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Abstract: Chemical Reaction Network theory allows us to decide whether many classes of
networks have the capacity for multiple positive equilibria, based on their structural properties.
In this way, the deficiency zero theorem asserts that every weakly reversible network of zero
deficiency has a unique equilibrium, for any choices of parameter values. We make use of CRNT,
aiming not only to discriminate whether a (positive deficiency) network can exhibit multiple
steady states, but also to characterize the whole space of the parameters regarding to their
capability to produce multistationarity. In this work, we provide a condition, on the parameters
of biochemical networks, for the appearance of multistationarity.
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1. INTRODUCTION

The system-level understanding of a biological system
requires insight into its structure and dynamics, identify-
ing not only the interactions and mechanisms configuring
the system network, but its behaviour over time under
various conditions (Kitano, 2002). The time evolution of
the concentrations c of the species involved in a biochem-
ical reaction network can be described, under standard
assumptions, by a system of nonlinear first order ordinary
differential equations (ODEs) of the form:

ċ = f(c, k) (1)
where k refers to the kinetic parameters.

In the context of biochemical network modelling, quantita-
tive knowledge is often very limited. To overcome this lack
of information, formal methods are needed that link the
network structure and the dynamics (Conradi et al., 2007),
in order to unravel how the observed biological behaviour
arises out of the network topology and the parameters (Lu
et al., 2006).

Specifically, much effort has been devoted to explore the
capacity for multistability in biochemical reaction net-
works. Multistationarity plays an important role in bio-
logical phenomena such as cell differentiation and memory.
Angeli et al. (2004) developed a graphical method for de-
ducing the stability behavior and bifurcation diagrams for
a class of feedback systems of arbitrary order. In a recent
work, Conradi et al. (2007) provide a method to decompose
a biochemical network in subnetworks capable of being an-
alyzed with the deficiency one algorithm (Feinberg, 1995).
Furthermore, conditions are given under which, if multista-
bility appears in a small subnetwork for some values of the
parameters, a range of kinetic constants can be computed
giving rise to multiplicities for the overall system. The
? The authors acknowledge financial support received from Spanish
MICINN project MultiSysBio DPI2008-06880-C03-02.

deficiency one algorithm, the advanced deficiency theory,
the deficiency zero and deficiency one theorems are part of
the Chemical Reaction Network theory in which networks
are classified by means of a nonnegative integer index
called deficiency –a property of the graph of complexes of
a network– and some structural conditions are evaluated
to decide whether networks have the capacity for multiple
positive equilibria. Chemical reaction network theory pro-
vides also results based on the inspection of other different
graphs associated to the networks (Craciun et al., 2006;
Craciun and Feinberg, 2005).

In this work, we make use of CRNT aiming not only
to discriminate whether a network can exhibit multiple
steady states, but also to characterize the whole space of
parameters in terms of their capability to produce multi-
plicities. In a previous paper (Otero-Muras et al., 2009), we
have exploited the structure of the graph of complexes of
a biochemical network to obtain an expression of the locus
of equilibria –the set of points c∗ such that f(c∗, k) = 0
in (1)– in terms of as many parameters as the deficiency
of the network. For those networks that we have denoted
as proper, the dimension of the equilibrium manifold coin-
cides with the deficiency of the network. By continuation of
the new variation parameters associated to the deficiency,
we managed to divide the space of kinetic parameters
in regions with different qualitative dynamic behaviour.
Understanding the equilibrium points as intersections of
the locus of equilibria with the so called reaction polyhe-
dron (Otero-Muras et al., 2008), a geometric condition for
multistability was checked. In the present work, we make
use of this insight in order to provide a general condition
for the existence of multiplicities, valid for all classes of
networks (satisfying weak reversibility and mass action
kinetics).
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2. FUNDAMENTALS

Let us consider a generic biochemical network consisting
of a set of m species S = {S1, . . . ,Sj , . . . ,Sm} interacting
among themselves through a set of reactions with a given
kinetics. Under standard assumptions (Otero-Muras et al.,
2009) the network dynamics can be described by a set of
ordinary differential equations of the form (1) where c is
the vector of continuous positive real variables that repre-
sents the m species concentrations. The species formation
function f(·, k) : Rm → Rm depends on the kinetics, and k
refers to the internal or external conditions held constant
during the process.

