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Abstract: We propose in this paper a novel subspace identification method, based on PARSIMonious
parameterization (Qin et al., 2005), and we show that such algorithm guarantees consistent estimates
of the Markov parameters with open-loop and closed-loop data. The method uses the predictor form
and it effectively exploits in all steps the Toeplitz structure of the Markov parameters’ matrices. After
evaluation of (AK = A−KC,C) from the identified observability matrix, the method computes (BK = B−
KD,D,K) and the initial condition by solving a single (well conditioned even for unstable systems) Least
Squares problem. We use such method to obtain linear models for MPC design, and we show how the
proposed method compares favorably with other existing subspace algorithms in two examples.
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1. INTRODUCTION

Model Predictive Control (MPC) represents an extraordinary
success case in the history of automation (Qin and Badgwell,
2003). MPC algorithms use (linear) multi-variable models to
forecast the process behavior over a future horizon, and solve
on-line optimization problems to determine the optimal control
strategy (Rawlings and Mayne, 2009). Such technologies have
allowed a tremendous increase of profits, e.g. to refinery and
petrochemical companies due to overall energy usage reduc-
tion, tighter quality control and throughput maximization.

The first step of an MPC application is “always” the determina-
tion, from data, of a dynamic model of the effect of the inputs
(MVs, Manipulated Variables) on the outputs (CVs, Controlled
Variables). In general, systems identification algorithms can
be divided into two major categories, namely Prediction Error
(PE) and Subspace IDentification (SID) methods. PE methods
have been studied for long time and many fundamental theo-
retical aspects can be considered mature [see (Ljung, 1999) for
an exhaustive discussion]. SID methods, are relatively young
and have experienced large attention during the last 15 years
[see e.g. (Verhaegen and Dewilde, 1992; Van Overschee and
de Moor, 1994; Larimore, 1996; Gustafsson, 2002; Jansson,
2003; Huang et al., 2005; Chiuso and Picci, 2005; Qin et al.,
2005; Katayama et al., 2005; Qin, 2006; Wang and Qin, 2006;
Li et al., 2006; Katayama and Tanaka, 2007; Chiuso, 2007b;
Micchi and Pannocchia, 2008) and references therein].

Model identification is usually the most critical and time-
consuming phase of an MPC project (Zhu, 2001), at least, for
three reasons. First of all, typically 20-50 MVs have to be
perturbed, and the traditional (open-loop) patterns consisted of
non-overlapped step signals (i.e. each MV is changed from a
reference value with the remaining MVs fixed), whose duration
allows (most) CVs to reach the new steady state. It is clear that
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this approach is overly time-consuming, resulting in several
weeks of plant testing. Secondly, because the product quality
is significantly affected during such periods, operators do not
allow large steps to be introduced, thus resulting in weak signals
from an identification point of view. Thirdly, a continuous
human supervision during these tests is unavoidable.

In some cases, multi-variable PRBS or GBN signals may be
used to mitigate such problems. However, closed-loop data
collection has emerged as a nice potential solution to these
issues (Jorgensen and Lee, 2001; Gevers, 2006), because the
introduction of a controller can reduce duration of the iden-
tification tests significantly. Furthermore, product quality can
be maintained (to some extent) within suitable limits, and the
automatic controller reduces the necessity for close (continu-
ous) test supervision. However, as it is well known from the
literature (Ljung, 1999; Zhu, 2001), a fundamental problem
arises from the correlation between the input variables (MVs)
and the unknown measurement noise of the outputs (CVs).
As a consequence of this correlation, traditional SID methods
(e.g. N4SID, MOESP) may deliver biased estimates if data are
collected in closed loop (Qin, 2006).

The objective of this paper is twofold: (i) propose a novel
closed-loop SID algorithm with PARSIMonious parameteriza-
tion (see later on), (ii) evaluate its performance against other
existing SID methods when the identified models are used in
MPC systems.

