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Abstract: Constraint-based modelling allows building structured models of cells without accounting for 
intracellular kinetics. These models can be combined with experimental data to estimate the (pseudo-
steady) state or phenotype exhibited by cells at given conditions, standing out as a useful analytical tool. 
In this work, a simplified, constraint-based model of Pichia pastoris, a widely recognized platform for 
recombinant protein expression, is derived from its metabolic network. Then, the model is validated 
against experimental data provided by different research groups: possibility theory is used to analyse the 
consistency between model and measurements. Afterwards, the biomass growth rate is estimated to 
illustrate the ability of the model to predict non-measured fluxes. The approach followed in this 
contribution is particularly useful in scenarios lacking data; it makes it possible to link the extracellular 
behaviour of Pichia pastoris during cultivation with its internal state, being a promising tool for 
optimization and monitoring industrial processes. 
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1. INTRODUCTION 

Pichia pastoris is a methylotrophic yeast worldwide 
recognized as a workhorse for recombinant protein 
expression for its high-density cell growth, ability to 
produce post-translational modifications and good protein 
yield/cost ratio. Cloned under its strong, tightly regulated 
alcohol oxidase promoter, heterologous genes are 
expressed while P. pastoris grows on methanol as sole or 
combined carbon source. Recombinant protein expression 
improvement in P. pastoris has been usually addressed 
heuristically, although a few publications on modelling 
and optimisation can be found in the literature. Among 
these, a few explore more structured models representing 
intracellular behaviour (Ren, 2003; Solà, 2007).   

Nowadays, microbial systems are being increasingly 
studied under a system-level approach in which the 
collection of biocatalytic reactions involved in metabolism 
is assembled in networks (Palsson, 2002). The mass 
balances around the nodes of these networks, the m 
internal metabolites, can be described by a matrix 
equation: 

dc
dt

= N ⋅v      (1) 

where c is a vector of metabolite concentrations and  v is 
the vector of reaction rates, or fluxes, representing the 
mass flow through each of the n reactions in the network. 

Since reaction kinetics are still rarely known, internal 
metabolites are often assumed to be at steady state, so (1) 
results into a system of linear equations. Then, other 
constraints can be imposed; for instance, it is common to 
consider the irreversibility of certain reactions using 
inequalities. In this way, a constraint-based model is 
assembled (Llaneras, 2008; Schilling, 2000): 

    (2) 

Where D is a diagonal matrix with Dii = 1 if the flux i is 
irreversible (otherwise 0). The constraint-based model 
defines a space of feasible states: only flux vectors 
fulfilling the constraints are states that cells can exhibit.  

At this point, one can perform a metabolic flux analysis 
(MFA), which, generally speaking, is the exercise of 
estimating the fluxes at given conditions by combination 
of the model and a set of measured fluxes (Heijden, 1994). 
A typical difficulty to be tackled by MFA is the scarcity of 
measurements common in industry, and thus Possibilistic 
MFA, particularly well suited for these situations, will be 
used in this contribution (Llaneras, 2009). 

In following sections a model of P. pastoris will be 
described and validated against experimental data. 
Afterwards, its ability to predict non-measured fluxes will 
be illustrated by estimating the biomass growth rate. 
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2. METHODS 

2.1 Consistency analysis 

The constraint-based model has been validated against 
experimental datasets taken from the literature. Basically, 
the consistency analysis is performed checking that the 
flux states shown by cells do not violate the constraints 
imposed by the model. However, this simple approach 
would be impractical because, as measurements are 
imprecise, they do not exactly satisfy the constraints. Such 
difficulty is overcome by taking into account uncertainty: 

     (3) 

Where em represents the error or deviation between the 
actual fluxes vm and the measured values v'm. Model and 
measurements will be consistent if there is a flux vector v 
fulfilling (2) and (3) for a reasonably small em. Otherwise, 
we will conclude that model and measurements are 
inconsistent. 
A simple way of analysing the consistency between model 
and measurements is to find the flux vector v fulfilling (2) 
and (3) that minimises the (variance-weighted) sum of 
errors in the measurements: 

  (4) 

Where it is assumed that em are distributed normally with a 
mean value of zero and a variance-covariance matrix F. 
When only linear equalities are used in MOC, the residual 
φ is a stochastic variable following a χ2-distribution (of 
order equal to the degree of redundancy of the system 
being solved), enabling the use of χ2-test to analyze the 
consistency (Stephanopoulos, 1998). As our model 
contains inequalities, the χ2-test cannot be used, though the 
residual φ still provides an indication of consistency. 

