
Solutions of weakly reversible chemical

reaction networks are bounded and

persistent ⋆

Elias August ∗ Mauricio Barahona ∗∗

∗ Department of Computer Science, ETH Zurich, Universitätstrasse 6,
8092 Zurich, Switzerland (e-mail: elias.august@inf.ethz.ch).

∗∗ Department of Bioengineering and Institute for Mathematical
Sciences, Imperial College London, South Kensington Campus, London

SW7 2AZ, United Kingdom (e-mail: m.barahona@imperial.ac.uk).

Abstract: We present extensions to chemical reaction network theory which are relevant to
the analysis of models of biochemical systems. We show that, for positive initial conditions,
solutions of a weakly reversible chemical reaction network are bounded and remain in the
positive orthant. Thus, weak reversibility implies persistence as conjectured by Martin Feinberg.
Our result provides a qualitative criterion to establish that a biochemical network will not
diverge or converge to the boundary, where some concentration levels are zero. It relies on
checking structural properties of the graph of the reaction network solely. It can also be used to
characterise certain bifurcations from stationary to oscillatory behaviour. We illustrate the use
of our result through applications.
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1. INTRODUCTION

In the field of modelling biological systems very often
parameter values are unattainable, can only be collected
under noisy experimental conditions, or are sensitive to the
laboratory environment. On the other hand, in many cases,
biological systems display robust behaviour; that is, we
observe the same qualitative behaviour of the system for a
large range of most parameter values. For certain types of
biological systems, and their mathematical counterparts,
robustness of different system properties can be checked
through analysis methods that do not require information
on the quantitative values of system parameters.

Biochemical processes, but also ecological or economical,
can be visualised through a Chemical Reaction Network
(CRN). An approach to extract important properties of
the system by means of a network analysis without re-
quiring information about the quantitative values of pa-
rameters is applying Martin Feinberg’s Chemical Reaction
Network Theory (CRNT) (Feinberg, 1979, 1987). For in-
stance, the Deficiency Zero Theorem and Deficiency One
Theorem provide means to check for the existence and
stability of a unique positive equilibrium point for the
system, describing the behaviour of interacting chemical
concentrations, independently of parameter values as long
as they are positive and non-vanishing.

An important property is persistence, which means that
chemicals are not eliminated in the course of the process.
In (Angeli et al., 2007), conditions for persistence were
given for conservative systems, that is, for systems without
inputs and outputs and that obey a conservation law.

⋆ Research funded by EPSRC and LiverX (SystemsX.ch).

In Section 3 of this paper, we extend CRNT to provide
conditions for persistence and prove that weak reversibility
of a CRN, a graph whose indecomposable subgraphs are
strongly connected, implies persistence in general (i.e., also
for networks with inputs/outputs), which was conjectured
in (Feinberg, 1987). Furthermore, we show that, for posi-
tive initial conditions, solutions of a weakly reversible CRN
are bounded. This is another important property, since,
while it is expected that for the real system some mecha-
nisms (e.g., limit of resources) will prohibit infinite growth,
mathematical models cannot take them all into account,
either because the lack of detailed knowledge or because
the model has to be kept relatively simple. For instance,
if predators are absent in the simple Lotka-Volterra model
then the prey will multiply without limit. Finally, we apply
our result to important biological systems in Section 4 and
draw conclusions in Section 5.

2. CHEMICAL REACTION NETWORKS OBEYING
MASS ACTION KINETICS

CRNs are used to describe and understand biological
processes. An illustrative example is the Michaelis-Menten
reaction scheme for chemical reactions involving enzymes:

E + S
k1

⇄
k
−1

ES
k2

⇄
k
−2

E + P. (1)

Here, S denotes the substrate, E the enzyme, ES the
enzyme-substrate complex and P the final product. They
are the so called species that participate in the reac-
tions. The positive constants k1, k−1, k2 and k−2 are
the reaction rate constants. Edges represent reactions and
vertices represent complexes (the objects that appear be-
fore and after the reaction arrows). For (1), the vectors
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of concentrations of species and complexes are given by
xT = [[E] [S] [ES] [P ]] and Ψ(x)T = [[E][S] [ES] [E][P ]],
respectively. Here, [E] denotes the concentration of E.