Notation. The superscript ′ denotes the transpose operator,
the superscript + denote the Moore-Penrose pseudo-inverse, I
is the identity matrix and 0 is the zero matrix of appropriate
dimensions. The symbol (̂·) denotes the estimate of (·), the
symbol E(·) denotes the expected value of a stochastic variable.
Given a matrix B ∈ Rn×m, we denote with vec(B) the nm column
vector obtained by stacking the columns of B on each other.
Given four matrices (A, B,C,D) of suitable dimensions and an
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integer n > 2, we denote with T n(A, B,C,D) the following
lower block triangular Toeplitz matrix:

D 0 ··· 0

CB D
. . .

...
...

. . .
. . . 0

CAn−2B ··· CB D

 =


T n1(·) 0 ··· 0

T n2(·) T n1(·)
. . .

...
...

. . .
. . . 0

T nn(·) ··· T n2(·) T n1(·)


with On(A,C) the extended observability matrix:

On(A,C) =
[
C′ A′C′ · · · (An)′C′

]′
with Cn(A, B) the reversed extended controllability matrix:

Cn(A, B) =
[
AnB An−1B · · · B

]
Given a sequence of variables (y0, y1, . . . , yL−1) of length L and
two integers p, f , we define:

y f i =
[
yp+i−1 yp+i · · · yL− f +i−1

]
for i = 1, . . . , f

ypi =
[
yi−1 yi · · · yL− f−p+i−1

]
for i = 1, . . . , f

Y f =
[
y′f 1 y′f 2 · · · y′f f

]′
Yp =

[
y′p1 y′p2 · · · y′p f

]′
in which we notice that Y f and Yp are block Hankel matrices. If
F(q) is an l × n transfer function matrix and {uk} is a sequence
of m dimensional vectors, we define ϕk ∈ R

l×nm as follows:

ϕk = F(q) ⊗ u′k =

 F11(q)u′k ··· F1n(q)u′k
...

...
Fl1(q)u′k ··· Fln(q)u′k


2. BASICS AND RELATED WORKS

2.1 Introduction

We consider linear time-invariant systems in innovation form:
xk+1 = Axk + Buk + Kek

yk = Cxk + Duk + ek
(1)

in which x ∈ Rn is the state, u ∈ Rm is the manipulated input,
y ∈ Rl is the measured output, e ∈ Rl is the innovation and K
is the Kalman filter gain matrix (to be identified along with the
system matrices A, B, C, D). An alternative form of system (1)
is the so-called predictor form, which can be written as:

xk+1 = AK xk + BKuk + Kyk

yk = Cxk + Duk + ek
(2)

in which AK = A − KC, BK = B − KD.

We consider the following standard (Qin, 2006) assumptions.

A1. (A, B) is controllable, (A,C) is observable, and AK = A −
KC is strictly Hurwitz (in discrete-time sense).

A2. The innovation {ek} is a stationary, zero mean, white noise
process with covariance:

E(e je′j) = Re, E(eie′j) = 0 for i , j (3)
in which Re is positive definite.

A3. Data are collected for L sampling times (0, 1, . . . , L − 1).
A3.1 In open loop, the condition E(uie′j) = 0 holds ∀i, j.
A3.2 In closed loop, if D = 0, the condition E(uie′j) = 0

holds for i < j, i.e. ui can be in feedback with yi. If
D , 0, the condition E(uie′j) = 0 holds for i ≤ j, i.e.
ui is in feedback with yi−1 (or earlier outputs).

A4. The input {uk} is quasi-stationary and persistently exciting
of order f + p (Ljung, 1999), with f , p defined later.

Many different SID methods exist, and a number of them are
briefly recalled in this section for comparison purposes and
because of the relations with the proposed algorithm.

Given an integer f , referred to as the future horizon, the starting
point is to define the block Hankel matrices U f ∈ R

m f×N ,
E f ∈ R

l f×N , Y f ∈ R
l f×N , with N = L − f − p + 1, and write:

Y f = Γ f x f + H f U f + G f E f (4)
in which Γ f = O f (A,C) ∈ Rl f×n, H f = T f (A, B,C,D) ∈ Rl f×m f

and G f = T f (A,K,C, I) ∈ Rl f×l f , and x f = x f 1 ∈ R
n×N .

