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Abstract: In this paper the stationary behavior of uncertain and possibly multistable gene
regulation networks is considered. We first introduce a modeling framework which is able to
represent the qualitative knowledge which is typically available for these systems. Then we turn
to the problem of model discrimination: Given several alternative model structures that can all
reproduce the experimental observations, is it possible to decide which structure may be the
most appropriate description of the real system. To this end, a robustness measure for qualitative
multistable gene regulation networks is introduced and also a method for the computation of
this measure is presented. The benefit of the developed method is twofold: On the one hand it
allows to compare the robustness properties of different model structures, on the other hand
also the most fragile interconnections of a network can be detected. Finally, an example network
is analyzed with this method.
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1. INTRODUCTION

Developing models of gene regulation networks is in gen-
eral a difficult task as the knowledge about these systems
is usually very vague. Especially exact concentrations and
reaction kinetics can mostly not be determined. However,
from numerous experiments and extensive literature re-
search it is often possible to develop hypotheses about
the interaction structure of a regulation network. These
hypotheses can then be implemented and tested in a
qualitative model, as for example a Boolean description.
However, it will most likely be possible to construct several
alternative models which are all able to reproduce the main
characteristics of the biological system, such as for example
the steady state behavior, but differ in the interaction
structure. In (Wittmann et al., 2009) for example several
alternative model structures could be developed that were
all able to reproduce a certain gene expression pattern
around the midbrain-/hindbrain boundary.

In this work we focus on the steady state behavior of
gene regulation networks and explicitly consider networks
which are able to show multistability as this is a common
phenomenon in biology. Assuming that we have given
several alternative model structures which can all in prin-
ciple reproduce the required steady states, we address the
question of model discrimination: How to decide which of
the given model structures may be a more appropriate
description of the real system.

To approach this problem we adopt the definition from
Kitano (2004) that robustness is a system’s ability to main-
tain its function even in the presence of perturbations, and
we make use of the common assumption that biological
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systems have evolved such that they became very robust
against common perturbations. In this context, a network
which can tolerate the largest perturbations until it loses
its function will be regarded as the most robust and thus
biologically most plausible network. For the purpose of this
paper we consider multistability, i.e., the network’s ability
to reproduce several steady states at specified locations, as
the function to be generated in a maximally robust way.

Many authors have studied robustness properties of regu-
lation networks, modeled in different frameworks. Consid-
ering Boolean models, Chaves et al. (2005) have analyzed a
Boolean model for the segment polarity genes with respect
to its ability to generate a certain expression pattern
under synchronous and asynchronous updates. For regula-
tion networks described by ordinary differential equations,
Eißing et al. (2005) have analyzed the robustness of an
apoptosis model with respect to intrinsic and parametric
perturbations. For the same class of models, Jacobsen and
Cedersund (2008) have analyzed dynamic perturbations of
the interactions using methods from robust control theory.
Kinetic Perturbations have been introduced in (Waldherr
et al., 2009). There also have been approaches focusing
on the relation between network topology and robustness.
Prill et al. (2005) have for example analyzed small network
motifs and their stability properties and correlated them
with their relative abundance in large regulation networks.
Also Klemm and Bornholdt (2005) discuss the influence of
small motifs on the performance of the whole network.
Similar to a Boolean framework, our approach will only
use structural information about the system and make
no specific assumptions about the exact reaction kinetics.
However, we build upon a framework based on ordinary
differential equations which allows a more elaborate treat-
ment of robustness aspects.
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The paper is structured as follows: In Section 2 we first
introduce a nonparametric modeling framework which
is appropriate to incorporate the incomplete knowledge
which is typically available for gene regulation networks.
It is also explained how steady state measurements can
be represented in this framework and several important
definitions are given there. In Section 3, conditions for
forward-invariance are stated which are then used to
develop the robustness measure. In Section 4, a method
for the efficient computation of this robustness measure
is presented. Finally, the application of the method is
illustrated with an example in Section 5.