2.2 Consistency analysis: Possibilistic MFA 

The consistency analysis can also be formulated as a 
possibilistic, constraint satisfaction problem. A flux vector 
fulfilling the model constraints (2) and compatible with the 
measurements will be “possible”, otherwise “impossible”. 
This idea can be refined to cope with measurements errors 
by introducing the notion of “degree of possibility”.  
We introduce a set of constraints considering measurement 
imprecision, as in (3), but where em is substituted by some 
non-negative decision variables µ and ε: 

MEC =

v'm = vm + ε1 − µ1 + ε2 − µ2
ε1, µ1 ≥ 0

0 ≤ ε2 ≤ ε2
max

0 ≤ µ2 ≤ µ2
max

⎧

⎨

⎪
⎪⎪

⎩

⎪
⎪
⎪

  (5) 

In this way, the assertion v'm=vm is relaxed, conforming a 
possibility distribution in (v'm,vm) associated to a cost 
index J (under a non-interactivity assumption): 

     (6) 

where α and ß are row vectors of user-defined, sensor 
accuracy coefficients (if sensor error is symmetric, both 
vectors should be equal).  

The cost index J reflects the log-possibility of a particular 
flux vector v. The interpretation of (5) and (6) may be: 
“v'm=vm is fully possible; the more v'm differs from vm, the 
less possible such situation is”. 

At this point, the maximum possibility (minimum-cost) 
flux vector vmp can be obtained solving a LP problem: 

min J = α ·ε1 + β·µ1
s.t.  MOC ∪MEC

    (7) 

being its degree of possibility . 

This degree of possibility provides an indication of the 
consistency between model (MOC) and measurements 
(MEC): a possibility equal to one must be interpreted as 
complete agreement between the model and the original 
measurements; lower values of possibility imply that 
certain degree of error in the measurements is needed to 
find a flux vector fulfilling the model constraints. See 
(Llaneras, 2009) for more details on the possibilistic 
framework. 

2.3 Possibilistic estimation of non-measured fluxes 

Possibilistic MFA is also capable of estimating the 
metabolic fluxes based on the model and the available 
measurements. The simplest point-wise estimate is the 
minimum-cost flux vector resulting from (7), which 
contains the most possible value for each flux. However, a 
point-wise estimate is limited when multiple combinations 
might be reasonably possible. In this situation, intervals of 
flux values [ ] with a degree of a posteriori 
possibility higher than γ  can be obtained solving two LP 
problems: 

vi,γ
m = min vi s.t.

MOC ∪MEC
J − logπ (vm ) < − logγ

⎧
⎨
⎪

⎩⎪
 (8) 

The upper bound is obtained replacing min by max. 

Possibilistic intervals have a similar interpretation to 
“confidence intervals” (“credible intervals”) in Bayesian 
statistics, and provide concise but rich flux estimation.  

3. METABOLIC NETWORK OF P. pastoris 

The metabolic network shown in Fig. 1 has been adapted 
from the stoichiometric model presented in (Dragosits, 
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2009). The objective of this representation is not to 
accurately reproduce the biochemistry of the yeast, but to 
produce a simplified model, capable to describe the main 
scenarios shown by Pichia cultures, in which to test useful 
analysis methodologies. 

Fig 1. Metabolic network of P. pastoris 
 

The network schematically represents the main catabolic 
pathways of the yeast P. pastoris for growth on glucose, 
glycerol and methanol, including glycolysis, citric acid 
cycle, pentose phosphate and fermentative pathways. 
Anabolic pathways are summarized by a biomass equation 
derived from yeast macromolecule composition, 
considering key precursors for each of its components and 
structural monomer formation reactions for aminoacids 
and nucleotides. The model considers compartimentation 
between mitochondrial and cytosolic pools for NAD+, 
NADP+, AcCoA, oxalacetate and pyruvate.  

