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Abstract: Biological functions have evolved to become robust against a multitude of perturba-
tions such as gene mutations, intracellular noise and changes in the physical and chemical
environment. This robustness should be reflected in models of the underlying biochemical
networks, and robustness analysis is frequently employed in validating models of intracellular
biochemical reaction networks. However, at present there are no tools or guidelines available to
support postulation of model modifications that can serve to improve the robustness. Herein
we propose a method based on computing the sensitivity of the robustness with respect to
generic dynamic perturbations applied to the individual network edges. To quantify robustness
we compute the smallest simultaneous change in the activity of the network nodes that induces
a bifurcation in the network, resulting in a qualitative change in the network behavior. The
focus is on biological functions related to bistable switches and sustained oscillations, and the
proposed methodology is demonstrated through application to metabolic oscillations in white
blood cells and bistable switching in MAPK signal transduction.
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1. INTRODUCTION

While dynamic modeling is a key to understand biological
functions at the cellular level, experimental data collected
under non-steady-state conditions are relatively scarce. To
(in)validate models one must therefore usually rely also
on other sources of information. One key aspect of normal
biological functions is that, through evolution, they have
developed robustness against potentially harmful internal
and external perturbations that occur with some probabil-
ity. Based on this fact, robustness analysis is routinely used
in validating dynamic models of biochemical networks,
e.g., (6; 4). A model which is found to be relatively unro-
bust to biologically probable perturbations is considered
invalidated, and the key problem is then how to identify
biologically relevant model modifications that will improve
the robustness.

Robustness analysis has previously been employed to
postulate hypotheses concerning network structures (3)
and strength of interactions between network components
within a given topology (11). Wagner (3) considers simple
gene regulatory networks providing sustained oscillations
and performs a search over all possible interconnections to
find the most robust topology. The robustness is quantified
in terms of parametric sensitivity. In Chen et al (11), sev-
eral model candidates for a bistable switch in the network
underlying apoptosis are compared in terms of parametric
robustness and based on this the most plausible mech-
anisms are identified. In the case of biological functions
related to sustained oscillations, a common postulation is
that adding a delay in the primary feedback loop will in-
crease the robustness of the oscillations, e.g., (8). However,
in the case of more complex networks, a delay may also
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have the adverse effect, i.e., reducing the robustness or
even removing the oscillatory behavior altogether (5).

In this work we propose a systematic method for postulat-
ing model modifications that will increase the robustness of
the predicted behavior. To quantify robustness we employ
the structural robustness analysis method proposed in (5)
and (7). Essentially, the method is based on perturbing
the activity of all network components and computing the
smallest overall perturbation that induces a bifurcation,
corresponding to a qualitative change in the network be-
havior. This is a convex and computationally inexpensive
method. In order to identify network modifications that
will have the most significant impact on the overall robust-
ness, we apply generic dynamic perturbations to the indi-
vidual network edges and compute the maximum change in
robustness for perturbations within a norm-bounded set.
An advantage of applying generic dynamic perturbations,
as compared e.g., to parametric perturbations, is that
the impact of unmodelled phenomena can be taken into
account. This implies that also the impact of topological
modifications, e.g., unmodelled nodes and edges, can be
determined.

The focus here is on functions related to sustained oscilla-
tions, i.e., limit cycle behavior, and bistable switches. Such
functions are commonplace in cell biology, and include for
instance cell cycle control, cell differentiation, apoptosis
and circadian rhythms to mention a few.

We start the paper by introducing a simple network,
consisting of three components forming a single feedback
loop, in order to motivate and conceptually explain the
proposed method. We then briefly review the robustness
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analysis employed and present the method for computing
the sensitivity of the robustness with respect to dynamic
perturbations applied to the network edges. The method
is then applied to the introductory example to confirm
that it systematically identifies plausible modifications
to improve the robustness. As we show, the method
supports the intuitive insight that a time delay in the
feedback loop is an effective means of increasing robustness
of the oscillations. However, the method also identifies
an alternative modification corresponding to closing an
additional positive feedback loop, i.e. a change in network
topology, which has a similar impact on the robustness.
We then consider a model of the oscillatory metabolism in
white blood cells. This model corresponds to a complex
and highly interconnected network, and has previously
been found to be highly unrobust. Robustification of this
model is a challenging task (5) and served as the original
motivation for deriving the method presented here. We
show how the proposed method can be used to significantly
robustify this model using plausible model modifications.
Finally, we consider robustification of the bistable switch
in a model of MAPK signal transduction.