The so called bookkeeping matrix Y maps the space of
complexes into the space of species. The elements of the
ith row of matrix Y tell us in which complexes species i
appears and how often; or, equivalently, the entries to the
jth column tell us of how much of each species complex

j is made of. For (1), Y T =

[

1 1 0 0
0 0 1 0
1 0 0 1

]

. Matrix K is the

transpose of the weighted adjacency matrix of the digraph
representing the CRN; i.e., entry Kij is nonnegative and
corresponds to the rate constant associated with the
reaction from complex j to i. The kinetic matrix Aκ is
given by Aκ = K − diag(KTe), eT = [1 · · · 1]. For (1),

K =

[

0 k−1 0
k1 0 k−2

0 k2 0

]

and Aκ =

[−k1 k−1 0
k1 −(k−1 + k2) k−2

0 k2 −k−2

]

In CRNT, it is common to assume mass action kinetics. It
assumes that reactions take place at constant temperature
in a homogenous and well mixed solution and that then the
probability of a collision between molecules is proportional
to the product of their concentrations. This means that
ln Ψ(x) = Y T ln x, and one formulates the dynamics of
the CRN by the following set of nonlinear ODEs:

ẋ = Y AκΨ(x). (2)

In general, we assume that a CRN has n species and m
complexes. Thus, in (2): x ∈ R

n, Ψ(x) ∈ R
m, Aκ ∈ R

m×m,
Y ∈ N

n×m; and xi, Ψj(x) and Yij are nonnegative for all
i, j. In the following, we will highlight certain properties
of (2), which we will exploit in order to prove the main
theorem of this paper (Theorem 6). Recall that Aκ = K −
diag(KTe). Let us denote diag(KTe) by D. Then, with
∑m

l=1 Klj = Djj , this leads to:

ẋi =

m
∑

j=1

Ψj(x)

(

m
∑

l=1

YilKlj − YijDjj

)

=

m
∑

j=1

m
∑

l=1

KljΨj(x)(Yil − Yij). (3)

Let us denote the reaction rate of the reaction that
transforms complex j into complex l by kj→l, j, l =
{1, . . . , m}. Then, Klj = kj→l and

ẋi =
∑

R

kj→lΨj(x)(Yil − Yij). (4)

‘The symbol R denotes the set of reactions in the under-
lying network, and its presence under the summation sign
is intended to indicate that the sum is taken over all reac-
tions’ (Feinberg, 1987). Note also that Ψj(x) =

∏n
℘=1 x

Y℘j
℘ .

An important property, which we will later use, of CRNs
taken with mass action kinetics was proved in (Haddad
et al., 2001; Chaves, 2003), namely, that if a dynamical
system represents a CRN then ẋi|xi=0 ≥ 0 for all i.
This implies that solutions remain nonnegative if the
initial conditions are nonnegative, and we can restrict our
analysis to the nonnegative orthant, the space of realistic

solutions. The following definitions of a linkage class and
weak reversibility are central to CRNT.

Definition 1. A linkage class is a closed set of complexes
that are linked through reactions. We denote the number
of linkage classes by ℓ.

Remark 2. Definition 1 implies that the linkage class of
the CRN is what is called an indecomposable subgraph
in graph theory. Furthermore, if ℓ > 1 then Aκ can
be block-diagonalised and each block-diagonal submatrix
corresponds to a linkage class.

Definition 3. A CRN is weakly reversible if there is a
directed reaction path from any complex to any other
within the same linkage class.