The resulting model contains 44 pathways reactions. A 
balanced, null production rate is assumed for 36 
compounds resulting in 8 Degrees of freedom. The 
constraint-based model (2) used hereinafter is generated 
when irreversibilities are considered for all reactions 
except for {1-7; 12; 29; 33-35; 41}. 

4. VALIDATION AGAINST EXPERIMENTAL DATA 

A total of 11 different datasets were compiled from the 
literature and used to determine whether the simplified 
model described above is coherent with experimental data 
(table 2). 

The datasets were used to check that the experimental 
measurements, which reflect the metabolic state of cells, 
are feasible states according to the model. Two different 
analysis of consistency were performed: one based on 
weighted least squares and another one based on 
possibility theory, both described in the methods section. 
The possibilistic approach is preferred in this case because 
the analysis of the residuals has some limitations due to the 
presence of inequality constraints on the model.  

Uncertainty in measurements was described as follows. In 
all weighted least squares problems a standard deviation of 
10% was assigned to each measurement. To perform the 
possibilistic analysis of consistency, measurements 
uncertainty has to be represented in possibilistic terms. It 
was considered that values near the measured ones (less 
than 5% deviation) are fully possible, to account for 
systemic errors. A decreasing possibility was assigned to 
larger deviations: values with a deviation of 20% have a 
possibility of 0.5 and those with a deviation of 30% a 
possibility of 0.15. Notice that possibility was defined by 
conjunction, so that if two measurements are deviated, for 
instance with possibilities 0.8 and 0.5 respectively, their 
joint possibility will be 0.4. Hence, a maximum possibility 
of 0.36 means that there is an error between 10% and 20% 
in one measurement, or an error between 5% and 10% in 
two measurements, etc. 

The results for each dataset are shown in table 2, where the 
minimized, sum of squared residuals (φ) and the possibility 
of the most possible flux vector (π) are given. The last 
column shows the measurements uncertainty needed to 
find a flux vector in full agreement with the model 
constraints (π=1).  

In general, the consistency between model and 
experimental data is quite good. The dataset D1, which 
corresponds to Pichia growing on glucose, shows very 
good agreement. The measured data has full possibility 
(π=1), meaning that there is a flux vector fully compatible 
with model and measurements. In fact, as shown in the last 
column, a band of 1% around the measured values is 
sufficient to enclose this flux vector. Notice also that the 
residual is very low. Datasets A1 and A2 also show a good 
agreement. The discrepancy between measurements and 
model is bigger for A3, which possibility is 0.25, but still a 
band of 10% of deviation around the measurements is 
enough to enclose a flux vector compatible with the model. 
The larger discrepancy in A4, which corresponds to a 
scenario with high protein productivity, and similar results 
obtained for datasets B1-B3, reveal the existence of non-
modelled phenomena. The agreement is quite good for C1-
C3, but the increase of model and measurements 
discrepancy along with higher protein expression is also 
noticeable.  

In summary, the constraint-based model shows acceptable 
agreement with the experimental data reported by different 
groups for P. pastoris cultures. 
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Table 2. Experimental data and model consistency 

Ref* µ  QGlu QGly QMet Qet OUR CPR QP  Consistency** 

 Cmmol  
g-1·h-1 

mmol    
g-1·h-1 " " " " " mg  

g-1·h 
 

φ π To π=1 

D1 3.86 0.97 0.00 0.00 0.00 2.02 2.07 0.002  0.03 1.00 2% 
A1 1.88 0.00 1.09 0.00 0.00 2.16 1.56 0.002  0.28 1.00 7% 
A2 2.07 0.00 0.95 0.63 0.00 2.70 1.70 0.001  1.20 0.73 12% 
A3 1.72 0.00 0.74 1.48 0.00 3.90 2.10 0.004  2.81 0.25 20% 
A4 2.02 0.00 0.57 2.33 0.00 4.85 2.21 0.006  5.36 0.09 29% 
B1 6.17 0.00 2.75 0.00 0.00 3.62 2.35 0.000  0.07 1.00 4% 
B2 6.18 0.00 2.22 1.87 0.00 7.19 4.18 0.000  5.24 0.04 23% 
B3 6.24 0.00 2.23 2.73 0.00 7.20 3.60 0.009  2.34 0.32 19% 
C1 2.32 0.00 0.74 2.22 0.00 3.58 2.05 0.012  0.06 1.00 3% 
C2 2.32 0.00 0.37 3.33 0.00 4.44 2.55 0.021  0.79 1.00 10% 
C3 2.32 0.00 0.00 4.44 0.00 5.29 2.82 0.022  1.63 0.49 15% 