2. INTRODUCTORY EXAMPLE

In order to illustrate the basic idea behind the method
proposed in this paper, we start by considering a simple
network involving 3 components, corresponding to the
much studied Goodwin model (2). See Figure 1. The model
is given by the ODEs

. KP X
X = U 1
“kpvzr K+ X )
. Y
Y=K;X —vy——— 2
R (2)
Z=KY —vg——
5 USK3—|—Z (3)
For the parameter values vg = 0.7,v1 = vy = v3 =

0.357[(0 = Kl == K2 = K3 = 1,K4 = K5 = 07,’[7, = 45,
the model displays a limit cycle as shown in Figure 1. This
simple network structure has been used to model sustained
oscillations in a variety of biological functions, most no-
tably circadian timekeeping. A weakness of the model is
that it requires an unrealistically large cooperativity with
a Hill coefficient n > 4 to produce sustained oscillations.
Furthermore, even with the large value considered here,
n = 4.5, the model displays a relatively poor robustness;
as shown below, a change in the activity (concentrations)
of the three components by only 2% will remove the
oscillatory behavior. A common postulation to improve
the robustness of the model, and possibly also reproduce
oscillations for more realistic values of n, is to add a time
delay to the loop, e.g., (8). A delay of # time units can for
instance be implemented by adding a relative perturbation
032 to the edge connecting component 2 and component 3,
see Figure 1, and letting
1+ 030 = e 08

Indeed, such a modification will increase the robustness
of the oscillations as we will show below. Furthermore, a
delay can be justified biologically by the fact that there are
intracellular transport phenomena that impose a delay in
the interactions between e.g., proteins and genes. Thus, in
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Fig. 1. Three component network in Introductory example.
The components form a negative feedback loop which
produces sustained oscillations.

this case intuitive reasoning alone can be used to postulate
model modifications that will improve the robustness of
the model and hence, by assumption, increase the confi-
dence in the model. However, most biochemical network
models are significantly more complex than the simple
model considered here and in such cases it is not likely that
intuitive reasoning alone can be used to determine model
modifications that will improve the robustness. Hence,
there is a need for a systematic tool that can identify mod-
ifications that will have a significant impact on the overall
robustness. This is considered below. We first present a
scalar quantitative measure of robustness.

a
3. QUANTIFYING ROBUSTNESS

The robustness considered here concerns the persistence
of a qualitative behavior in the presence of perturbations
of the network properties. Since changes in the qualitative
behavior of a dynamical system are directly related to the
existence of bifurcation points, we consider determining
perturbations that induce a bifurcation in the network.
Furthermore, since most behaviors of interest in the con-
text of biological functions can be related to steady-state
bifurcations, the consideration can be limited to static and
Hopf bifurcations of steady-states. In particular, in the
case of limit cycle behaviors and bistable switches, which
are the focus of this paper, one can quantify robustness
by determining the smallest perturbation, within a given
class, that induces a Hopf or saddle-node bifurcation, re-
spectively, at the underlying unstable steady-state (7).

The existence of a bifurcation at a given steady-state is
determined by the linear part of the nonlinear model at
the steady-state. The nonlinear part is required to ensure
that a transversality condition is fulfilled, and to determine
if a Hopf bifurcation is sub- or supercritical. However,
for robustness analysis we are only concerned with the
existence of a bifurcation point as such and hence can limit
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ourselves to analyze the linear part of the model. Assume
that the nonlinear model is on the form

y=1f(y.p), yeR" peR™

where y are the state variables, corresponding e.g., to
biochemical component activities, and p is a vector of
model parameters. Assume also that the nominal parame-
ter vector is p* and that the corresponding steady-state of
interest is y*, i.e., f(y*,p*) = 0. For the cases of stable
limit cycle behavior and bistable switches, we consider
the underlying unstable steady-state provided such a state
exists. The linearized dynamics around the steady-state
are then given by

. ) _(9f
& = Ax(t) ; A<ay>y*7p*

where x = y — y*. The robustness analysis aims at deter-
mining the smallest perturbation that imposes eigenvalues
on the imaginary axis for the perturbed system. We con-
sider relative perturbations of the activity of the individual
components according to

i= Azx(t) + (A — A)za(t) (4)
za(t) = Arx(t) (5)

where A is a diagonal matrix with the diagonal elements
of A and Ay is a diagonal matrix with diagonal elements
0;. This implies that the impact of component i on all
other components is perturbed by a relative perturbation
(146;). The perturbation can be made dynamic by letting
A7 be frequency dependent. Denote