2. PRELIMINARIES

2.1 Qualitative modeling framework

In gene regulation networks, genes can code for proteins
which may in turn influence the production of other
proteins. These proteins are called transcription factors
and can either activate or inhibit the production of other
proteins by binding to specific binding sites of the DNA
strand. As described in (Chaves et al., 2008; Breindl
and Allgöwer, 2009), these systems can be modeled by
differential equations of the form

ẋi = −ki · xi + fi(x), i = 1, . . . , n, (1)

with x = [x1, . . . , xn]T ∈ Rn. A variable xi represents
the concentration of the i-th protein in the network. For
simplicity it is assumed that the degradation rates ki > 0
are constant. The production rate of a protein xi can be
influenced by other proteins in the system. Therefore, the
functions fi are combinations of activation and inhibition
functions which are defined next (Chaves et al., 2008).

Definition 1. Let N ∈ R+. An activation (inhibition)
function is a function ν : [0,∞) → [0, N) (µ : [0,∞) →
(0, N ]) with:

i) ν (µ) is continuously differentiable,
ii) ν(0) = 0 and ν(x)→ N as x→∞

(µ(0) = N and µ(x)→ 0 as x→∞),
iii) ν(x) (µ(x)) is monotonously increasing (decreasing).

We denote the set of all activation functions N and the
set of all inhibition functions M. We furthermore use the
symbol ϕ to denote either an activation function ν ∈ N
or an inhibition function µ ∈ M. Sϕ then either denotes
N if ϕ is an activation function, orM if ϕ is an inhibition
function.

In order to achieve a compact notation for the production
terms fi(x) we use the symbol “◦” for sums “+” as
well as for multiplications “·”. Then, the general form
of a production term fi(x) can be written as fi(x) =
ϕi,1(xj1) ◦ . . . ◦ ϕi,qi(xjqi), with indices jk ∈ {1, . . . , n},
k ∈ {1, . . . , qi} and qi ∈ {1, . . . n}. This means that
for a function ϕi,k(xjk), the index i denotes the protein
which is regulated, i.e., xi, the index k enumerates the
transcription factors of xi, and the index jk specifies the
transcription factor. Furthermore, the index qi denotes the
number of transcription factors of xi. As it is assumed
that each protein can only either activate, inhibit, or
have no influence on the production of another protein,
a state variable xj can be the argument of at most one
function ϕi,k, k ∈ {1, . . . , qi}, for each i = {1, . . . , n}.
Without knowledge of the reaction kinetics, the values ki

and the exact shapes of the monotonous functions cannot
be specified which leads to an uncertain model.

2.2 Measurements

Considering the location of steady states in the state space
two facts are important. Firstly, the typical variability
between individual cells makes it impossible to specify
exact values for the steady state protein concentrations,
but rather intervals for these concentrations should be con-
sidered. Secondly, also measurements usually show large
uncertainties. For these reasons we assume that a stable
steady state can be represented by a hyperrectangular
forward-invariant set F = Ix1

× . . . × Ixn
in the state

space, with intervals Ixi
= [xi, xi].

Definition 2. A set P ⊆ Rn is forward-invariant for the
system (1) if, for each initial condition x(0) = x0 ∈ P,
the corresponding solution x(t;x0) remains in P for all
positive times, i.e., ∀t > 0 : x(t;x0) ∈ P.

Additionally, we assume that the maximal concentrations
xmax
i of each protein are biologically well characterized and

we suppose that only high and low protein concentrations
are distinguished such that each interval Ixi

has either

the form Ixi
= [0, xlow

i ] or Ixi
= [xhigh

i , xmax
i ], with

0 < xlow
i < xhigh

i < xmax
i .

2.3 Definitions

For deriving conditions on the monotonous functions ϕi,k
such that a set F is forward-invariant, we will use the
values and variables specified in Figure 1. Also several
additional definitions are needed. We begin with the defi-
nition of a tube for a monotonous function.
Definition 3. The 3-tuple of pairs of positive real numbers
TN =

(
(xlow, γlow), (xhigh, γhigh), (xmax, γmax)

)
such that

γlow ≤ γhigh ≤ γmax and xlow ≤ xhigh ≤ xmax is called
tube for activation functions.

Equivalently, the 3-tuple of pairs of positive real numbers
TM =

(
(xlow, γhigh), (xhigh, γlow), (xmax, γmin)

)
such that

γmin ≤ γlow ≤ γhigh and xlow ≤ xhigh ≤ xmax is called
tube for inhibition functions.
Definition 4. An activation function ν ∈ N (µ ∈ M)
is said to satisfy a tube TN (TM), denoted as ν � TN
(µ ` TM), if the following inequalities hold.

