon can be efficiently performed
by proper selection of a performance index and an approx-
imate plant model without resorting to linearization.

Bonvin et al. (1989) and Valliere and Bonvin (1989) dis-
cussed the necessity for a model to be accurate around
the optimal operating conditions in a batch reactor. The
issues associated with obtaining all the necessary infor-
mation regarding the chemical process (due to changes
in concentration, viscosity, temperature, etc.) during the
reaction was discussed, and it was proposed that where
necessary these be inferred using other readily available
on-line measurements. In their study, Bonvin et al. (1989)
proposed a non-linear or extended Kalman filter (EKF) to
estimate the thermal and chemical effects in the reactor.

Rafalimanana et al. (1992) implemented linear General-
ized Predictive Control (GPC) to control the temperature
profile of a semi batch jacketed pilot reactor based on
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the pioneering work of Clark et al. (1987). To track the
time-varying dynamics of the process, on-line adaptation
of a linear SISO model was performed at each sampling
instant. The adaptation was carried out using a recursive
least squares (RLS) algorithm. The authors concluded that
the results from their study encouraged the use of GPC to
regulate the temperature in batch reactors.

Chylla and Haase (1993) introduced a mathematical model
for a multi-product exothermic semi-batch reactor as a
benchmark to test control formulation for batch processes.
The process consists of a stirred tank reactor with a
jacket that can cool and heat the reactor. The reactor
temperature is controlled using a master controller (PID)
that manipulates the jacket temperature set-point. The
slave controller (PI) is responsible for manipulating the
valves, which regulate the jacket temperature. The authors
showed that the controlling mechanism could cool and heat
the reactor by injecting cold water or high pressure steam
into the jacket. The model considers reaction kinetics
variability in viscosity and heat transfer mechanisms.
The challenge for the control system is to maintain the
reactor temperature at a particular set-point while there
are changes in raw material properties, heat transfer
coefficients, and ambient temperature.

Clarke-Pringle and MacGregor (1997) proposed a nonlin-
ear adaptive controller for the Chylla-Haase process. The
article focused on the design of a master controller with
PI control being used in the salve loop. A nonlinear con-
troller was designed based on differential geometric control
theory. The control formulation involved identifying the
time varying factors, such as the heat transfer coefficient
using an EKF, where the uncertainty was assumed to be
a random walk signal.

Aziz et al. (2000) proposed the use of a neural network
model to update the GMC when regulating the tempera-
ture in an exothermic batch reactor. Later, Mujtaba et al.
(2006) compared three types of nonlinear control strategy.
In this work, Mujtaba et al. (2006) compared the perfor-
mance of a dynamic neural network (NN) estimator cou-
pled, with GMC, direct inverse control (DIC), and internal
model control (IMC) for controlling the temperature of an
exothermic batch reactor. The results highlighted that all
the controllers gave comparable performance, however in
the case of DIC and IMC, the NN estimator required more
training to achieve similar accuracy to GMC.

Implementation of control by projection to the latent
dimensional space was presented by Flores-Cerrillo and
MacGregor (2005) for tracking set-point trajectories in
batch processes and was named Latent Variable Model
Predictive Control (LV-MPC). In LV-MPC, a dynamic
PCA model was utilized to determine the control moves.
The authors argued that the proposed control law could
provide a control action similar to the standard MPC
strategy.

In the following subsection the LV-MPC framework is re-
viewed and examined in detail as a method for controlling
the reactor temperature of a batch reactor. The main
objective of this study was to highlight certain problems
which can exist when implementing this technique to reg-
ulate the temperature of a batch process.

The remainder of this paper is organized as; section 2
reviews the design of the LV-MPC. In section 3, results
with appropriate analysis are demonstrated, and finally
section 4 summaries the study.