L(jw) = (jw = A)"H(A = 4)
Then the perturbed system will have eigenvalues on the

imaginary axis, corresponding to a bifurcation point in the
corresponding nonlinear system, if
det (I — Ar(jw)L(jw)) =0

for some frequency w > 0. If w = 0 the bifurcation
is static, while w > 0 implies a Hopf bifurcation. The
robustness radius R, corresponding to the smallest Aj
inducing eigenvalues at the imaginary axis, is then defined
as

R(w) = inf{[|A[] | Ay e A CC™",

det (I — A;L(jw)) =0}, w>0

As a scalar robustness measure we employ the minimum
robustness radius over all frequencies, i.e.,

R = min R(w)

Further motivation for employing the above measure as a
robustness measure for biochemical networks can be found
in (5; 7).

4. IMPACT OF PERTURBING NETWORK EDGES
ON OVERALL ROBUSTNESS

Given a scalar quantitative measure of the robustness of
a network model, we can systematically search for model
modifications with the largest impact on the robustness
of a given network function. The approach adopted here
is to consider the role of individual network edges, i.e.,
the direct interactions between any two network nodes
(components), by perturbing these using generic dynamic
perturbations. Since the robustness, as defined above, can
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be restricted to consideration of the linearized model we
also restrict the edge perturbations to be linear dynamic
systems.

We first consider the case in which existing network inter-
actions are perturbed. For the linearized model, the direct
effect of component j on component ¢ in the unperturbed
model is

Ay
Xi(s) = === X, ()
(23

Gij(s)
A dynamic perturbation will in general affect both the
amplification and the phase lag of G;;(jw). To allow for
both effects we consider the perturbation

GY(s5) = Gij(s)(1 + k)e™ ™

where k is the relative change in the amplification while
e~T* corresponds to introducing a time-delay of T' time
units. Rewriting the perturbed system in the form of a
relative perturbation

G7i(s) = Gij(s) (14 di5(s))

yields 8;;(s) = (1+k)e~7*—1. To determine the maximum
robustification obtained by perturbing the edge from z; to
x;, we solve

dR" = sup{R | |6;j(wo)| < €} (6)
where wy is the frequency corresponding to the minimum
robustness radius R. That is, we determine the maximum
robustness radius R over all §;; with a maximum perturba-
tion size given by e. Since the impact of the perturbation
on the robustness radius is a nonlinear function of e, it
is useful to perform the computation for different values
of €. Note that determination of dR¥ is computationally
inexpensive since the perturbation is parametrized by two
parameters k and T only, and these are strictly correlated
through the constraint [d;;(wo)| < €. Thus, one can for
instance compute the robustness radius over a grid of
values for one of the parameters in order to determine the
maximum value of R.

To illustrate the method we consider the oscillatory three
component network in the introductory example. See also
Figure 1. The robustness radius of the unperturbed model
is R = 0.022 implying that a change of only 2% in
the activity of the three components will remove the
oscillatory behavior. Thus, the model can be said to
be relatively unrobust. Computing the robustification for
perturbations of the three individual edges using (6) with
e = 0.01 we find that dR¥ = 0.0256 for all edges, and
that the optimal perturbation has £k = 0.004 and T =
0.032. Thus, a 1% perturbation of in the strength of an
interaction yields a 17% increase in the robustness radius.
A pure time-delay perturbation, with size e = 0.01, yields a
15% increase in the robustness radius. Thus, the maximum
robustification is obtained with a combined perturbation
of amplification and delay, and as expected the effect
is independent of where in the loop the perturbation
is added. By increasing the size of the perturbation to
€ = 0.05 and € = 0.1, respectively, we obtain dR% = 0.039
and dR¥ = 0.0543, respectively. For the latter case, a pure
delay is close to optimal. Thus, a 10% relative change in
the strength of one of the interactions serves to increase
the robustness radius by a factor of 2.5. In order to increase
the robustness radius to dR¥ = 0.1 we find that we need
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to increase € to 0.25, corresponding to introducing a time-
delay T = 0.8 hr in one of the interactions. The impact
of this perturbation on the robustness radius is shown in
Figure 2, together with the impact of the perturbation on
the bifurcation diagram with the Hill coefficient n as the
bifurcation parameter. As can be seen, the robustifying
perturbation computed at n = 4.5 implies that sustained
oscillations now exist for a Hill coefficient as low as n = 2.