∀x ≤ xlow : ν(x) ≤ γlow (µ(x) ≥ γhigh) (2)

∀x ≥ xhigh : ν(x) ≥ γhigh (µ(x) ≤ γlow) (3)

∀x ≤ xmax : ν(x) ≤ γmax (µ(x) ≥ γmin) (4)

If these inequalities are not satisfied we write ν 2 TN ,
or µ 2 TM, respectively. Furthermore, we use T as
abbreviation for both, TN and TM. A tube assigned to
a monotonous function ϕi,k will be indexed T i,k.

Next, a measure for the perturbation of a monotonous
function is defined.
Definition 5. Given a monotonous function ϕ and a per-
turbed function ϕp ∈ Sϕ. Then,

P(ϕ,ϕp) =

∫ ∞
0

|ϕ(x)− ϕp(x)|dx (5)

is a measure for the perturbation of ϕ.
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Fig. 1. Left two figures: Activation and inhibition functions. Right figure: Illustration of a tube and the areas A1,A2
and A3 for an activation function.

With this the purpose of this paper can now be stated more
precisely. Suppose a set of m forward-invariant sets Fz,
z ∈ {1, . . . ,m}, is given and every interval Ixi,z

is either

a low or a high interval, i.e., Ixi,z
= [0, xlow

i,z ], or Ixi,z
=

[xhigh
i,z , xmax

i,z ]. Furthermore, an interaction structure of the

regulation network is given in the form of Equation (1),
but with unspecified monotonous functions. The goal is
now to evaluate the capability of the given model structure
to generate the observed steady states in the sense of
Kitano’s robustness definition. The function which shall
be maintained and also the perturbations have already
been defined in this section such that the next step is the
development of a measure which quantifies this capability.
This measure will be referred to as robustness measure
and is developed in the following section. A further goal is
then the development of a method that allows to compute
this robustness measure and thus to also compare different
network structures.

3. CONDITIONS FOR FORWARD-INVARIANCE

We first state sufficient and necessary conditions for the
forward-invariance of a set F (Blanchini, 1999).

Theorem 1. [Nagumo] Consider the system ẋ = g(x),
x ∈ Rn. Let F ⊆ Rn be a closed and convex set. Then
F is forward-invariant if and only if

∀x ∈ F : g(x) ∈ KF (x), (6)

where KF (x) is the tangent cone to F in x.

In words, this means that at each point x at the boundary
of F the vector field has to be directed inwards or tangent
to F . For further explanations, see for example (Blanchini,
1999).

For the class of systems considered here and for a hyper-
rectangular set F , the following proposition is equivalent
to Theorem 1.
Proposition 2. A hyperrectangular set F = Ix1 ×. . .×Ixn ,
Ixj = [xj , xj ], is forward-invariant for system (1) if and
only if

∀i ∈ {1, . . . n} : −ki · xi + λi,1 ◦ . . . ◦ λi,qi ≥ 0 (7)

where λi,k = minxj∈Ixj
ϕi,k(xj), and

∀i ∈ {1, . . . n} : −ki · xi + λi,1 ◦ . . . ◦ λi,qi ≤ 0 (8)

where λi,k = maxxj∈Ixj
ϕi,k(xj).

The proof directly follows from the fact that all activation
and inhibition functions in the network are monotonous.

Therefore we can conclude that, if all monotonous func-
tions ϕi,k of system (1) satisfy Equations (7) and (8) for
every set Fz, z ∈ {1, . . . ,m}, these sets are indeed forward-
invariant for the system. As in our case we have no nominal
system, Proposition 2 cannot be applied directly. However,
if only high and low intervals are considered it can be
reformulated in terms of tubes.
Proposition 3. Given a set F = Ix1

× . . .× Ixn
such that

Ixi = [0, xlow
i ] or Ixi = [xhigh

i , xmax
i ]. Furthermore, given

tubes T i,k which satisfy the conditions
∀i ∈ {1, . . . n} : −ki · xi + γ

i,1
◦ . . . ◦ γ

i,qi
≥ 0 (9)

with either xi = 0 or xi = xhigh
i , and

γ
i,k

=

{
0 if 0 ∈ Ixi,k

∧ ϕi,k ∈ N
min{γ : (x, γ) ∈ T i,k ∧ x ∈ Ixi,k

} otherwise

and
∀i ∈ {1, . . . n} : −ki · xi + γi,1 ◦ . . . ◦ γi,qi ≤ 0 (10)

where either xi = xlow
i or xi = xmax

i , and γi,k = max{γ :

(x, γ) ∈ T i,k ∧ x ∈ Ixi,k
}.