Next, we define the matrices (xp,Yp,Up) as (x f ,Y f ,U f ) but
with elements shifted p times backward, in which p is referred
to as the past horizon. Then, we express x f as follows: x f =

Ap
Kxp + LzZp in which Lz = [Cp(AK ,K), Cp(AK , BK)] and

Zp = [Y ′p, U′p]′. Since AK is strictly Hurwitz, we assume that p
is sufficiently large that Ap

Kxp u 0, and we rewrite (4) as:

Y f = Γ f LzZp + H f U f + G f E f (5)
We observe that for finite past horizon p, in general, this
approximation introduces a bias in the model estimate.

If data are collected in open loop, E f is uncorrelated with U f ,
i.e. 1

N E f U′f → 0 as N → ∞. Thus, (5) can be solved by
Least Squares (LS) to obtain estimates of (Γ f Lz,H f ), and after
a model reduction step that involves a truncated Singular Value
Decomposition (SVD), the system matrices can be estimated.
Each of these three steps is extensively reviewed in (Qin, 2006)
for several open-loop SID algorithms.

For closed-loop data instead, a direct estimation of (Γ f Lz,H f )
from (5) is typically biased due to the correlation between U f
and E f . Different approaches can be considered to overcome
this problem. The CSIMPCA (Closed-loop Subspace Identifi-
cation Method via Principal Component Analysis) algorithm
(Wang and Qin, 2006) and the CSOPIM (Closed-loop Sub-
space Orthogonal Projection Identification Method) algorithm
(Huang et al., 2005) assume to multiply (on the right) both
sides of (4) by a matrix W ′ such that: limN→∞

1
N E f W ′ = 0.

Other methods (Jansson, 2003; Larimore, 2004) use a high-
order ARX model to pre-estimate the Markov parameters, or
a state sequence (Ljung and McKelvey, 1996), followed by
an SVD to estimate low order system matrices. The Whiten-
ing Filter approach (Chiuso and Picci, 2005) constructs bases
of two state sequences (shifted each other by one sampling
time) by oblique projections, and then it estimates the system
matrices by LS. The Innovation Estimation method (Qin and
Ljung, 2003), instead, pre-estimates the innovation sequence
and then uses the basic relation (5) to compute (Γ f Lz,H f ).
The asymptotic properties of several closed-loop SID meth-
ods are analyzed in (Chiuso and Picci, 2005; Chiuso, 2007b).
In particular, Chiuso (2007b) shows how different algorithms
(Jansson, 2003; Larimore, 2004; Chiuso and Picci, 2005) can
be seen within a unifying framework of SID methods based on
ARX modeling. Moreover, Chiuso (2007a) proposes a variant
of the Whitening Filter method called PBSID OPT (Optimized
Predictor Based SID), in which the Toeplitz structure of appro-
priate matrices used during the oblique projections is exploited,
although differently from the PARSIM methods discussed next.
Furthermore, Chiuso (2007b) proves that PBSID OPT outper-
forms several SID algorithms in closed-loop conditions (Jans-
son, 2003; Larimore, 2004; Chiuso and Picci, 2005). For such
reasons, PBSID OPT will serve as a challenging SID algorithm
in Section 4.

2.2 The PARSIMonious subspace identification methods

Traditional SID methods (e.g. MOESP, N4SID, etc.) do not
exploit the fact that the matrix H f is block lower triangular, i.e.
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they do not remove non-causal terms. Clearly, no consistency
issues arise from an asymptotic point of view, at least if data
are collected in open loop, but exploitation of the matrix struc-
ture can improve both calculation efficiency and convergence
towards to true solution for finite amount of data (Qin, 2006).
Here, we focus on the so-called Parsimonious Subspace Identi-
fication Method with Innovation Estimation (PARSIM-E) (Qin
and Ljung, 2003). Other algorithms of the same family are the
Parallel and Sequential Parsimonious Subspace Identification
Methods, denoted by PARSIM-P and PARSIM-S (Qin et al.,
2005), which however may be biased in closed loop.