Employing Feinberg’s description (Feinberg, 1979), a reac-
tion network is represented by an n-node directed graph,
where the edges correspond to the irreversible reaction
steps taking place and the nodes stand for the so-called
complexes, that are the multisets of reactants or products
that appear on the left and right hand sides of each
reaction step.
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Fig. 1. Graph for the Edelstein network: the mechanism
involves 3 species A, B and C, distributed in five
complexes and two linkage classes.

Let C = {C1, . . . , Ci, . . . , Cn} be the set of complexes of the
network. Each node or complex Ci is characterized by a
set Ii of integer elements such that:

Ii = {j ∈ {1, . . . , n}| Cj is reachable from Ci} (2)
plus a pair of vectors {yi, εi}.
Let Rm

+ denote the positive orthant (i.e. Rm
+ = {x ∈

Rm|ci > 0 ∀i = 1, . . . , m}) and Rm

+ denote the nonnega-
tive orthant (i.e. Rm

+ = {x ∈ Rm|ci ≥ 0 ∀i = 1, . . . , m}).
The vector yi ∈ R

m

+ indicates the stoichiometry associated
with the complex i (the entries are the molecularities of
each of the species in the complex i), while εi is a vector
of the standard basis of Rn such that:

εji =
{

1 if i = j (i, j = 1, . . . , n)
0 otherwise. (3)

In addition, the complete set of edges in the graph is
constructed by connecting Ci → Ii for all i = 1, . . . , n. The
reaction rates are incorporated in the graph description by
associating to each node i a scalar function:

ψi : Rm

+ → R+ (4)
and a set of positive parameters kij > 0 representing
kinetic constants for every edge leaving Ci and entering
Cj . Keeping with the formalism described above, the dy-
namic evolution of concentrations can be encoded into the
following set of ordinary differential equations (Feinberg,
1979):

ċ = Y ·A[ψ(c)] (5)

where Y ∈ Rm×n

+ is the molecularity matrix, with
columns being the vectors yi, and the vector ψ(c) ∈ Rn

+
contains the scalar function of the concentrations (4) cor-
responding to each complex. A maps from Rn to Rn and
the expression for A[ψ(c)] reads:

A[ψ(c)] =
n∑

i=1

ψi(c)
∑

j∈Ii

kij · (εj − εi) (6)

where εi has been defined in (3). Assuming that the
reaction rates obey the mass action law, the expression
for ψi(c) in (4) is of the form:

ψi(c) =
m∏

j=1

c
yji

j . (7)

The mass action law (7) leads to the following relationship,
provided that c > 0 (i.e. c ∈ Rm

+ ):

ln ψ(c) = Y T ln c (8)
where the natural logarithm operator ln(·) acts on any
vector element-wise.

The graph associated to a reaction network is constituted
by a number ` of ”isolated” sub-graphs known in CRNT
as linkage classes: {L1, . . . , Lk, . . . , L`}. Each linkage class
Lk is accompanied by a vector Λk ∈ Rn

+ with components
being 1 at those places in the vector which correspond
with the complexes present in the linkage class, and zero
otherwise:

Λjk =
{

1 if Cj in Lk

0 otherwise. (9)

A network is said to be weakly reversible if, provided a
path from a complex Ci to another complex Cj , there
exists a path (in opposite direction) linking the complex Cj

with the complex Ci. We concentrate on weakly reversible
reaction networks, for which, in addition, trajectories of
(5) that start at any positive initial condition will not
approach the boundary of the positive orthant (Angeli
et al., 2007). For this class of networks, mass conservation
constrains the evolution of the trajectories in the concen-
tration space to a reduced convex region in the positive
orthant known as the reaction polyhedron 1 (Otero-Muras
et al., 2008). Let B be the matrix whose columns are an
arbitrary basis of the null space of Im(Y A):

(Y A)T B = 0. (10)

The reaction polyhedron can be defined with respect to a
reference concentration vector c0 as:
Ω(c0) = {c > 0|BT (c−c0) = 0 with (Y A)T B = 0}. (11)

For weakly reversible networks, the subspace spanned by
Y A is known in the CRNT as the stoichiometric subspace
S. This subspace is defined here in terms of the matrix B
in (11) as:

S = {u ∈ Rm|BT u = 0}. (12)

Let us introduce now an important property concerning
the nature of the equilibrium points. The equilibrium

1 Also referred to in the literature as stoichiometric compatibility
class.
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points c∗ of (5) must satisfy that Y A[ψ(c∗)] = 0, then
fulfilling at least one of the following conditions:

ψ(c∗) ∈ D0 ≡ kerA (13)
A[ψ(c∗)] ∈ Dδ ≡ kerY ∩ ImA. (14)

The dimension of the subspace Dδ is the so called defi-
ciency, computed for weakly reversible networks by the
formula:

δ = n− `− s (15)
with ` being the number of linkage classes and s the dimen-
sion of the stoichiometric subspace S defined in (12). It can
be deduced that all the reaction networks with deficiency
equal to zero can only accept equilibrium solutions in D0.
On the other hand, a solution c∗ such that ψ(c∗) ∈ D0

is unique and stable (Feinberg, 1979). Therefore, as stated
by the deficiency zero theorem (Feinberg, 1979), weakly
reversible networks of zero deficiency have a unique and
stable equilibrium point per stoichiometric compatibility
class for any values taken by the reaction rate constants.

3. EQUILIBRIUM MANIFOLD

As it can be deduced from (14), the equilibrium points
associated to the linear subspace Dδ are those c∗ which
image under ψ fulfills the following relation:

A[ψ(c∗)] =
δ∑

i=1

αiwi (16)

where αi are real numbers and {wi}δ
i=1 is a basis for Dδ.

In (Otero-Muras et al., 2009), it has been proved that,
for a given deficiency δ network, a basis for Dδ can be
computed as follows:

{w1, . . . , wδ} = ker [Λ Y T ]T (17)
where Y is the molecularity matrix and Λ is a n×` matrix
with columns being the vectors Λk defined by (9).

We will derive now an expression for the locus of equilibria
or equilibrium manifold, denoted by Hs, in terms of the
new parameters αi in (16). Our aim is to obtain a canonical
expression for those c∗ fulfilling Y A[ψ(c∗)] = 0, which
exploits the graph structure of the network. Here it is
important to note that, a vector c∗ belonging to the locus
of equilibria (in the space of the species Rm

+ ) must be
such that its image under ψ simultaneously satisfies (16)
and the mass action law (8). Solutions associated to D0

will satisfy (16) with αi = 0 for i = 1, . . . , δ. Using
ψ(c∗) the equilibrium manifold can be described, in the
space of the complexes Rn

+, as the intersection between
a linear variety coming from (16), that will be referred
to as the family of solutions F , and a nonlinear algebraic
variety, corresponding to the mass action law condition,
designated as the mass action manifold M. Let us denote
the locus of equilibria in the space of the complexes as
Hc. In order to obtain canonical expressions for both, the
family of solutions F and the mass action manifold M,
the complexes of the network are numbered, without loss
of generality, according to the following rules:

r.1 the first ` nodes of the graph belong to different
linkage classes,

r.2 the first m rows of the matrix Y T are linearly inde-
pendent. Here we are assuming that the rank of Y is
equal to the number of species. As it has been shown

in (Otero-Muras et al., 2009), every network can be
transformed in an equivalent network with as many
pseudo species as the rank of the molecularity matrix.

3.1 The family of solutions.

We call family of solutions to a linear variety in the space
of complexes, denoted by F , such that:

AF =
δ∑

j=1

αjwj (18)

where the set of vectors {wj}δ
j=1 defines a basis for the

deficiency subspace Dδ and αj are real parameters. It can
be proved that the solution F can be written as:

F =
∑̀

k=1

xkψk +
δ∑

j=1

αjfj (19)

where the vectors xk, fj ∈ Rn

+ are solutions of the following
equations:

A[xk] = 0 k = 1, . . . , `, (20)
A[fj ] = wj j = 1, . . . , δ. (21)

Vectors xk ∈ Rn

+ for k = 1, . . . , ` constitute a basis for the
kernel of A. In fact, the number of elements of the basis
coincides with the number of linkage classes. The structure
of each vector xk associated to a linkage class Lk is of the
form:

xik =

{ 1 i = k,
ρik > 0 i 6= k, Ci in Lk

0 i 6= k, Ci not in Lk

(22)

where the parameter ρik > 0, corresponding to the com-
plex i within the linkage class Lk, is a function of the
kinetic constants in the given linkage class. Similarly, the
parameter fij, contains combinations of the original param-
eters of the network. Equations (20) and (21) lead to the
relationships between the canonical parameters (ρik, fij),
and the original rate constants.