If ∀i, k : ϕi,k � T i,k, then the set F is forward-invariant
for the system (1).

Proof. Note that ϕi,k � T i,k means that each γ
i,k

is a

lower bound on λi,k and each γi,k is an upper bound on

λi,k. Therefore, if Equations (9) and (10) hold for a tube
T i,k and a set F , then Equations (7) and (8) hold for
ϕi,k � T i,k and the set Fz. 2

However, the other direction is not necessarily true. There-
fore Equations (9) and (10) are conservative.

Two more definitions are needed to state the robustness
measure.
Definition 6. Given a tube T and a monotonous function
ϕ � T . Then,

Rmin(ϕ, T ) = min
ϕp∈Sϕ∧ϕp2T

P(ϕ,ϕp) (11)

is the minimal perturbation of ϕ with respect to T , i.e.,
the smallest perturbation of ϕ according to Equation (5)
such that ϕp is no longer contained in the tube T .
Definition 7. The maximal robustness value for a given
tube T is defined by

Rmax(T ) = max
ϕ�T
Rmin(ϕ, T ) (12)

The solution of Equation (12) can be computed analyti-
cally as will be shown in Section 4. With this, we are now
ready to give the definition of the robustness measure.
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Definition 8. Given a system (1) with unspecified activa-
tion and inhibition functions. The robustness measure G
for the system is given by

G = max
T i,k

min
i,k
Rmax(T i,k)

s.t.: ∀T i,k and ∀Fz : Equations (9) and (10) hold.
(13)

The measure G can be interpreted as a guarantee. It
involves the computation of an optimal system, i.e., func-
tions ϕ̃i,k such that G is maximized. Then, for this optimal
system it can be guaranteed that all sets Fz are still
forward-invariant if no function ϕ̃i,k is perturbed by more
than G, i.e., ∀i, k : P(ϕ̃i,k, ϕ̃

p
i,k) ≤ G. Note also that

the optimal system is designed such that the smallest
value Rmax(T i,k) among all tubes is maximized. This is
reasonable as the tube with the smallest value Rmax(T i,k)
represents the most fragile interconnection of the network
and thus determines the robustness of the whole network.
Maximizing this value therefore increases the robustness
of the complete network.

As Proposition 3 is only a sufficient but not a necessary
condition for the forward-invariance of the sets Fz, G is a
lower bound on the maximally achievable robustness value.

4. COMPUTATION OF THE ROBUSTNESS
MEASURE

First, the analytical solution for Equation (12) is given.

Proposition 4. Given a tube T . The maximal valueRmax(T )
is given by

R(TN ) =
γlow · (γmax − γhigh)

γlow + (γmax − γhigh)
· (xhigh − xlow) (14)

if T is a tube for activations functions and it is

R(TM) =
(N − γhigh) · (γlow − γmin)

(N − γhigh) + (γlow − γmin)
·(xhigh−xlow) (15)

if T is a tube for inhibition functions.

The proof is only given for a tube for activation functions
as the proof for a tube for inhibition functions works with
equivalent arguments.

Proof. Given a tube TN , an activation function ϕ � TN
and a perturbed activation function νp 2 TN . Then νp

violates at least one of the Inequalities (2) - (4) and we can
give the following estimates on P (ν, νp). For an illustration
see Figure 1.

Assume Inequality (2) is violated and let x̂ be the smallest
value such that ν(x̂) = γlow. Then it holds that P(ν, νp) ≥∫ x̂
xlow(γlow − ν(x)) dx = A1(ν).

Now assume Inequality (3) is violated. Let x̂ be the
smallest value such that ν(x̂) = γhigh. Then P(ν, νp) ≥∫ xhigh

x̂
(ν(x)− γhigh) dx = A2(ν).

Finally assume that Inequality (4) is violated. Then, with
x̂ being the largest value such that ν(x̂) = γmax it holds

that P(ν, νp) ≥
∫ x̂
xmax(γmax − ν(x)) dx = A3(ν).