Ethanol, citrate and piruvate are not produced nor consumed. Qp indicates heterologous protein specific production, OUR and CPR oxygen 
and carbon dioxide uptake and production rates, respectively. 
*D: (Dragosits, 2009); A&B: (Solà, 2007); C: (Jungo, 2007) 
**Minimized sum of squared residuals (φ), possibility of the most possible flux vector (π) and degree of measurements uncertainty to π=1. 
 

6. USING THE MODEL TO PREDICT GROWTH 

At this point, the biomass growth rate for each dataset was 
estimated by applying Possibilistic MFA based on the 
constraint-based model and the available measurements 
(except, of course, the measured growth rate). Details can 
be found in the methods section. 

 
Fig. 2. Prediction of growth rate using Possibilistic MFA. 
Crosses denote the measured values, and circles the most 
possible estimate. The intervals of conditional possibilities 
of 0.8, 0.5 and 0.1 are also depicted. 
 

As shown in fig. 2, for the majority of the analysed 
scenarios, in the 3 studied references, the estimated growth 
rate is found to be in very good agreement with the 
measured one. The most possible estimate is slightly 
accurate for two datasets —A2 and C3— and only one 
dataset, B2, is not enclosed by the interval estimate of 

possibility 0.1. This significant deviation observed in B2 
could be indicative of non-modelled phenomena but also 
of larger measurement uncertainty within this particular 
dataset. This late option seems more likely considering the 
coherence found in the remaining datasets, both for this 
reference and others.   

These results provide further validation of the model, 
pointing out that, even with limitations, the model has 
predictive capacity. This conclusion is strengthened by the 
fact that estimated variable, the growth rate, is highly 
connected along the whole network because the synthesis 
of biomass requires the participation of several precursors.  

7. USING THE MODEL TO ESTIMATE THE WHOLE 
FLUX DISTRIBUTION 

Once the model has been validated, the same approach 
used to estimate the growth rate could be used to estimate 
all the internal, non-measured fluxes.  

For illustration purposes, only the whole flux distribution 
in the scenario A2 estimated with Possibilistic MFA is 
shown in Fig. 3. Notice that this estimation could not be 
done with standard MFA because the measurements were 
insufficient to produce a determined system (the network 
has 8 degrees of freedom and there are 7 measurements, 
one dependent, so the systems remain underdetermined 
with 2 degrees of freedom). The dependent measurement 
makes the system redundant, and thereby the estimation is 
more reliable. 

Moreover, the results show that it is not necessary to 
completely offset the underdeterminacy of the system (nor 
invoking optimality criteria) to get narrow estimates for all 
the fluxes in the network. Possibilistic MFA estimates all 
the fluxes thanks to the irreversibility constraints.  
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Fig. 3. Estimated fluxes in scenario A2. The most possible 
fluxes (circles and squares for measured and non measured 
fluxes, respectively) and the intervals of conditional 
possibilities 0.8, 0.5 and 0.1 are depicted. 
 

8. CONCLUSIONS 

The consistency of a constraint-based model for Pichia 
pastoris growth has been validated in several experimental 
scenarios resulting in good agreement between estimations 
and measurements. Besides, the predictive capacity of the 
model for cell growth rate, an attractive target for 
industrial fermentation monitoring and control, has been 
verified. Interestingly, the accuracy of predictions worsens 
for higher protein producing scenarios, indicating how the 
model, derived for a wild-type strain, is increasingly less 
applicable as wider resources are devoted to recombinant 
protein generation.  

It must be highlighted that the model has been strictly 
constructed upon first-principles and sensible hypothesis, 
and can be now curated and its parameters tuned with 
further experimental data. Furthermore, after validation 
against intracellular data, the used approach will allow 
investigating the whole flux distribution and identifying 
patterns or alterations among intracellular fluxes as a result 
of changes in external, measurable fluxes. 
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