In PARSIM-E, the lower block triangular Toeplitz structure of
H f is taken into account by writing the basic relation (5) as f
separate relations:

y f 1 = Γ f 1LzZp + H f 1u f 1 + e f 1 (6a)

y f i = Γ f iLzZp + [ H f i ··· H f 1 ]︸       ︷︷       ︸
H f→i

 u f 1

...
u f i

︸︷︷︸
U f→i

+

[ G f i ··· G f 2 ]︸      ︷︷      ︸
G f→i−1

 e f 1

...
e f (i−1)

︸ ︷︷ ︸
E f→i−1

+e f i i = 2, . . . , f (6b)

The key idea is to estimate the innovation terms e f j, j =
1, . . . , i − 1, from the residuals of (6) and to build the matrix̂E f→i−1 accordingly, so that the effect of all past innovations is
taken into account during the LS regressions. More in details,
the following steps are performed:̂[(Γ f 1Lz), H f 1] = y f 1

[
Zp
u f 1

]+
(7a)

ê f 1 = y f 1 −
̂[(Γ f 1Lz), H f 1]

[
Zp
u f 1

]
(7b)

and for i = 2, . . . , f :

̂[(Γ f iLz), H f→i,G f→i−1 ] = y f i

[ Zp
U f→îE f→i−1

]+

(7c)

ê f i = y f i −
̂[(Γ f iLz), H f→i,G f→i−1 ]

[ Zp
U f→îE f→i−1

]
(7d)

Subsequently the matrix Γ̂ f Lz is formed by stacking the f terms
Γ̂ f iLz, i = 1, . . . , f , and a truncated SVD is performed to com-
pute Γ̂ f from which estimates of the systems matrices (A,C)
are readily computed by LS using the shift-invariance property
of Γ f . The computation of K, described in (Lin et al., 2004),
uses the estimates of G f→i−1 and of the extended observability
matrix. Finally, given the estimates of (A,C,K), the remaining
matrices (B,D) and the initial state are computed using the
state-space model in predictor form. Such step is performed by
pre-whitening the equation error, and it is a modified version of
the method discussed in (Ljung, 1999, Sec. 10.6).
Remark 1. PARSIM-E provides consistent estimates of the sys-
tem matrices under the closed-loop conditions discussed in
Assumption A3.2, as long as p is sufficiently large that Ap

K → 0.
Remark 2. Although all non-causal terms are structurally dis-
carded, in PARSIM-E several Markov parameters included in
the terms (H f→i,G f→i−1) are re-estimated at each step i.

3. PROPOSED METHOD

We now propose a novel PARSIMonious SID algorithm, based
on the predictor form (2), which we will name PARSIM-K.

As in other SID methods, we express x f = Ap
Kxp + LzZp, but we

use the predictor form evolution (2) to obtain:

Y f = Γ
f
Kx f + H f

KU f + G f
KY f + E f

= Γ
f
K(Ap

Kxp + LzZp) + H f
KU f + G f

KY f + E f
(8)

in which Γ
f
K = O f (AK ,C), H f

K = T f (AK , BK ,C,D), G f
K =

T f (AK ,K,C, 0). We now exploit the lower block triangular
structure of H f

K and G f
K to rewrite (8) as follows (notice that

G f
K is a strictly lower block Toeplitz matrix):

y f 1 = Γ
f 1
K (Ap

Kxp + LzZp) + H f 1
K u f 1 + e f 1 (9a)

y f i = Γ
f i
K (Ap

Kxp + LzZp) + H f i
K u f 1 + G f i

K y f 1 + ỹ f i + e f i

for i = 2, . . . , f (9b)

in which ỹ f 2 = H f 1
K u f 2 and ỹ f i =

∑i−1
j=1 H f j

K u f (i− j+1) +∑i−1
j=1 G f j

K y f (i− j+1) for i = 3, . . . , f . Next, given that AK is a
strictly Hurwitz matrix, we assume that p is such that Ap

Kxp u 0
and we estimate (Γ f iLz), H f i

K , G f i
K sequentially as follows:̂[(Γ f 1

K Lz), H f 1
K ] = y f 1

[
Zp
u f 1

]+

(10a)

̂[(Γ f i
K Lz), H f i

K , G f i
K ] = (y f i − ỹ f i)

 Zp
u f 1
y f 1


+

i = 2, . . . , f (10b)

Remark 3. At each computation step i, the terms ỹ f i for i =
2, . . . , f are known because they depend on previously esti-

mated parameters ̂(H f j
K ,G

f j
K ) with j < i. We also notice that

in each step i = 2, . . . , f the pseudo-inverse matrix is the same
and hence it needs to be computed only at step i = 2.