Thus, for every νp ∈ N such that νp 2 T it holds that
R(ν, νp) ≥ A(ν) = min{A1(ν),A2(ν),A3(ν)} and thus
Rmin(ν, T ) = A(ν). In order to compute Rmax(T ), we first
derive the function ν? which maximizes A.

To do so, first note that for every given ν � TN it
is possible to find another ν̄ � TN which is identical
with ν in [0, x̃], with ν(x̃) = γmax − ε, ε arbitrarily
small, such that A3(ν̄) = max{A1(ν̄),A2(ν̄),A3(ν̄)}. One
possibility to achieve this is keeping ν̄ constant at γmax −
ε in the interval [x̃, x̂] and choose x̂ large enough. But
this means that for computing the function ν? which
maximizes A it is sufficient to compute the function ν?

which maximizes min{A1,A2}, and satisfies the modified
tube T̄N = {(xlow, γlow), (xhigh, γhigh), (xmax, γ̄max)}, with
γ̄max = γmax − ε.
Now, to compute this ν?, first define a step function

hxs(x) =

{
0 x ≤ xs
γ̄max x > xs

. (16)

Next, for the given function ν̄, let x̄s be the smallest

value such that ν̄(x̄s) =
(γhigh+γlow)

2 . Then, hx̄s � T̄N
and with the above definitions of A1 and A2 it follows
that min{A1(ν̄),A2(ν̄)} ≤ min{A1(hx̄s),A2(hx̄s)}. This
means we can always find a step function with a larger
value A than the function ν̄. Next, among all possible step
functions hxs � T̄N , the step function hx?

s
which maximizes

min{A1,A2} has to satisfy A1 = A2, i.e., (γ̄max − γhigh) ·
(xhigh−xs?) = γlow ·(x?s−xlow), from which it follows that

x?s = γlow·xlow+(γ̄max−γhigh)·xhigh

γlow+(γ̄max−γhigh)
. With this and as ε can be

arbitrarily small we get

Rmax(TN ) =
γlow · (γmax − γhigh)

γlow + (γmax − γhigh)
· (xhigh − xlow). (17)

2

Note that step functions are no admissible activation func-
tion as they are not continuously differentiable. Therefore,
Equation (17) is an upper bound on Rmax(T ). But as step
functions can be approximated arbitrarily closely in the l1-
Norm by differentiable activation functions it is the least
upper bound.

With this result and the new variables

chi,k =

{
γmax
i,k − γ

high
i,k if ϕi,k is an activation function

Ni,k − γhigh
i,k if ϕi,k is an inhibition function

cli,k =

{
γlow
i,k if ϕi,k is an activation function

γlow
i,k − γmin

i,k if ϕi,k is an inhibition function
(18)

Equation (13) can now be rewritten as

G = max
T i,k

min
i,k

{
chi,k · cli,k
chi,k + cli,k

(xhigh
i,k − x

low
i,k )

}
s.t.: ∀T i,k and ∀Fz : Equations (9) and (10) hold.

(19)

Again an equivalent formulation is the following one. For
similar examples see for example (Boyd and Vanden-
berghe, 2004).

G = min
1

t

s.t.: ∀i, k : t ≤

{
chi,k · cli,k
chi,k + cli,k

(xhigh
i,k − x

low
i,k )

}
∀T i,k and ∀Fz : Equations (9) and (10) hold

(20)

While Equation (20) gives a lower bound on the perturba-
tion which will not lead to a loss of the desired forward-
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invariant sets, further constraints need to be considered for
the overall optimization problem. Firstly, as we assumed
maximum concentrations xmax

i for each protein, we can
consider X = [0, xmax

i ]× . . .× [0, xmax
n ] as another forward-

invariant set. Using again Proposition 2 gives the following
conditions

−ki · xmax
i + γ̂i,1 ◦ . . . ◦ γ̂i,qi ≤ 0 (21)

where γ̂i,k = N if ϕi,k is an inhibition function and
γ̂i,k = γmax

i,k if it is an activation function.

Also the monotonicity constraints from the definition of

the tube have to be included. For every tube T i,kN the
constraint

0 ≤ γlow
i,k ≤ γ

high
i,k ≤ γ

max
i,k (22)

and for every tube T i,kM the constraint

0 ≤ γmin
i,k ≤ γlow

i,k ≤ γ
high
i,k ≤ N (23)

has to be included.