Above we limited ourselves to consider modifying the
strength and lag of interactions already included in the
model. However, the actual topology of intracellular bio-
chemical networks is usually also uncertain. In particular,
it is not always clear which components that affect the
kinetics of a given reaction. Furthermore, essentially all
models leave out a large number of components that are
assumed to have a small impact on the considered bio-
logical function. The latter implies that there even are an
uncertain number of nodes in a typical network model. The
method above, based on adding dynamic perturbation may
in principle be used to analyze the impact of adding new
edges as well as new nodes on the network robustness. We
here limit ourselves to consider adding new edges between
existing nodes, i.e., connections for which the nominal
Jacobian has A;; = 0. The perturbation introduced in this
case is given by

915 (s)

s — Ay

Xi(s) = 2800 x(6)
with d;;(s) = ke~ 7*. For each new edge, we then search
for the maximum robustification subject to the constraint
1:5wi0)| = 131100 = IK] < e

For the network in the Introductory example and Figure
1, we find that the addition of an edge from component 2
to component 1 has the largest impact on the robustness.
For € = 0.01 we get dR'? = 0.035 and with € = 0.05 we
get dR'? = 0.1. In both cases, the maximum robustifying
012 is found to be a pure positive amplification with k =€
and T' = 0. This corresponds to closing a positive feedback
loop between components 1 and 2, and as can be seen from
Figure 2, this has a significant impact on the robustness
of the oscillations. This result is interesting in view of
the fact that it has been found that the combination of
positive and negative feedback loops is a recurring motif in
many intracellular oscillators. The positive feedback loop
is illustrated in Figure 1 and the effect of the loop on the
robustness radius is shown in Figure 2.

The robustifying network modifications identified with
the proposed method serve as hypotheses for biological
features that have not been included in the original model.
Indeed, a key task in modeling intracellular networks
is to postulate hypotheses that can be tested against
existing knowledge and new experiments. The method
proposed above is a systematic way of identifying possible
network properties that can be judged against existing
data and knowledge, and eventually be used to design new
experiments for testing plausible hypotheses.

5. APPLICATION TO THE OSCILLATORY
METABOLISM OF ACTIVATED NEUTROPHILS

Neutrophils are white blood cells that activate when sens-
ing the presence of an invader, e.g., in the form of a
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Fig. 2. Three component network. Upper: Reciprocal of
robustness radius for nominal (solid), perturbation d3o
with e = 0.25 (dashed) and d2; with e = 0.1 (dashdot).
Lower: bifurcation diagram for nominal network and
after adding perturbation d3o of size € = 0.25.

bacteria or a virus. Upon activation, the cell encapsulates
the invader and then destroys it using highly reactive
chemicals that are produced in an oscillating metabolic
process. An unconfirmed hypothesis is that the oscillations
enable the cell to produce high levels of toxics during
short transients that are sufficient to kill the invader,
while not being harmful to the cell itself. Olsen et al (10)
propose a mechanistic lumped model for the oscillatory
metabolism. However, in vivo the oscillations have been
observed to be spatially extended and the authors there-
fore also attempted to extend the model by dividing it into
compartments with mutual exchange driven by diffusion.
However, even for very high diffusion rates the authors are
not able not reproduce any oscillations. In Jacobsen and
Cedersund (2008) it is shown that the model predictions
indeed are highly fragile to the introduction of small delays
in the involved reactions. We here consider employing the
method proposed above to identify plausible model mod-
ifications that will improve the robustness and eventually
enable a spatial extension.

The metabolic network, illustrated in Figure 3, involves
14 components and a total of 86 direct interactions cor-
responding to network edges. The nominal model has a
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Fig. 3. Neutrophil metabolic network. The dashed edge
corresponds to the edge with the largest impact on the
robustness of the oscillations. Lower figure: Reciprocal
of robustness radius for nominal model (solid) and
after relative perturbation do4 with € = 0.1.

robustness radius R = 0.0025 implying that very small
changes in the network properties will make the sustained
oscillations disappear. This probably also explains the
difficulties in extending the model to include spatial phe-
nomena.

Computing the maximum robustification for perturbations
of existing individual edges we find that the most effective
modification is a perturbation of the effect of metabolite 4
(H202) on metabolite 2 (col). For € = 0.1, corresponding
to a 10% change in the strength of interaction, we find
an almost tenfold increase in the robustness radius to
dR?* = 0.02. The corresponding perturbation corresponds
to an increase in the amplification combined with a small
time delay. The change in the amplification can be imple-
mented by modifying the corresponding reaction kinetics
as proposed in (9).

Considering the addition of new network edges, the most
significant effects are obtained by introducing direct in-
teractions between components residing in different cell
compartments which is biochemically irrelevant. However,
introducing a small direct effect of NADPH on O, in the
main cell compartment has a significant robustifying effect
and is also an interaction that is relevant to study closer
experimentally.