Remark 4. Weak reversibility means that each indecom-
posable subgraph of the CRN is strongly connected; i.e.,
‘any two points are mutually reachable by means of di-
rected paths’ (Harary, 1962). Thus, in all linkage classes
any individual reaction is always part of a reaction cycle.
Weak reversibility also implies that every block-diagonal
submatrix of Aκ associated with a linkage class is irre-
ducible. A square matrix is irreducible if it is not reducible.
It is reducible if and only if it can be made block upper-
triangular by simultaneous row/column permutations.

2.1 Martin Feinberg’s Chemical Reaction Network Theory

The Deficiency Zero Theorem and Deficiency One Theo-
rem provide important results (Feinberg, 1979, 1987).

Definition 5. Let q = rank(Y Aκ). Then, the deficiency of
a CRN is given by: δ = dim Aκ − q − ℓ = m − q − ℓ ≥ 0.

The Deficiency Zero Theorem guarantees that, indepen-
dently of parameter values, there exists a unique positive
and stable equilibrium point if and only if the CRN is of
deficiency zero and weakly reversible.

The Deficiency One Theorem guarantees that, indepen-
dently of parameter values, there exists at most one pos-
itive equilibrium point if the deficiency of each individual
linkage class is not greater than one and the deficiency
of the entire network equals the sum of the deficiencies
of the individual linkage classes. If the network is weakly
reversible, the theorem also guarantees existence.

In the next section, we provide important results on weakly
reversible CRNs, which extend Martin Feinberg’s network
analysis framework. Many relevant CRNs are weakly re-
versible (Gatermann and Huber, 2002). Importantly, our
result is independent of parameter values and of the net-
work deficiency.

3. BOUNDEDNESS OF WEAKLY REVERSIBLE
CHEMICAL REACTION NETWORKS

The theorem presented in this section, is the main contri-
bution of this paper. It proves boundedness for solutions of
a weakly reversible CRN and the conjecture in (Feinberg,
1987) that weak reversibility implies persistence (and also
the so called global attractor conjecture for deficiency
zero networks). Note that it provides only sufficient con-
ditions and one can construct a ‘persistent’ CRN that
is not weakly reversible and whose solution trajectories
are bounded; for instance, consider (1) and in addition a
constant removal of P and a constant influx of S.
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Theorem 6. If a CRN is weakly reversible then, for all
positive initial conditions (i.e., x(t0) > 0), its solution
trajectories are bounded and remain in the positive or-
thant (i.e., there exist vectors xmin and xmax such that
0 < xmin ≤ x(t) ≤ xmax < ∞ ∀t).

Proof. Recall that solutions remain nonnegative if initial
conditions are nonnegative. By Remark 4, any individual
reaction is always part of a reaction cycle. Thus, (4) can be
written as the sum over all S reaction cycles, where each
cycle s consists of a subset of reactions Rs, s = {1, . . . , S}:

ẋi =
S
∑

s=1

∑

Rs

1

βjl

kj→lΨj(x)(Yil − Yij). (5)

The constant βjl ∈ N is the multiplicity of kj→l in
{R1, . . . ,RS}. For example, consider the network depicted
in Figure 1a. It can be decomposed into two distinct cycles
(Figure 1b). Moreover, reaction 1 → 2 is contained in
both cycles, thus, the multiplicity of k1→2 is two; that is,
β12 = 2. The multiplicities of all other reactions are one.
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Fig. 1. The network in (a) can be decomposed into tow dis-
tinct cycles, which are shown in (b). The multiplicity
of k1→2 is two (i.e., β12 = 2). The multiplicities of all
other reactions are one.

Remark 7. Note that kj→l > 0 for all j, l for which kj→l ∈
R and it follows that kj→lΨj(x) > 0 for all j, l for which
kj→l ∈ R if xi > 0 for all i. (If kj→l /∈ R then kj→l = 0.)

Analogously to Kirchhoff’s second law, for each reaction
cycle s,

∑

Rs

αi
jl = 0, αi

jl = Yil − Yij . (6)

As an example, consider the hypothetical reaction cycle
depicted in Figure 2. Then,

∑4
j=1 αi

jl = Yi2 − Yi1 + Yi3 −

4
u

6

1
u -2

u

?3
u�

Fig. 2. The following holds for the reaction cycle:
∑4

j=1 αi
jl = Yi2 − Yi1 + Yi3 − Yi2 + Yi4 − Yi3 + Yi1 −

Yi4 = 0, l = j + 1 and l = 5 corresponds to l = 1.