Finally, we require all optimization variables to be positive.

4.1 Formulation as convex optimization problem

We aim to formulate the optimization problem (20) and
the additional constraints as convex optimization problem
and first recall its definition.

Definition 9. A convex optimization problem has the stan-
dard form

min f0(x)

s.t. fi(x) ≤ 0, i = 1, . . . ,m

hi = 0, i = 1, . . . , p

(24)

where the objective function f0 : Rn → R and the
inequality constraints fi : Rn → R, i = 1, . . . ,m, are
convex functions, and the equality constraints hi : Rn → R
are affine in x.

Unfortunately, it is not always possible to transfer the
presented problem into an equivalent convex formulation.
However, in the cases where each “◦” either only represents
a sum or a multiplication, the problem is already convex or
can be easily transformed into an equivalent convex form.
These two cases are studied next. In the general case it is
still possible to compute upper and lower bounds on the
optimal value, but this will not be treated here.

Proposition 5. If the system (1) contains only additive
combinations of monotonous functions, the optimization
problem (20) together with the additional constraints
(21) - (23) is convex.

Proof. It has to be checked that all requirements from
Definition 9 are fulfilled. Clearly, the objective G =
f0 = 1

t is convex in t. Also the constraints f ci,k = t −(
chi,k·c

l
i,k

ch
i,k

+cl
i,k

(xhigh
i,k − xlow

i,k )

)
≤ 0 are convex. To see this, the

second-order condition (Boyd and Vandenberghe, 2004)
can be applied. The eigenvalues of the Hessian of f ci,k

are {0, 0, 2((chi,k)2+(cli,k)2)

((ch
i,k

)2+(cl
i,k

)2)3
}. Therefore, the Hessian is pos-

itive semi-definite on the domain (chi,k, c
l
i,k, t) ∈ R3

+ and
f ci,k is convex in this domain. Next, all inequality con-

straints from (9), (10), (21), (22) and (23) are affine in
the optimization variables and thus convex. Finally, the

equality constraints from (18) are affine in the variables as
required. 2

Next, the special case is considered where all “◦” signs
stand for a multiplication. Then by changing the con-
straints from Equation (18) into

chi,k ≤

{
γmax
i,k − γ

high
ij if ϕi,k is an activation function

Ni,k − γhigh
i,k if ϕi,k is an inhibition function

cli,k ≤
{

γlow
i,k if ϕi,k is an activation function

γlow
i,k − γmin

i,k if ϕi,k is an inhibition function
(25)

yields an equivalent convex optimization problem as stated
next.

Proposition 6. Assume System (1) has only multiplica-
tive combinations. The relaxed optimization problem with
Equations (25) instead of Equations (18) is convex and has
the same optimal value G as the original problem.

To prove this, two definitions from (Boyd and Vanden-
berghe, 2004) are needed.

Definition 10. A function f : Rn → R with domain
dom f = Rn+ of the form f(x) = cxa11 xa22 . . . xann , c > 0
and ai ∈ R is a monomial. A finite sum of monomials
F (x) =

∑K
k=1 fk(x), K ∈ N+, is called posynomial.

Definition 11. An optimization problem

min f0(x)

s.t. fi(x) ≤ 1, i = 1, . . . ,m

hi = 1, i = 1, . . . , p

(26)

with domain dom = Rn+, where f0 and fi, i = 0, . . . ,m,
are posynomials, and hi, i = 1, . . . , p, are monomials is
called a geometric program.

A geometric program can be transformed into a convex
problem of the form of Equation (24) by the variable
transformation yi = log xi. With this Proposition 6 can
now be proved.

Proof. Convexity: We will show that the optimization
problem is given as a geometric program. First, the ob-
jective G = f0 = 1

t is a posynomial. Also, the constraints

f ci,k = t− chi,k·c
l
i,k

ch
i,k

+cl
i,k

(xhigh
i,k − xlow

i,k ) ≤ 0 can be reformulated

as posynomial f ci,k = t ·a−1 · (cli,k)−1 + t ·a−1 · (chi,k)−1 ≤ 1,

with constant a = (xhigh
i,k −xlow

i,k ). In an equivalent way, the

inequality constraints from Equations (9), (10), (21), (22)
and (23) can be rewritten as posynomials. Also for the
modified constraints from Equation (25) this is possible.
Therefore the optimization problem is given as a geometric
problem.