3.2 The mass action manifold.

Let us denote by Y1 the matrix constituted by the first m
columns of the molecularity matrix Y . Taking into account
that Y1 is invertible by construction (according to r.2), we
define a new matrix Q by:

QT = Y −1
1 · Y. (23)

The mass action manifoldM in the space of the complexes
is defined in terms of the columns of the matrix Q, denoted
by q1, . . . ,qm, as follows:

lnM =
m∑

j=1

qj ln ψj (24)

Note that from (24), it follows that each element Mi can
be written as:

Mi =
m∏

j=1

ψ
qij

j . (25)

3.3 The equilibrium manifold and its dimension

The intersection Hc of the family of solutions and the
mass action manifold in the space of complexes Rn

+ is the
algebraic variety defined by:

Hc(ψm, α) := F −M = 0 (26)
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and represents the locus of equilibria in the space of com-
plexes. In this expression, ψm is the vector containing the
first m components of ψ ∈ Rn

+. At this point it is im-
portant to note that the matrix Y1, previously introduced,
defines a bijective mapping between ψm and c of the form:

ln ψm = Y T
1 ln c (27)

that allows us to transformHc(ψm, α) into the equilibrium
manifold Hs:

Hc(ψm, α) → Hs(c, α). (28)
As shown in (Otero-Muras et al., 2009) the dimension of
this manifold, either in the complex space or in the species
space, is:

λ = m− s. (29)
This characteristic dimension is used in (Otero-Muras
et al., 2009) to classify the networks in proper networks
(λ = δ), under-dimensioned networks (λ > δ), and
over-dimensioned networks (λ < δ). According to the
expressions (15) and (29), the number of species m results
to be equal, greater or lower than n− `, for proper, under,
and over dimensioned networks, respectively.

4. CONDITION FOR MULTIPLE EQUILIBRIUM
SOLUTIONS

In this section we introduce the main result of the paper: a
condition on the parameters of a reaction network leading
to multiple steady states.

Let us first define an augmented space setting the
m + δ variables: ψ1, . . . ψm, α1, . . . , αδ. Let us denote by
DψmHc ∈ R(n−`)×m the jacobian of Hc with respect to
ψm, and by DαHc ∈ R(n−`)×δ the jacobian of Hc with
respect to the parameters α. The implicit function theorem
guarantees the existence of a smooth manifold of solutions
parameterized by α, provided that the following matrix:

DHc = [DψmHc DαHc] (30)
is of full rank.

Let Ω represent the manifold given by the moiety conser-
vation, see (11):

Ω = BT (c− c0). (31)
Let σ be the m× (m− s) matrix defined by:

σT = BT · diag(c) · (Y1)−1 · diag−1(ψ) (32)
with diag(v) and diag−1(v) being the diagonal and inverse
diagonal matrices operating over the vector v, respectively.
We compute now the derivatives of Ω with respect to ψm:

DψmΩ = σT (33)
and with respect to α:

DαΩ = 0. (34)
Let us now build the following matrix:

G =
[

DψmHc DαHc

DψmΩ DαΩ

]
(35)

which has (n − ` + m − s) rows and (m + δ) columns.
Taking into account the expression for the deficiency in
(15), it can be deduced that n − ` + m − s = m + δ, and
the matrix G is square by construction. If the matrix G is
not of full rank, a vector τ 6= 0 ∈ Rm+δ exists such that:

G · τ = 0 (36)

and therefore, the following equalities hold:
[DψmHc DαHc] · τ = 0,[

σT 0
] · τ = 0.

From these two equalities it can be deduced that the vector
τ is tangent to both the equilibrium manifold Hc and
the nonlinear reaction polyhedron in the augmented space
Rm+δ. As it is illustrated in the scheme of Fig. 2, this
geometric condition is necessary for the manifold Hc and
the reaction polyhedron in the augmented space Rm+δ to
intersect in more than one point. The polyhedron position
(fixed by the initial concentration vector) will determine
the number of intersections, which can be multiple pro-
vided that the geometric condition is fulfilled.