Remark 4. If D = 0, (10a) simplifies into ̂(Γ f 1
K Lz) = y f 1Z+

p and

Ĥ f 1
K = 0. Also notice that if D , 0, from Assumption A3.2 we

have that u f 1 is independent of e f 1 even if data are collected in
closed loop because uk is in feedback with yk−1.

Next, we stack the terms ̂(Γ f i
K Lz) for i = 1, . . . , f to obtain̂(Γ f

K Lz), and we perform a weighted SVD:

W1
̂(Γ f
K Lz)W2 = UnSnV

′
n + Rn (11)

in which (Un,Sn,Vn) are the SVD terms associated with the n
largest singular values and Rn represents the error associated to
neglecting the remaining ( f l−n) SVD terms. Next, we compute
Γ

f
K = W−1

1 UnS
1/2
n , and subsequently we estimate (AK ,C) by LS

using the shift invariance property of Γ
f
K .

Remark 5. Similarly to the PARSIM algorithms (Qin et al.,
2005), we use W1 = I and W2 = (ZpΠ⊥U f

Z′p)1/2 as weighting
matrices. If the outputs have fairly different variance, scaling
to same (or similar) variance in all outputs is advised. As
discussed in (Qin et al., 2005, Sec.3.3) the choice of W2 is
equivalent to the CVA scaling.

Given the estimated matrices (ÂK , Ĉ), we could obtain (B̂K , D̂)

from Ĥ f i
K , and K̂ from Ĝ f i

K by LS operations. However, we
here describe a different method that allows us to compute
(B̂K , D̂, K̂) and the initial state x̂0 from a single LS problem.

Let q denote the forward shift operator and consider the fol-
lowing known stable (multi-variable) transfer function F(q) =

Ĉ(qI − ÂK)−1. We can write, for k = 0, . . . , L − 1:
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yk = (F(q)BK + D)uk + F(q)Kyk + CAk
K x0 + ek

= ϕ1
k vec(BK) + ϕ2

k vec(D) + ϕ3
k vec(K) + ϕ4

k x0 + ek
(12)

in which ϕ1
k = F(q) ⊗ u′k, ϕ2

k = I ⊗ u′k, ϕ3
k = F(q) ⊗ y′k and

ϕ4
k = CAk

K . We can now compute ( ̂vec(BK), ̂vec(D), ̂vec(K), x̂0)
by LS solution of the Ll equations (12), i.e.

̂vec(BK )̂vec(D)̂vec(K)
x̂0


′

=

 y0

...
yL−1

′

ϕ1

0 ϕ2
0 ϕ3

0 ϕ4
0

...
...

...
...

ϕ1
L−1 ϕ2

L−1 ϕ3
L−1 ϕ4

L−1


+

(13)

and after rebuilding (B̂K , D̂, K̂), we finally compute:

Â = ÂK + K̂Ĉ, B̂ = B̂K + K̂D̂ (14)

3.1 Properties

We have the following basic result for the proposed algorithm.
Theorem 6. Suppose that assumptions A1–A4 hold. Denote
with

(
(Γ f

K Lz),H
f
K ,G

f
K

)
the true matrices in (8) and with( ̂(Γ f

K Lz), Ĥ
f
K , Ĝ

f
K

)
the estimates obtained with (10). Then, for

each ε > 0, there exist finite p and L∗ such that:

‖
̂(Γ f
K Lz) − (Γ f

K Lz)‖∞ ≤ ε for all L ≥ L∗ (15a)

‖Ĥ f
K − H f

K‖∞ ≤ ε for all L ≥ L∗ (15b)

‖Ĝ f
K −G f

K‖∞ ≤ ε for all L ≥ L∗ (15c)

Proof. See (Pannocchia and Calosi, 2010).
Remark 7. Theorem 6 says that PARSIM-K gives consistent
estimates of [(Γ f

K Lz), H f
K , G f

K] in the sense that the estimate
error can be made arbitrarily small for finite p and L. This
fact allows consistent estimation of the extended observability
matrix upon a similarity transformation and, hence, of (AK ,C).