Yi2 + Yi4 − Yi3 + Yi1 − Yi4 = 0, l = j + 1 and l = 5
corresponds to l = 1. The equality in (6) implies:

(i) Either αi
jl = 0 for all j, l, which implies that Yij =

Yil, where j, l are such that kj→l ∈ Rs and j, l ∈
{1, . . . , m}. Moreover, if this holds for all S reaction
cycles then ẋi = 0 for all t and xi(t) = xi(t0).

(ii) Or, there exists a Yig such that kg→l ∈ Rs, Yig ≥ Yil

for all l, and Yig > Yil for some l, g, l ∈ {1, . . . , m}.
In the following, we divide the proof into three parts.

(I) We pick an i, i ∈ {1, . . . , n}, let xi(t0) > 0 and assume
that solutions of xw are bounded from above and below
by positive constants for all w 6= i, w = 1, . . . , n. In other
words, we assume that 0 < xwmin

≤ xw ≤ xwmax
< ∞.

Then, it follows from (ii) that there exist a YiM , where
M ∈ {1, . . . , m}, such that kM→l ∈ R, YiM ≥ Yil for all l,
and YiM > Yil for some l. This implies that there exists a
positive constant γ̂ such that

if xi > γ̂ then xYiM

i ≥ xYil

i ∀l and xYiM

i > xYil

i for some l.

Recall that Ψj(x) =
∏n

℘=1 x
Y℘j
℘ and that 0 < xwmin

≤
xw ≤ xwmax

< ∞ for all t and all w, w 6= i. Then, there
exists a positive constant γ̄ such that

if xi > γ̄ then ΨM (x) ≥ Ψl(x) for all l

and ΨM (x) > Ψl(x) for some l. (7)

Note that YiM > Yil means that αi
Ml < 0 and it follows

from Remark 7 that in this case
1

βMl

kM→lΨM (x)αi
Ml < 0 if xi > 0 ∀i. (8)

Recall that ẋi =
∑S

s=1

∑

Rs

1
βjl

kj→lΨj(x)αi
jl. Then, it

follows from (7) and (8) that there exists a positive
constant γ1 such that ẋi < 0 if xi > γ1. Thus, there exists
a t1 > t0 such that xi ≤ γ1 for all t > t1.

Using similar arguments leads to the conclusion that there
exists a YiM̃ such that kM̃→l ∈ R, YiM̃ ≤ Yil for all l, and

YiM̃ < Yil for some l, where l, M̃ ∈ {1, . . . , m}. Hence,
1

βM̃l
kM̃→lΨM̃ (x)αi

M̃ l
> 0 if xi > 0 for all i; and there exists

a positive constant γ̃ such that x
Y

iM̃

i > xYil

i if xi < γ̃ and,
thus, a positive constant γ̄ such that ΨM̃ (x) < Ψl(x) if
xi < γ̄. This implies that there exists a positive constant
γ2 such that ẋi > 0 if 0 < xi < γ2 and xi > 0 for all i.
It follows that if xi(t0) > 0 then there exists a t2 > t0
such that xi ≥ γ2 for all t > t2. Hence, γ2 ≤ xi ≤ γ1; or
in other words, if xi(t0) > 0 for all i, and solutions of xw

are bounded from above and below then solutions of x are
bounded from above and below.