Summarizing, Let k be a parameter set for a weakly
reversible biochemical reaction network with the dynamics
given by (5). Let δ be the deficiency of the network graph.
If for the set of parameters k there exists ψ ∈ Rn

+ and
α ∈ Rδ such that

rank[G(ψm, α)] < m + δ (37)
with G(ψm, α) defined by (35), the network will exhibit
multiple steady states for some initial concentrations.

σ

τττ

Fig. 2. Condition for multiplicities: the vector τ is tangent
to the equilibrium manifold (solid line) and orthogo-
nal to the vector σ representing the reaction polyhe-
dron (surface) in the augmented m + δ space

5. CASE STUDY: THE EDELSTEIN NETWORK

As a working example, we make use of the the so called
Edelstein network (Feinberg, 1979), which is illustrated
in Fig. 1. A number of variants of this network have been
already introduced as case studies for the bifurcation anal-
ysis in the context of biochemical systems (Chickarmane
et al., 2005). In Fig. 1 the complexes have been numbered
according to ordering rules r.1 and r.2, such that the
molecularity matrix (of rank 3) is:

Y =

( 1 0 0 1 2
0 1 0 1 0
0 0 1 0 0

)
. (38)

Applying (7), we obtain the vector of complexes ψ(c) =
(c1, c2, c3, c1c2, c

2
1)

T , and the expression for A[ψ] reads:

A[ψ] =




−k15 0 0 0 k51

0 −k23 k32 0 0
0 k23 −(k32 + k34) k43 0
0 0 k34 −k43 0

k15 0 0 0 −k51







ψ1

ψ2

ψ3

ψ4

ψ5


 .

(39)
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Table 1. Edelstein network parameter equiva-
lences

ρ51 ρ32 ρ42 f3 f4 f5
k15
k51

k23
k32

k23k34
k32k43

1
k32

k32+k34
k32k43

1
k51

We construct a matrix Λ, with columns being the vectors
Λk defined in (9):

Λ =
(

1 0 0 0 1
0 1 1 1 0

)T

. (40)

The reaction polyhedron is defined by (11) with (BT =
(0, 1, 1), that is, for the initial concentrations c10 , c20 , c30

the reaction polyhedron is the plane:
Ω(c0) : c2 + c3 = c20 + c30 . (41)

The stoichiometric subspace is two-dimensional, the net-
work has five nodes and two linkage classes. Therefore, the
deficiency according to the formula (15) is:

δ = 5− 2− 2 = 1.

The basis for the subspace Dδ is computed using (17):

w = ( 1 −1 0 1 −1 )T
. (42)

The family of solutions F in (19) then reads:

F =




1
0
0
0

ρ51


 ψ1 +




0
1

ρ32

ρ42

0


 ψ2 + α




0
0
−f3
−f4
+f5


 (43)

where the expressions for the parameters ρij and fi1
(subindex 1 is omitted here), obtained by means of (20)
and (21), are given in Table 1. To compute the mass action
manifold we first obtain the matrix Y1, constituted by the
first m columns of the molecularity matrix:

Y1 =

( 1 0 0
0 1 0
0 0 1

)
. (44)

Being Y1 the identity matrix, the matrix QT (23) turns
to be equal to the molecularity matrix Y (38). Then, the
expression (24) for the mass action manifold reads:

lnM =




1
0
0
1
2


 ln ψ1 +




0
1
0
1
0


 ln ψ2 +




0
0
1
0
0


 ln ψ3. (45)

The intersection of the family of solutions with the mass
action manifold in the space of complexes, Hc(ψm, α) in
(26), is given by the following equations:

ρ32ψ2 − αf3 − ψ3 = 0 (46)
ρ42ψ2 − αf4 − ψ1ψ2 = 0 (47)

ρ51ψ1 + αf5 − ψ2
1 = 0. (48)

Using the bijective mapping defined in (27), we have that:
(

ψ1

ψ2

ψ3

)
=

(1 0 0
0 1 0
0 0 1

) (
c1

c2

c3

)
(49)

so that, the equilibrium manifoldHs(c, α) in (28) becomes:
ρ32c2 − αf3 − c3 = 0 (50)