Remark 8. We notice that ( ̂vec(BK), ̂vec(D), ̂vec(K), x̂0) ob-
tained from (13) are consistent if the true values of (AK ,C) are
used in the computation of (ϕ1

k , ϕ
2
k , ϕ

3
k , ϕ

4
k). We also observe that

(13) is unbiased for finite p because x0 is estimated.

From a numerical point of view some comments and com-
parisons between PARSIM-E and PARSIM-K are appropriate.
First of all, we notice that the first regression step, (7a) for
PARSIM-E and (10a) for PARSIM-K, is identical. In fact, it
computes Γ f 1Lz = CLz (or Γ

f 1
K Lz = CLz in PARSIM-K) and

H f 1 = D (or H f 1
K = D in PARSIM-K). Subsequent steps

instead differ, and it can be noticed that, unlike PARSIM-E, the
proposed PARSIM-K does not recompute Markov parameters
that were already computed in previous steps. Furthermore, in
PARSIM-E the matrix that is pseudo-inverted in (7d) changes at
each step i and increases in row size with i. On the other hand,
the matrix that is pseudo-inverted in (10b) does not change at
each step i, so it can be computed only once. Furthermore, such
matrix has the same row size of that in (7d) for i = 2, but the one
used in PARSIM-E increases in row size at subsequent steps.
It is also important to notice that in the proposed PARSIM-K,
the matrix K is computed along with the (BK ,D, x0), whereas
in PARSIM-S (Qin et al., 2005, Sec.4) and in PARSIM-E (Lin
et al., 2004) a separate step for the evaluation of K is necessary.
Finally, it must be remarked that since the proposed PARSIM-
K uses the predictor form in all steps, i.e. the regressions (10)
and the final regression (13), numerical stability for unstable
systems is guaranteed (Chiuso and Picci, 2005; Qin, 2006).

4. CASE STUDIES

4.1 Introduction and MPC algorithm

We present in this section the simulation results obtained for the
identification and control of multi-input multi-output (MIMO)
processes. The performance of the proposed PARSIM-K al-
gorithm is compared against the performance achieved by
other subspace methods, namely PARSIM-S (Qin et al., 2005),
PARSIM-E (Qin and Ljung, 2003), PBSID OPT (Chiuso,
2007b) and N4SID with CVA weighting (as provided by the
Identification Toolbox in Matlab R2007b).

For the first example we give a measure of the identified
model quality as follows. Let G(z) = C(zI − A)−1B + D
be the true process transfer matrix and let Ĝ j(z) = Ĉ(zI −
Â)−1B̂ + D̂ be identified model transfer function matrix in
the j−th run of M Monte-Carlo simulations. Then, we de-
fine the following (scalar) function ε(ω) which measures the
Relative Model Error (RME) at each normalized frequency:
ε(ω) = 1

M
∑M

j=1 σmax

(
G(eiω) − Ĝ j(eiω)

)
/σmax(G(eiω)), in which

σmax{·} represents the largest singular value, i.e. the matrix
2-norm. We also consider the following average RME: ε̄ =
1
π

∫ π

0 ε(ω)dω. For the second example, instead, we compare the
performance of offset-free MPCs based on models identified
from closed-loop data using the five mentioned SID methods. In
both examples f is chosen slightly larger than the model order,
whereas the p is chosen by trial and error.

Let (A, B,C) be the model matrices identified with any of the
considered SID methods (notice that in all SID methods we
force D = 0), and consider the augmented model (Pannocchia
and Rawlings, 2003):

xk+1 = Axk + Buk + Bddk + wx
k

dk+1 = dk + wd
k

yk = Cxk + Cddk + vk

(16)

in which d is the fictitious (integrating) disturbance, included
for offset-free purposes, and (wx,wd, v) are Gaussian random
variables, with specified covariance (Qx,Qd,Rv) from which a
Kalman filter gain is computed.

Let (x̂k, d̂k) be the updated estimates of (x, d) at time k and let
ȳk be the current output setpoint. We solve the target calculation
problem to compute the equilibrium state and input targets:

min
xs

k ,u
s
k

(Cxs
k + Cdd̂k − ȳ)′Q̄(Cxs

k + Cdd̂k − ȳk) + us
kR̄us

k

s.t. xs
k = Axs

k + Bus
k + Bdd̂k, umin ≤ us

k ≤ umax (17)
in which (umin, umax) represent the input bounds, and Q̄, R̄
are positive definite matrices. Next, we define the deviation
variables: x̃k = xk − xs

k, ũk = uk − us
k and consider the infinite-

horizon optimal control problem:

min
ũk ,ũk+1,...