(II) Now, we let xi(t0) > 0 and assume that solutions of
xw are bounded only from above; that is, we assume that
for all t and all w, w 6= i: 0 ≤ xw ≤ xwmax

< ∞. First, let
there be an xq such that xq(t0) = 0 and ẋq = 0, q 6= i;
that is, we consider the behaviour on the boundaries. Note

that, for all j, if Yqj 6= 0 then Ψj(x) =
∏n

℘=1 x
Y℘j
℘ = 0. It

follows that for all j: Ψj(x)Yqj = 0. Therefore,

ẋq =
S
∑

s=1

∑

Rs

1

βjl

kj→lΨj(x)(Yql − Yqj)

=

S
∑

s=1

∑

Rs

1

βjl

kj→lΨj(x)Yql. (9)

It follows that Ψj(x)Yql = 0, since ẋq = 0. This implies
that we can ‘remove’ all reaction cycles in which xq

participates. That is, for all s, s = 1, . . . , S, if there exists
a kj→l ∈ Rs such that Yqj 6= 0 then

∑

Rs

1

βjl

kj→lΨj(x)(Yql − Yqj) = 0.
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We assume that some reaction cycles remain in which
xi participates; otherwise, ẋi = 0 for all t and thus,
xi = xi(t0) > 0. Without loss of generality, we denote

the remaining cycles by 1, . . . , S̃ < S. It follows that

ẋi =

S̃<S
∑

s=1

∑

Rs

1

βop

ko→pΨo(x)(Yip − Yio), Ψo(x) > 0.

Thus, it follows from (I) that if xq = 0 and 0 < xw ≤
xwmax

< ∞ for all t, w, q such that q 6= i and w 6= i,
and 0 < xi(t0) then there exist positive constants γ1

and γ2 and time instants t1 ≥ t0 and t2 ≥ t0 such that
if t > max{t1, t2} then γ2 ≤ xi ≤ γ1. It follows from
continuity of solutions that if 0 ≤ xw ≤ xwmax

< ∞ for all
t, w 6= i, and 0 < xi(t0) then there exist positive constants
γ1 and γ2 and time instants t1 ≥ t0 and t2 ≥ t0 such
that if t > max{t1, t2} then γ2 ≤ xi ≤ γ1. Since, for all
nonnegative initial conditions, solutions will remain in the
nonnegative orthant, this implies that there exist a positive
vector xmin and a time instant t∗ such that

if x(t0) > 0 and x ≤ xmax then x ≥ xmin ∀ t > t∗, (10)

where xmax is a positive vector; that is, for positive initial
conditions, if all solutions are bounded from above then
they are also bounded from below. Therefore, it remains
to show that all solutions are indeed bounded from above.

(III) We let xi(t0) > 0, xr(t0) > 0 and, for all w,
w 6= {i, r}: 0 ≤ xw ≤ xwmax

< ∞. It follows from (6)
that for each reaction cycle s,

∑

Rs
αi

jl = 0,
∑

Rs
αr

jl = 0
and, hence,

∑

Rs

(αi
jl + αr

jl) =
∑

Rs

(Yil + Yrl − Yij − Yrj) = 0.

Then, either (αi
jl + αr

jl) = 0 for all S reaction cycles,
which implies that xi + xr = γ2 for all t, where γ2 is
a positive constant, or there exist YiN and YrN , where
N ∈ {1, . . . , m}, such that kN→l ∈ R, YiN +YrN ≥ Yil+Yrl

holds for all l, and YiN + YrN > Yil + Yrl holds for some
l, l ∈ {1, . . . , m}. It follows that there exists a constant
γ̂ > 0 such that if xixr > γ̂ and xi > 0 ∀i then

xYiN

i xYrN
r ≥ xYil

i xYrl
r for all l

and xYiN

i xYrN
r > xYil

i xYrl
r for some l;

a constant γ̄ > 0 such that if xixr > γ̄ and xi > 0 ∀i then

ΨN(x) ≥ Ψl(x) for all l, and ΨN(x) > Ψl(x) for some l;

and moreover, that in the latter case for some l
1

βNl

kN→lΨN (x)(αi
Nl + αr

Nl) < 0 if xi > 0 ∀i.