2. LV-MPC DESIGN

2.1 Control Law Derivation and Design Considerations

LV-MPC was proposed by Flores-Cerrillo and MacGregor
(2005) for batch process trajectory tracking. The control
law is essentially obtained using the projection to the
model plane (PMP) technique Nelson et al. (1996). Al-
though some studies have presented analogous techniques
before, the authors argued that the suggested controller
was a more direct approach to integrating process data and
MPC through latent variable methods. This multivariate
control algorithm exploits the space of a dynamic principle
component analysis (PCA) model for set-point trajectory
tracking and disturbance rejection. This technique em-
ploys a matrix of data, which contains the process variable
measurements and the desired output set-point trajecto-
ries, in the PCA model construction. Flores-Cerrillo and
MacGregor (2005) used data collected from three batches
to build the model. During each of the three “training
batches”, a PRBS sequence was added to the manipulated
variable to ensure a rich set of data was collected. The
authors mentioned that based on a cross validation princi-
ple that was discussed by Wold (1978), 30 latent variables
were retained in the PCA model and 17 and 15 past and
future horizons were selected for the variables, respectively.
Therefore, the LV-MPC approach relies on the assumption
that the correlation structure during the current batch
matches that obtained in the training batches.

This paper will not present the technique details due the
space limitations. Instead the focus will be directed to the
final formula of the control law that is used to evaluate
the control moves. Flores-Cerrillo and MacGregor (2005)
proposed a controller which minimized the following cost
function

min (t̂− xT

1 P1 − xT

2 P2)Q(t̂− xT

1 P1 − xT

2 P2)
T

s.t xT

2 = t̂TPT
2

(1)

where Q is the weighting matrix, the missing data vector
(xT

2 ) will be used to drive the process output to match
their set-points over the future period. xT

1 contains all
the known variable information up to a time where the

current data was collected. Meanwhile t̂
T

denotes the
required score vector for the current batch. Corresponding
to the data vector partition (xT

1 ,x
T
2 ), the loadings can be

decomposed into two sub-matrices as follows:

P =

[

P1

P2

]

(2)

The control objective is to predict the missing data vector
xT
2 that will then drive the process output to match their

set-points over the future period. IfQ is an identity matrix,
xT
2 is then explicitly computed as follows:

xT

2 = xT

1 P1(I−PT
2 P2)

−1PT
2 (3)

From the orthogonal property, the loading matrix can be
rewritten as:
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PT
1 P1 = (I−PT

2 P2) (4)

and equation (3) then can be further simplified as:

xT

2 = xT

1 P1(P
T
1 P1)

−1PT
2 (5)

In the case of constrained control, a nonlinear programme
routine must be employed to obtain the optimum solution.
Under these conditions the following cost function is
applied:

min (t̂− xT

1 P1 − xT

2 P2)Q(t̂− xT

1 P1 − xT

2 P2)
T

+∇uT
c R∇uc

s.t xT

2 = t̂TPT
2

xT
c,min ≤ xT

c = t̂TPT
c ≤ xT

c,max

t̂Tmin ≤ t̂T ≤ t̂Tmax

(6)

In this equation, all the variables belonging to the missing
data vector (xT

2 ) that may violate the constraints are rep-
resented by xT

c in equation (6). R signifies a control sup-
pression matrix, while ∇uT

c is the vector of manipulated
variable moves [∇uT

c = (∇uT
c,j ,∇uT

c,j+1, . . . ,∇uT
c,j+M ) ].