Equivalence: First note that the feasible set of the original
problem is contained in the feasible set of the relaxed
problem. Denote p?mod the optimal value of the relaxed
problem. Then it holds that p?mod ≥ p?. It now has to be
shown that the optimal value for the modified problem
is obtained when all relaxed inequalities (25) are satisfied
with equality, i.e., p?mod = p?.

Denote ξ the vector of variables, which takes the value
ξ? at the optimal point. Recall that the optimal value
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Table 1. Forward-invariant sets

Protein Steady State 1 Steady State 2
x1 0 - 0.2 0.8 - 1
x2 0.8 - 1 0 - 0.2
x3 0.8 - 1 0 - 0.2

p? equals the smallest value Rmax
i,k of all tubes T i,k in

the system. Then, all tubes T i,k in the system can be
partitioned into two sets. The first set V contains all tubes
for which it holds that Rmax

i,k = p? and the second set W
contains all remaining tubes. For these tubes we have that
Rmax
i,k > p?mod.

Now assume that at ξ = ξ? there is a relaxed constraint
(25) which does not hold with equality. Then, without
influencing any other constraint, equality of this constraint
can be achieved by increasing the respective value chi,k
or cli,k. Then, as Rmax

i,k is monotonically increasing in chi,k
and cli,k, this value will also increase. As p?mod is optimal,

there has to be at least one tube T i,k in the set V for
which it holds that all constraints (25) hold with equality.
Then modifying all other constraints which do not hold
with equality in the way described above yields an optimal
solution p? for the original problem with p? = p?mod. 2

5. EXAMPLE

The method and its application shall now be illustrated
with an example. Consider the two alternative networks
in Table 2 involving 3 species. The second model is a
submodel of the first one. We want to compare these
two models with respect to their ability to reproduce the
desired forward-invariant sets from Table 1. The maximal
concentration of each xmax

i as well as all parameters ki are
set to 1.

The question is now, which model structure is better suited
to fulfill this task under perturbations of the monotonous
functions. Solving the presented optimization problem
for each model with Yalmip (Löfberg, 2004) gives the
guarantee G and also a tube for each monotonous function
in the system. From these tubes the optimal step functions
as shown in the proof of Proposition 4 can then be
reconstructed. The results are summarized in Table 3.
In this case, for the weaker connected model a larger
guarantee can be given with our method. Considering
Table 3, in model 1, ν3,1(x2) is the most robust interaction
while the areas A are equal for all other functions and can
not be increased further, making them the most fragile
links. In the second model, all functions have an equal area
A = G2, which makes them all equally robust or fragile.

It is also interesting to investigate how these results
depend on the choice of the steady state concentrations

Table 2. Alternative Models

Model 1 Model 2

ẋ1 = −x1 + µ1,1(x2) · µ1,2(x3)

ẋ2 = −x2 + µ2,1(x1) · ν2,2(x3)

ẋ3 = −x3 + ν3,1(x2)

ẋ1 = −x1 + µ1,1(x3)

ẋ2 = −x2 + µ2,1(x1)

ẋ3 = −x3 + ν3,1(x2)

x1 x2x3 x1 x2x3

in Table 1. A case study showed that, if all intervals were
chosen of equal size, always the weaker connected model
has a higher robustness value. However, this situation can
change for different interval sizes.

Table 3. Tubes resulting from optimization

Model 1, G1 = 0.05 Model 2, G2 = 0.06

γlow γhigh γmax, N γlow γhigh γmax, N
µ1,1 0.447 0.894 1 - - - -
µ1,2 0.447 0.894 1 µ1,1 0.2 0.8 1
µ2,1 0.447 0.894 1 µ2,1 0.2 0.8 1
ν2,2 0.447 0.894 1 - - - -
ν3,1 0.2 0.8 1 ν3,1 0.2 0.8 1

6. CONCLUSION

In this paper we have defined a robustness measure that
characterizes the ability of a given network structure to
produce forward-invariant sets representing the steady
states of the system. Also a method for its computation
has been developed and it was demonstrated that the
resulting optimization problem is convex in special cases.
The purpose of this method is twofold. On the one hand
it allows to compare different network structures with
respect to their ability to generate a desired multistable
behavior. On the other hand the most fragile interactions
of a network can be detected.
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