The effect of the above considered network modifica-
tions on the frequency dependent robustness radius of the
metabolic oscillations are shown in Figure 3.
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Fig. 4. MAPK signal transduction network in (15). The
lower figure shows the bifurcation diagram in terms of
response in ppErk as a function of the stimuli pRady;.
Also shown are the bifurcation diagrams resulting
when decreasing and increasing the kinetic slope Vgq4,
respectively, by 50%.

In summary, we find that small and potentially highly
relevant modifications of the network interactions in the
metabolic network of white blood cells can significantly
increase the robustness of the oscillations in activated cells.

6. APPLICATION TO BISTABLE SWITCH IN MAPK
SIGNALING

The mitogen-activated protein kinase (MAPK) pathway,
one of the most important signal transduction cascades in
eukaryotic cells, is involved in the control of crucial cell
functions such as cell division, programmed cell death and
differentiation. Experimentally it has been shown that the
cascade can exhibit an ultrasensitive (12), bistable (13),
(14)) or oscillatory response (15) to stimuli. Legewie et al.
(15) propose a network model, involving 12 components
and a total of 84 direct interactions, which displays a
bistable response. The network and the bifurcation dia-
gram with the stimuli pRaf;,+ as the bifurcation param-
eter is shown in Figure 4. The robustness radius for the
unstable steady-state at pRafi = 0.035 is R = R(0) =
0.00072, which reflects a poor robustness of the bistable
behavior.

Since bistability is related to purely static bifurcations,
robustifying modifications will also be static. As discussed
in Waldherr et al. (9), implementing static perturbations
of individual edges, i.e., Jacobian elements, in a biochem-
ically meaningful way can be a challenging task. As they
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propose, one can instead consider decomposing the Jaco-
bian into a stoichiometric part S and a kinetic part V
according to

v
A=S—| =5V(z~ 7
5| = SVE) @
and perturb elements of the kinetic slopes V. Here v(x)
are the expressions for the reaction kinetics. Note, that a
perturbation in some element of V' usually will result in
perturbation of several edges in the network.

We employ the method for robustification proposed above,
but apply the (static) perturbations to the kinetic slopes
V instead of directly to the Jacobian A. Considering first
perturbing non-zero kinetic slopes, we find that the most
robustifying modification involves decreasing the slope
V4, i-e., the dependency of reaction rate vg on component
x4. With € = 0.5, corresponding to halving the slope
V4, the robustness radius is doubled to R = 0.0015.
Although this may seem a small increase in robustness,
it has a significant impact on the width of the bistable
region as can be seen in Figure 4. Considering adding
new kinetic dependencies, we find that introducing a small
kinetic slope V3g = —0.001 increases R to 0.0017 while
making V3¢ = —0.01 increases the robustness radius by
a factor 13 to R = 0.01. Introducing a non-zero slope
V36 corresponds to making the degradation of pRafMek
depend on pF RK which is not implausible since these two
components interact in the network.

7. CONCLUSIONS

The fact that normal biological functions have developed
significant robustness through evolution implies that also
models of the underlying biochemical networks should
be robust to biologically probable perturbations. Indeed,
some form of robustness analysis is used more or less
routinely as part of the validation of biochemical network
models. However, systematic tools to aid in identifying
model modifications that will serve to increase the robust-
ness are lacking.

In this paper we proposed a method for systematic robus-
tification of biochemical network models based on adding
generic dynamic perturbations to existing network edges,
or by introducing new nodes or edges. The robustness was
quantified by computing the smallest change in the activity
of the network components that would induce a bifurca-
tion in the model, and hence a qualitative change in the
predicted behavior. The method was first demonstrated by
application to a simple 3 component feedback loop, used to
model e.g., circadian oscillations, for which it was shown
that the method automatically identified the intuitively
plausible addition of a delay in the loop as the modification
of the existing network structure with the largest impact
on the robustness. However, the method also found that
modifying the network topology corresponding to closing
a positive feedback loop between two components had a
similar effect on the robustness. This is an interesting
result as intertwined negative and positive feedback loops
appears to be a recurring motif in intracellular oscilla-
tors. Finally, we identified relatively small modifications
of the interactions in the complex metabolic network of
neutrophils that served to increase the robustness by more
than an order of magnitude. It was also shown how small
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changes in a single kinetic slope could significantly increase
the robustness of the bistable switch in MAPK signaling. It
was stressed that the identified model modifications should
serve as hypotheses that need to be evaluated against
existing biological data and knowledge as well as against
dedicated experiments.
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