ρ42c2 − αf4 − c1c2 = 0 (51)
ρ51c1 + αf5 − c2

1 = 0. (52)

Table 2. Edelstein Network parameters

k15 k51 k23 k32 k34 k43

8.5 1 0.2 1 1 1

The dimension of the equilibrium manifold is λ = δ = 1.
The network is proper and Dψm

Hc is square:

DψmHc =

( 0 ρ32 −1
−ψ2 ρ42 − ψ1 0

ρ51 − 2ψ1 0 0

)
. (53)

Taking into account (49) we have, for the Edelstein net-
work, σT = BT , and the matrix G in (35) reads:

G =




0 ρ32 −1 −f3
−ψ2 ρ42 − ψ1 0 −f4

ρ51 − 2ψ1 0 0 f5
0 1 1 0


 . (54)

Computing the determinant of the matrix G:
|G| =− f5ψ2(1 + ρ32)− ...

... (2ψ1 − ρ51) [f4(1 + ρ32) + f3(ψ1 − ρ42)]
and setting |G| = 0, we arrive to:

0 =(k23 + k32)k43ψ2 + ...

... (2k51ψ1 − k15)(k32 + k34 + k23 + k43ψ1). (55)
It is deduced from (55) that the determinant can only
vanish provided that

ψ1 =
βρ51

2
for some 0 < β < 1. (56)

Note that expression (56) takes in account that ψ1 must be
positive for a feasible solution to exist. Substituting (56)
into (48) we arrive to:

α =
β(β − 2)k2

15

4k51
(57)

that introduced in (47) gives us:

ψ2 =
β(β − 2)ρ2

51f4
2f5(2ρ42 − βρ51)

(58)

since 0 < β < 1, we have that β− 2 < 0, and so that ψ2 is
positive for

1 > β > 2
ρ42

ρ51
> 0. (59)

Substituting (57) and (58) in (46), it can be deduced that
ψ3 is positive provided (59). Summarizing, the Edelstein
network will show multiplicities for those parameters ful-
filling (55) with:

ψ1 =
βρ51

2
, ψ2 =

β(β − 2)ρ2
51f4

2f5(2ρ42 − βρ51)
for β satisfying inequality (59). Let us consider the set
of kinetic constants given in Table 2, they satisfy the
condition (55) for β = 0.6451, and the resulting values
for ψ1 and ψ2 are:

ψ1 = 2.7416, ψ2 = 12.4230
In Fig. 3(a), the equilibrium manifold for these values

of the kinetic constants is depicted, together with the
reaction polyhedron corresponding to c20 + c30 = 30. The
manifold is one dimensional, and intersects the reaction
polyhedron in three points, corresponding to three differ-
ent equilibria. In Fig. 3(b), the equilibrium manifold is
depicted showing the points fulfilling the rank deficiency
condition, corresponding to α = −15.787 and α = −9.079.
As it can be deduced from Fig. 3(a), three steady states
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Fig. 3. (a) Equilibrium manifold for parameters in Table
2. Blue stars are steady states for c20 + c30 = 30. (b)
Equilibrium manifold for parameters in Table 2. Red
stars are points in which the rank deficiency condition
is fulfilled. (c) Equilibrium curve for the Edelstein
network, varying c20 + c30 . The kinetic parameters
are kept fixed with the values shown in Table 2.

will exist for a range of the sum of initial concentrations
c20 +c30 . In fact, performing a continuation of the curve of
equilibria for the Edelstein network by varying the values
of c20 + c30 , we obtain the curve shown in Fig. 3(c), where
two limit points or saddle node bifurcations appear for

c20 + c30 = 29.7768 and c20 + c30 = 30.6949. Within these
values, corresponding to different positions of the reaction
polyhedron, three steady states will exist.

6. CONCLUSIONS AND FUTURE WORK

In this work, we have provided a condition on the param-
eters of a biochemical network to have multiple steady
states, extending previous results and concepts of CRNT.
The applicability to large scale systems is limited by the
computational capability of the symbolic solvers to obtain
the matrix expressions in Section 4. In a future work, it will
be shown how the condition can be systematically checked
numerically through the parameter space by means of
interval methods (Csendes and Pal, 2008).
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