∞∑
j=k

x̃′jC
′QCx̃ j + (ũ j − ũ j−1)′S (ũ j − ũ j−1) s.t. (18a)

x̃k, ũk−1 given , x̃ j+1 = Ax̃ j + Bũ j (18b)
umin − us ≤ ũ j ≤ umax − us (18c)

in which Q, S are positive definite matrices. With a suitable
state augmentation it is possible to re-write (18) in a con-
ventional constrained LQR form (Rao and Rawlings, 1999).
Given the optimal input sequence (ũ∗k, ũ

∗
k+1, . . .), obtained via

Quadratic Programming of a suitable finite-horizon parameter-
ization of (18), the injected input is given by uk = ũ∗k + us

k.
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Fig. 1. Example 1. RME function ε(ω) for N4SID, PARSIM-S, PARSIM-E,
PARSIM-K and PBSID OPT (closed-loop data, 2000 data-points, results
are averaged over 50 Monte-Carlo simulations).

4.2 Unstable MIMO example

As first example, we consider the unstable MIMO system:

xk+1 =

1.21 −0.705 0.804
0 0.845 −0.413
0 0.771 0.723

 xk +

 1.05 0
0 0.516

0.101 0

 uk +

0.945 −0.483
0 0.410
0 0.0375

 ek

yk =

[
0.256 0 0

0 1.25 −1.14

]
xk + ek

Data are collected in closed-loop, under the output feedback
uk = rk − yk. The reference {rk} and the innovation {ek} are
Gaussian random variables with covariance of I and 0.20I, re-
spectively. For all SID methods we use past and future horizons
of p = 10 1 and f = 5, respectively, and n = 3. We present
in Fig. 1 the RME function ε(ω) obtained with the five SID
methods using 2000 data-points, whereas the average RME ε̄
vs. the data sample size is shown in Fig. 2.

Fig. 1 shows that PARSIM-S and N4SID identify erroneous
models when data are collected in closed loop. On the other
hand, as expected, PARSIM-E, PARSIM-K and PBSID OPT
deliver models with much lower error at any frequency. Fig. 2
also shows that as the data sample size increases, these methods
provide consistent model estimates. On the same plot, we can
also see that PARSIM-S and N4SID deliver significantly biased
model estimates even if the data sample size is increased.
These results are in agreement with the theoretical properties
of PARSIM-S and N4SID which are guaranteed to be consistent
only for open-loop data, whereas PARSIM-E, PARSIM-K and
PBSID OPT are proved to be consistent for closed-loop data. A
closer analysis of Figs. 1 and 2 shows that PARSIM-K performs
slightly better than PARSIM-E and PBSID OPT.

4.3 Wood-Berry Distillation Column

As second example, we consider the Wood-Berry distillation
column model (Wood and Berry, 1973):[

y1
y2

]
=

[ 12.8e−s

16.7s+1
−18.9e−3s

21.0s+1
6.6e−7s

10.9s+1
−9.4e−3s

14.4s+1

] [
u1
u2

]
(19)

in which time constants and delays are in minutes. Using a
sampling time of 1 minute, a minimal model has 14 states.

Data are collect in closed-loop for 24 hours (i.e. 1440 samples)
using the (decentralized) feedback uk = rk − Fyk, with F =

1 It must be noticed that Ap
K becomes sufficiently small for p, at least, greater

than 50. Nonetheless, the results obtained with p = 50 and those obtained with
p = 10 are almost identical.
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Fig. 2. Example 1. Average RME ε̄ for N4SID, PARSIM-S, PARSIM-E,
PARSIM-K and PBSID OPT as a function of the sample size (closed-
loop data, results are averaged over 50 Monte-Carlo simulations).[

0.235 0
0 −0.155

]
. The reference {rk} is a Gaussian random variable

with covariance 0.252I, while the innovation {ek} is also a
Gaussian random variable with covariance chosen in way that
specific noise-to-signal ratios are attained in each output, as
detailed later on. In all methods we use: p = 30, f = 20, and
n = 14 (except for the results of Fig 4, as later detailed).