This implies that there exists a constant γ∗ > 0 such that

ẋi + ẋr < 0 if xixr > γ∗ and xi > 0 ∀i. (11)

As in (II), it follows that the first inequality in (11) holds
even if one (or more) xq = 0, ẋq = 0, q 6= {i, r}, and thus,
by continuity of solutions that

ẋi + ẋr ≤ 0 if xixr > γ∗ and xi ≥ 0 ∀i. (12)

Without loss of generality, γ∗ ≥ xi(t0)xr(t0).

Note that (12) implies that xixr ≤ γ∗ and then at any
point of time either xi ≤

√
γ∗ or xr ≤ √

γ∗ and it follows
from (I) and (II) that the value of the other specie is
bounded from above by a positive constant, which we
denote by γ⋆, γ⋆ > 0. This implies that the sum xi + xr

is bounded from above by
√

γ∗ + γ⋆. Thus, xi and xr are

bounded from above and it follows from the conclusion of
(II) that also from below. Finally, by induction we can
extend above results to all xi if xi(t0) > 0, i = 1, . . . , n.
Thus, there exist positive constants γmin, γmax and a time
instant t∗ such that for all i, γmin ≤ xi ≤ γmax for all
t > t∗ if x(t0) > 0, which completes the proof. 2

Remark 8. Theorem 6 together with the Brouwer Fixed
Point Theorem implies that a weakly reversible CRN
possesses at least one positive equilibrium point.

Remark 9. The significance of Theorem 6 and Remark 8
lies in the fact that existence of solutions and boundedness
of solution trajectories are often an important require-
ments for the analysis of dynamical systems. Particularly,
in the case of large systems checking for strong connec-
tivity of the underlying graph can be performed auto-
matically and efficiently as opposed to alternative means
that establish boundedness of solution trajectories – for
example, via Lyapunov stability theory.

Remark 10. Since Theorem 6 guarantees boundedness of
solutions, instability of all equilibria of a weakly reversible
CRN guarantees non-diverging oscillatory behaviour; that
is, it guarantees non-diverging periodic, quasi-periodic or
chaotic behaviour.

Remark 11. (‘Hidden’ weak reversibility) Let Aκ,add ∈
N (Y ) (that is, Y Aκ,add = 0) and Aκ,c = Aκ + Aκ,add.
Then, ẋ = Y AκΨ(x) = Y Aκ,cΨ(x). If −Aκ,c is an M-
matrix with zero column sum and irreducible or can be
block-diagonalised and each block-diagonal submatrix is
irreducible (or empty) then the CRN is weakly reversible.
An M-matrix is a matrix with positive diagonal entries and
non-positive off-diagonal entries. Moreover, all principal
minors are nonnegative (Berman and Plemmons, 1979).
In other words, certain dynamical systems arising from
a CRN that is not weakly reversible can be represented
through a weakly reversible one. In this case, Theorem 6
guarantees persistence and boundedness of their solutions.

4. EXAMPLES FROM BIOLOGY AND CHEMISTRY

4.1 An active membrane transport model

Figure 3 shows a simple model consisting of elementary
steps for an active transport system that carries molecules
across the cell membrane. The corresponding CRN has the
following form (Vieira and Bisch, 1994):

A + X ′
k1

⇄
k
−1

B, B + ATP
k2

⇄
k
−2

C + ADP

C
k3

⇄
k
−3

D
k4

⇄
k
−4

E + X ′′, E
k5

⇄
k
−5

F + P, F
k6

⇄
k
−6

A

In (Vieira and Bisch, 1994), the concentrations of lig-
and molecules (X), of ATP, ADP (which drive the
transport (pumping) through ATP hydrolysis) and P
(inorganic phosphate involved in the phosphorylation-
dephosphorylation reactions) are assumed to be exter-
nally controlled parameters. This leads to a CRN that
is (weakly) reversible and to a mathematical model that
consists of a set of linear ordinary differential equations.
In order to simulate dynamic cooperativity, an extra au-
tocatalytic reaction of the following form is added: A +
F ⇄

k7

k
−7

2A. This addition results in a mathematical model

with a nonlinearity ([·] denotes concentration):
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˙[A] = −(k1 + k
−6)[A] + k