This technique proposed decomposing the loading matrix,
P, into P1 and P2 corresponding to the known and
unknown data, denoted by xT

1 x
T
2 respectively. Since the

missing data algorithm has an impact on the original
loading matrix, then the orthogonality of the loading
matrix will no longer exist Arteaga and Ferre (2002).
With the loss of orthogonality P1 and P2 can become
ill-conditioned, which can be verified by the norm test
(condition number test). The condition number is always
greater than or equal to one. If it is close to one, then
the data matrix is said to be well conditioned which
means that its inverse can be computed accurately. If the
condition number is large, then the matrix is said to be ill-
conditioned, and inversion can be difficult. Flores-Cerrillo
and MacGregor (2005) invert PT

1 P1 when solving equation
(5) at each sampling period and with (PT

1 P1) being ill-
conditioned then problems can results, even when iterative
techniques are used to solve the equation.

The mechanistic description of an exothermic batch reac-
tor that was described by Cott and Macchietto (1989) and
later by Flores-Cerrillo and MacGregor (2005) is used in
this work as a benchmark simulation of a batch process
and as a test-bed for the developed control system. For
the sake of consistency with the original work of Flores-
Cerrillo and MacGregor (2005), all the design considera-
tions (number of latent variables, past and future horizons,
etc.) that were proposed by these authors were applied
here. Therefore, a dynamic PCA model was constructed
from the data collected from three PID controlled batches,
sampled at 0.5 min with PID settings of Kc = 13.5381,
τI = 28.75, τD = 0.406. The duration of each batch was
150 min. PRBS excitation was added to the PID output to
ensure sufficient excitation of the process. Flores-Cerrillo
and MacGregor (2005) suggested that the amplitude of the
PRBS signal be chosen to be quite small so that operation
of the batch was not significantly upset.

To make quantitative comparison, a mean absolute error
(MAE) statistic is used to track the performance of the
implemented controllers This statistical index is derived

from the following equation Flores-Cerrillo and MacGregor
(2005):

MAE =
N
∑

i=1

|ycv,i − ysp,i|

N
(7)

where ycv,i is the controlled variable, ysp,i represents its
corresponding set-point, and N denotes the number of
samples.

When testing LV-MPC it was found that its performance
was inconsistent, with instability resulting during some
tests. To thoroughly test the controller, data was col-
lected from 60 batches operating under PID control. Three
batches of data were taken from these 60 batches and a
dynamic PCA model identified. Again to be consistent
with the original work of Flores-Cerrillo and MacGregor
(2005), the dynamic model was then utilized by LV-MPC
to control an on-line batch. In the simulation, normally
distributed random noise with a standard deviation of 0.2
was added to the reactor temperature measurement. This
process was repeated 20 times. The LV-MPC solution was
evaluated by comparing the direct solution (DR) approach,
equation (5), with the optimization of equation (6), which
considers constraints. In this work equation (6), was solved
using a quadratic programming routine, which it was an-
ticipated would be more robust to the ill-conditioning.
This method is referred to as the QP solution.

To further determine the reliability of the controller, tests
were conducted with increased PRBS amplitude. The
MAE index was used to assess the magnitude of the
PRBS exactions. In the excitation assessment, the MAE
index was calculated firstly for the reactor temperature
controlled by PID without PRBS excitation, and then
compared with others, which were subjected to the PRBS
excitation. Three types of excitation were considered:

1. Low excitation (LOW) with MAE = 34% Flores-
Cerrillo and MacGregor (2005) higher than when no
PRBS was added.

2. High excitation (HIGH) with MAE = 486.1% higher
than when no PRBS was added.

3. Very high excitation (VHIGH) with MAE = 731.14%
higher than when no PRBS was added).

The results are classified as:

1. Direct solution with low excitation (DR-LOW).
2. Direct solution with high exaction (DR-HIGH).
3. Direct solution with very high exaction (DR-VHIGH).
4. QP solution with low excitation and R = 0 (QP-

LOW, R = 0).
5. QP solution with low excitation and R = 0.001 (QP-

LOW, R = 0).
6. QP solution with high excitation and R = 0 (QP-

HIGH, R = 0).
7. QP solution with very high excitation and R = 0

(QP-VHIGH, ).
8. QP solution with very high excitation and R = 0.001

(QP-VHIGH, R = 0.001).
9. QP solution with very high excitation and R = 3 ×

10−7 (QP-VHIGH, R = 3× 10−7)
10. QP solution with very high excitation and R = 3 ×

10−7, σ = 0.25 (QP-VHIGH,R = 3×10−7, σ = 0.25).
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Note that not all the mentioned results will be presented
here due to the space shortage. However, the discussion
will consider all of them.