The performance of five MPCs, using same parameters but
different models, is compared in closed loop with the true
process (19). The common MPC parameters are:

Bd = B, Cd = 0, Qx = 10−3I, Qd = I, Rv = 10−2I
Q̄ = Q = I, R̄ = 10−6I, S = 0.5I, umax = −umin = [2 2]′

We denote with MPC-`, ` ∈ {N4S, S, E, K, PB}, the MPC
based on model ` identified by N4SID, PARSIM-S, PARSIM-
E, PARSIM-K or PBSID OPT, respectively. As performance
index we use: J` = 1

2
∑∞

k=0(yk− ȳk)′Q(yk− ȳk)+(uk−uk−1)′S (uk−

uk−1) in which we observe that J` is equivalent to the objective
of the MPC problem (18), although (yk, uk) are actual outputs
and inputs. If we denote with J0 the value of J` obtained when
the MPC model equals the true process (19), we can define a
relative sub-optimality index for MPC−` as: R` =

J`−J0
J0

.

We compare in Fig. 3 the closed-loop performance of the five
MPCs for different values of the noise-to-signal ratio consid-
ered in the outputs used for identification. As expected for
all SID methods we observe that the lower the noise-to-signal
ratio, the better the performance. We can also observe that for
all noise-to-signal ratios, the MPC designed on a PARSIM-K
model outperforms the MPCs designed on the other models.
As a matter of fact, the closed-loop performance of MPC-K
appears to be close to optimal for any noise-to-signal ratio. In
particular when the noise-to-signal ratio on each output equal
to 0.20, the relative sub-optimality indices for all MPCs are:
RN4S = 1.52, RS = 0.0797, RE = 0.0785, RK = 0.0151 and
RPB = 0.0193. We observe that MPC-K and MPC-PB per-
form almost identically, MPC-E and MPC-S display larger sub-
optimality, and MPC-N4S is inadequate. In Fig. 4 we present
the relative sub-optimality of the five MPCs as a function of
the chosen model order n (with p = 30 and f = 20). Again, we
notice that PARSIM-K outperforms the other methods irrespec-
tively of the considered model order.

5. CONCLUSIONS

We presented a novel subspace identification algorithm with
the following main features. It is based on the predictor form
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Fig. 3. Wood-Berry model. Relative sub-optimality index vs. output noise-to-
signal ratio for MPC-N4S, MPC-S, MPC-E, MPC-K and MPC-PB.
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Fig. 4. Wood-Berry model. Relative sub-optimality vs. model order for MPC-
N4S, MPC-S, MPC-E, MPC-K and MPC-PB. Output noise-to-signal
ratio equal to 0.20.

of the state-space equation, it exploits completely the Toeplitz
nature of the Markov parameters matrices in the spirit of the
PARSIMonious methods (Qin et al., 2005), and it is applicable
to closed-loop data. The method consists of two major steps.
In the first one, small dimensional LS problems are solved se-
quentially to compute the Markov parameters, and the extended
observability matrix (in predictor form) is obtained from a trun-
cated SVD. We proved consistency of this step both for open-
loop and closed-loop data. In the second step, after AK = A−KC
and C are estimated from the observability matrix, a single LS
problem is solved to estimate (BK = B − KD,D,K, x0).

We reported numerical simulations to show the consistency
properties of the proposed method with data collected in
feedback conditions. Furthermore, we compared the proposed
method against other subspace methods, and from the reported
results it appears that the proposed method outperforms the
other PARSIM methods in closed-loop conditions, and per-
forms similarly to (actually slightly better than) PBSID OPT,
which is proved to compare favorably with many SID algo-
rithms (Chiuso, 2007b). Furthermore, thanks to the predictor
form model parameterization, the proposed method does not
suffer from ill-conditioning in the of case unstable systems. We
finally compared the performance of MPCs designed on models
identified from closed-loop data by the different subspace meth-
ods, and we observed that the proposed SID algorithm appears
suitable for closed-loop identification in MPC design.
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