technische universität dortmund

REACTIVE DISTILLATION FOR SELECTIVITY IMPROVEMENT

TRANSESTERIFICATION OF DIMETHYL CARBONATE

Tobias Keller, Alexander Niesbach, Achim Hoffmann, Andrzej Górak

Motivation

Process intensification with reactive distillation (RD)

Chemical system

The transesterification of dimethyl carbonate (DMC) with ethanol (EtOH) to produce ethyl methyl carbonate (EMC) and diethyl carbonate (DEC) using RD offers an opportunity to enhance the selectivity of reaction:

Ζ

Drawbacks

Benefits

- Higher conversion of reactants
- In-situ heat integration
- Lower investment costs
- Avoidance of azeotropes
- Reduced formation of by-products

Improved selectivity

- Volatility constraints
- Difficult scale-up
- Reduced degree of freedoms
- Higher design complexity

Most of the published papers about RD have been focused on chemical systems with one main reaction.

Is it possible to simultaneously improve yield and selectivity in **mul**tiple main reaction systems by reactive distillation?

Tab. 1: Boiling points of pure components and azeotropes at p=1 atm Comp. T_b (°C) MeOH-DMC 63.80 MeOH 64.70 **EtOH-EMC** 74.90 77.80 DMC-EtOH EtOH 78.29 DMC 90.25 107.69 EMC

DEC

126.80

- Only theoretical investigations published
- No suitable heterogeneous catalyst found yet
- In this work sodium ethoxide (C₂H₅O⁻Na⁺) was selected as a homogeneous catalyst

Theoretical and experimental investigation of homogeneously catalysed transesterification of DMC in a RD column

Thermodynamic data

 Component EMC not available in the database of Aspen Properties Plus[®] and few experimental data published

- Estimation of pure component data with different group contribution methods
- Calculation of activity coefficients with the UNIQUAC model
- Vapour-liquid equilibria of binaries including EMC estimated with the UNIFAC approach

Kinetics

• Fast reaction: Chemical equilibrium is reached after a few minutes (e.g.: 6 min at T=70 °C, w_{cat} =0.05 %) • Equilibrium constants: K_{reac1}=1.7 and K_{reac2}=0.4

Residence time distribution (RTD)

 Reaction in liquid holdup of distributors

ш

* New functional group -COOO- was used¹⁾

* Quality of estimation was checked for the system EtOH-EMC

Fig. 1: Comparison of estimated VLE data for EtOH-EMC (p=1 atm)

• Step experiment to evaluate RTD of distributors

• Tanks in series model: *N*=2

Distributors behave like an ideal CSTR

Non-equilibrium stage model

- Simulation environment: Aspen Custom Modeler®
- Multicomponent mass and heat transfer
- Hydrodynamics of packings considered

Experimental Setup

The transesterification of DMC was investigated in a pilot plant column DN50 (Fig. 3):

- Nominal diameter: 50 mm
- Packing height: 5.4 m
- Continuously operated
- Process control system SIMATIC PCS7
- Total feed rate: 4 kg/h

Results II

- No isolation between last packing section and reboiler Higher content of low boilers in the reboiler
- Comparison of simulated and experimental selectivities

Selectivity	EXP	SIM	Satisfactory agreement
EMC	52.7	53.5	
DEC	47.3	45.5	

1) Luo et al., Fluid Phase Equilibria, 175, 91–105, 2000.

Results

Future work

Fig. 5: RD column DN50

Fakultät Bio- und Chemieingenieurwesen Univ. Prof. Dr.-Ing. Andrzej Górak Lehrstuhl für Fluidverfahrenstechnik

Kontakt: Prof. Dr.-Ing. A. Górak Tel.+49(0)231-755-2324 andrzej.gorak@bci.tu-dortmund.de www.bci.tu-dortmund.de/fvt