−1[B] + k6[F ] + k7[A][F ]− k
−7[A]2,

˙[B] = −(k2 + k
−1)[B] + k

−2[C] + k1[A],

˙[C] = −(k3 + k
−2)[C] + k

−3[D] + k2[B],

˙[D] = −(k4 + k
−3)[D] + k

−4[E] + k3[C],

˙[E] = −(k5 + k
−4)[E] + k

−5[F ] + k4[D],

˙[F ] = −(k6 + k
−5)[F ] + k

−6[A] + k5[E] − k7[A][F ] + k
−7[A]2.

The CRN is of deficiency one. This implies that the
corresponding dynamical system has a unique positive
equilibrium point independently of parameter values. By
Remark 10, instability of the fixed point, which can be
checked by evaluating the eigenvalues of the Jacobian of
the system, necessarily leads to oscillatory behaviour for
positive initial conditions. E.g., the Jacobian is unstable
at the fixed point for the following parameter values: k1 =
500000, k2 = · · · = k5 = 1000, k6 = 3 · 10−5, k7 = 5000,
k−1 = 0.01, k−2 = k−3 = k−4 = 0.003, k−5 = 3 · 10−5,
k−6 = 1.5, k−7 = 750, and total concentrations of 104.

 

E                          D 

A                        B 

F                          C 

P 

P P 

P 

ATP 

ADP 

X’ 

X” 

Fig. 3. Active membrane transport model. Molecules
are actively carried across the cell membrane. An
extracellular molecule, X ′, binds to a free transporter
molecule in the membrane: A + X ′

⇋ B. ATP
hydrolysis (B + ATP ⇋ C + ADP ) drives the
transport of the molecule into the internal medium,
where it is released (X ′′): C ⇋ D ⇋ E + X ′′. Then,
the empty binding site is prepared to repeat the cycle
through the de/phosphorylation reaction E ⇋ F +P ,
and the reaction F ⇋ A (Vieira and Bisch, 1994).

4.2 A Lotka-Volterra system

The Lotka-Volterra equations, or the predator-prey equa-
tions, are used to describe the dynamics of biological
systems in which different species interact, of which some
are the prey of others. We consider the three species
Lotka-Volterra system from (May and Leonard, 1975). The
‘concentrations’ of the three species are denoted by xi,
i = 1, 2, 3. The terms k1xi and k2x

2
i denote birth and death

rate respectively. In accordance with (May and Leonard,
1975), we set k1−d = k2 = 1. Parameters a > 0 and b > 0
denote competition between the different species. We add
to this model migration terms into and out of the habitat;
the former is constant and given by u > 0, and the latter
is proportional to the population strength and given by
dxi, d > 0. The mathematical model of the system has the
following form:

ẋ1 = u + x1(k1 − d − k2x1 − ax2 − bx3),

ẋ2 = u + x2(k1 − d − bx1 − k2x2 − ax3),

ẋ3 = u + x3(k1 − d − ax1 − bx2 − k2x3). (13)

In the following, we will construct a CRN that corresponds
to (13). Note that there exists more than one valid repre-
sentation. In Figure 4a, the ‘biologically sensible’ realisa-
tion is depicted; that is, migration of the different species
is independent of each other. Although this representation
is not weakly reversible, the CRN has a ‘hidden’ weakly
reversible structure (Remark 11). A weakly reversible CRN
which corresponds to (13) is shown in Figure 4b. Here, we
assume that some migration occurs in pairs, where the
pairs consist of members from different species.
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Fig. 4. Two representations of (13). Note that the
network in (b) is weakly reversible. (The symbol ∅
represents the null-complex; it functions as a source
and a sink for the system.) For clarity, we omitted the
reaction rates in (b) that are identical in (a).