3. SIMULATION RESULTS AND
INTERPRETATIONS

Figures (1) to (6) show the training data, performance of
the LV-MPC technique, and MAE indices based on the DR
technique of low and high excitation (case studies 1 and
2) respectively. The results of the quadratic programming
approach (case study 10) are provided in Figures (7)
through (9). The results in Figures (2), (5), and (8) show
the inconsistency of LV-MPC when the excitation was low
and high for both DR and QP. The tests also reveal that
the control signal tends to have an aggressive action. The
performance of the LV-MPC controller improved with very
high excitation as shown in figure (5) but with control
behaviour that would be unsuitable for real application. In
each application, the MAE index highlights the instability
associated with LV-MPC. By applying the direct solution
(DR), on some occasions a stable controller did result, as
illustrated in Figure (2), however most tests were poor.
The reason for the poor control performance is that the
matrix PT

1 P1 is ill-conditioned (as showed by the norm
tests, the condition number of PT

1 P1 varied from 2.2×104

to 5.1× 104.
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Fig. 1. Training data (60 batches, LOW)

At the first trial using the QP solution, Q and R in
equation (6) were set to I and 0 respectively and hard
constraints of 15 and 140C were applied to the values
of the control action. This should produce results that
are comparable to the direct solution obtained earlier.
However, this time the QP should be better able to cope
with the matrix inversion problem.

The obtained results indicate that the control is signifi-
cantly improved when high excitation in the training data
was applied. However, some of the controllers still resulted
in very poor performance. One of the poor performing
controllers was then tested with varying weightings im-
posed on to R. The results obtained with weightings show
accurate control can be achieved but with unusual exci-
tation. The results also showed improved stability when
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Fig. 2. Reactor temperature (20 batches, DR- LOW)
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Fig. 3. MAE (20 batches, DR-LOW)
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Fig. 4. Training data (60 batches, HIGH)

a very high level of excitation was applied in the case
of QP solution. However, when the noise applied to the
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Fig. 5. Reactor temperature(20 batches, DR-HIGH)
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Fig. 6. MAE (20 batches, DR- HIGH)
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Fig. 7. Training data (60 batches, VHIGH)

output measurements was increased the controller became
inconsistent again as illustrated in Figure (8).
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Fig. 8. (20 batches, QP-VHIGH, R = 3× 10−7,σ = 0.25 )
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Fig. 9. (MAE (20 batches, QP-VHIGH, R = 3× 10−7,σ =
0.25 )

A major problem with LV-MPC is that it requires the
solution of an extremely ill-conditioned matrix (PT

1 P1).
Flores-Cerrillo and MacGregor (2005) stated that this may
cause problems, however they suggested that standard
control mechanisms could be applied to prevent it being a
problem. The analysis reported here shows that this can
cause problems even for a QP formulation. Despite the fact
that high excitation can partially improve the controller
stability for both DR and QP, this comes at the price of
an aggressive control signal.

The results highlight the following points:

1. LV-MPC does not appear to be robust for this par-
ticular process due to the fact that highly weighted
latent variables are ignored. Therefore significant es-
timation errors may result.

2. The results indicated that a very high level of ex-
citation was required to improve the controller per-
formance. Although high excitation could moderately
address the controller stability, it could not eliminate
the ill-conditioning problem. However, such excita-
tion is unlikely to be practical in real applications.
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4. CONCLUSION

In this paper the LV-MPC technique has been investigated
in order to show its suitability for the considered case
study. From the control move evaluations, which were
based on inferred data, it has been shown that when the
missing data has significant weight in the loading matrix
the estimate can be generated with very large error, which
can result in controller instability.
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