Now, consider ẋ1 = 0: Since 0 = u + x1 − x2
1 − ax1x2 −

bx1x3, Descartes’ rule of signs implies that there exists a
unique positive equilibrium point for x1 (and analogously

for x2 and x3). It is given by xeqi
=

1+
√

1+4u(1+a+b)

2(1+a+b) for

i = 1, 2, 3. The Jacobian of (13) is a circulant matrix, its

eigenvalues are λ1 = −
√

1 + 4u(1 + a + b) and λ2,3 = 1 −
(2 + 0.5a + 0.5b)xeqi

± 0.5
√

3(a − b)xeqi
(see (May and

Leonard, 1975) and the references therein). After some
algebraic manipulations, we obtain that the Jacobian is

unstable if 9
(

a+b
4+a+b

)2

> 1 + 4u(1 + a + b). Since (13)

has a weakly reversible CRN associated with it, instability
of the unique fixed point necessarily leads to oscillatory
behaviour. Using numerical methods, we find only periodic
limit cycles for different parameter values even for small
values of u while it was shown in (May and Leonard, 1975)
that for u = 0, a = 0.8 and b = 1.3 nonperiodic oscillations
exist. This gives rise to the question whether weakly
reversibility excludes nonperiodic oscillatory behaviour.
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Finally, note that boundedness of solutions for (13) can
also be established via the Lyapunov function V (x) =
∑3

i=1 xi, since V̇ (x) < 0 for large values of
∑3

i=1 xi.
(Recall that xi ≥ 0.) In the next example, we will provide
an example of a relatively simple CRN that is weakly
reversible but for which a Lyapunov function that proves
boundedness of solutions cannot be readily found, which
highlights the significance of Theorem 6.

4.3 A chemical oscillator

The CRN in Figure 5 is weakly reversible and of deficiency
1. Thus, the corresponding dynamical system has a unique
positive equilibrium point independently of parameter
values. The set of ODEs describing the system is:

ẋ1 = αx1 − cx1 − bx2
1 + (d + ε)x3 − gx1x2,

ẋ2 =−hx2 + (k + ε)x3 − gx1x2,

ẋ3 =−(d + k + ε)x3 + hx2 + cx1 + gx1x2. (14)

By inspection, there is only one additional nonnegative
equilibrium point, which is the origin and unstable for all
parameter values. This follows from applying the Routh-
Hurwitz criterion (see (Murray, 1990)).
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- kx3
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x2� �

hε
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cd
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6
?
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2x1

Fig. 5. A chemical oscillator. This CRN (from (Fein-
berg, 1979)) is weakly reversible and of deficiency one.

Note that a Lyapunov function that proves boundedness of
solutions cannot be easily found for the dynamical system
given by (14). However, it follows from Theorem 6 that
solutions of (14) are bounded; thus, if the positive equilib-
rium is unstable then the system exhibits oscillatory be-
haviour. Using the Routh-Hurwitz criterion the parameter
space can be easily explored. E.g., if α = 100, b, c, d = 0.1,
g = 1, h = 1 and k = 100, we observe periodic oscillatory
behaviour for ε < 354 (see Figure 6).
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Fig. 6. Time series and limit cycle of (14). ε = 100.

5. CONCLUSION

In this paper, we showed that, for positive initial condi-
tions, solutions of a weakly reversible CRN are bounded
and remain in the positive orthant. Hence, we proved Mar-
tin Feinberg’s conjecture that weak reversibility implies
persistence, an important and, thus, desired property of bi-
ological systems. Moreover, when dealing with dynamical
systems that have multiple equilibrium points and/or limit
cycles it is often of great interest to find attracting sets or
prove their existence. By checking structural properties of
the graph of the CRN, our result provides a qualitative
criterion, which is completely independent of parameter
values, for the existence of such a set. The result can also
be used to characterise certain bifurcations from stationary
to oscillatory behaviour as exemplified in Section 4. Fi-
nally, since we observed only periodic behaviour for weakly
reversible CRNs, an interesting question is whether weak
reversibility excludes nonperiodic oscillations.
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