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We developed an algorithm for LLLE calculations based on the method of Lucia et al.

(2000). We modified the method of calculating of the initial values. A Matlab

program was made to test the algorithm. Calculations were executed for the mixtures

of Type III: ethylene glycol – lauryl alcohol – nitromethane and 1-hexanol – nitro-

methane – water.
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INTRODUCTION
The recovery of the major components from waste solvent streams means an important,
actual problem for the industry because of stricter and stricter environmental regulations.
The solvent regeneration is performed mainly by distillation and extraction. The
waste solvent mixtures often form two and sometimes three equilibrium liquid phases.
Polymerisation reactors can also involve three liquid phases. The design, modelling and
simulation of these processes demand the accurate description and calculation of the
phase equilibria (VLE, LLE, VLLE, LLLE, VLLLE). However the majority of the
today’s flowsheet simulators (e.g. CHEMCAD, PROSIM) permit only two equilibrium
liquid phases. The AspenPlus is an exception.

In the last decade a lot of studies dealt with the numerical solution of the isothermal
phase equilibrium problems and the determination of the stability of phases (e.g. Lucia
et al., 2000; Guo et al., 2004). The majority of these articles are cited by Wakeham and
Stateva (2004) in their comprehensive review. The good estimation of the initial values
is always a key issue of the calculations.

The aim of our work is to develop an efficient algorithm and a computer program
which is able to compute LLLE. We investigated and modified the algorithm of Lucia
et al., developed in collaboration with Aspen Technology Inc.

MODEL OF LLLE FLASHING
For the sake of simplicity when we make the calculations not only the pressure but also the
temperature (T ) is fixed (isothermal flash). The main problem is that usually the number of
phases is not known a priori but it must be determined during the calculation for the
mixture of given overall composition.
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The model equations to be solved:
Material balances:

fi ¼
XP

k¼1

lki i ¼ 1 . . . C (C: number of components, P: number of phases) (1)

Equality of activities:

lk
iPC

j¼1 lk
j

� g k
i ¼

lkþ1
iPC

j¼1 lkþ1
j

� g kþ1
i i ¼ 1 . . . C, k ¼ 1 . . . P� 1 (2)

where gi
k is the activity coefficient of component i in the phase k (non-linear function of

the composition of phase k).

The number of independent equations: Cþ (P 2 1)C ¼ PC
Fixed parameters: fi (i ¼ 1. . .C), T (and pressure)
Independent variable: li

k (k ¼ 1. . .P, i ¼ 1. . .C) (where P is
also unknown)

SOLUTION METHOD
Fundamentally two types of method exist for calculating liquid phase equilibriums: the
equation solver and the Gibbs free energy minimizer. The first can be succesfully
applied for the computation of equilibrium of two liquid phases (e.g. algorithm of Bril
et al., 1974) but in the case of three liquid phases difficulties can occur. The algorithms
of second type were developed for that very reason. One of these algorithms is the one
proposed by Lucia et al. that we studied in detail.

Lucia considered the problem as dimensionless Gibbs free energy (G/RT) minimi-
sation and suggested an overall algorithmic framework for multiphase equilibrium flash
calculations based on

– sequential solving of subproblems (LE, LLE, LLLE. . .) until the global minimum of
G/RT is found,

Figure 1. Three liquid phase flashing
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– binary tangent plane analyses to identify all partially miscible pairs and a dominant
immiscible pair in the multicomponent mixture,

– generation of initial values for the next subproblem on the basis of the results of binary
tangent plane analyses and previously solved subproblems,

– a posteriori testing of phase and solution stability.

The global minimum of the Gibbs free energy surface must be found:

G ¼
XP

k¼1

XC

i¼1

lk
i Gk

i ¼ min (3)

The final form of the objective function:

F ¼
DGmix

RT
¼
XP

k¼1

XC

i¼1

lk
i (lnxk

i þ lng k
i ) ¼ min (4)

where

xk
i ¼

lk
iPC

j¼1

lk
j

(5)

and DGmix is the Gibbs free energy of mixing.
By Gautam and Seider (1979) the estimation of the initial values for the minimum

search is crucial since poor guesses for phase fractions and compositions can lead to local
or constrained minima. Constrained minimum occurs, when too few phases are assumed.
Local or constrained minima

– occur, when the correct number of phases is assumed, but composition guesses are
poor,

– can occur, when too many phases are assumed.

THE METHOD PROPOSED
We modified several steps of the original method. On the basis of our calculation experi-
ence we concluded that:

1. The method of calculating mole fractions of the non-dominant components using rela-
tive solubilities
a. gives smaller mole fractions in both liquid phases than in the feed mixture, and

these mole fractions are later further decreased at their normalisation and
b. the proportion of the two dominant phases is not taken into consideration.

2. The value of the phase fraction increases with the number of components.
3. The selection of the dominant immiscible pair can be ambiguous (e.g. in the case of

equal overall mole fractions).
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STEP 1. STUDY OF THE MUTUAL MISCIBILITY OF EACH BINARY PAIR
This step corresponds to Step 1 of the original method.

The dimensionless Gibbs free energy of mixing is considered for each binary
mixture:

DGmix

RT
¼ Dgmix ¼ x1 � ln(g1x1)þ x2 � ln(g2x2) (6)

Since x1þ x2 ¼ 1, Dgmix is a function of only one independent variable. Let x1 ¼ x then:

Dgmix ¼ x ln(g1x)þ (1� x)ln(g2(1� x)) (7)

We determine the local minima of the function (7) for all binary mixtures. The
function can have just one extremum (minimum) or two (local) minima with a (local)
maximum between them. In the latter case the two components are partially miscible.
Those mixtures whose function has only one local minimum are stable at any composition.
(The second derivative of the function Dgmix 2 x has a nonnegative value in each point.)
If there are two local minima we fit a double tangent to the function (Figure 2). The tan-
gency points (T1, T2) assign the boundaries (xI, xII) between the stable and unstable
liquid phases. If the overall composition of the mixture is found in the opened
composition-interval between these two points then the mixture splits into two equilibrium

Figure 2. Gibbs free energy of miscibility of a partially miscible pair and the double tangent
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liquid phases whose concentrations are the above mentioned boundary-concentrations.
(The minimum points (M1, M2) and the tangency points (T1, T2) do not coincide).

The physical meaning of the double tangent is the following. The values of the
tangent of the function Dgmix 2 x drawn at x0 taken in x ¼ 0 and x ¼ 1 provide the (dimen-
sionless) chemical potential of the components of the mixture. A two phase mixture is
stable if the chemical potential of any component equals in the two phases. This is possible
only in the case where the composition of the phases equals the x coordinate of the double
tangency points (xI, xII).

STEP 2. SELECTION OF THE DOMINANT IMMISCIBLE PAIR
We select the two dominant (partially miscible) components not only on the basis of the
overall mole fractions (z) (as it was made by Lucia et al.) but the mutual solubilities in the
binary mixtures are taken into consideration, as well. For a Type III ternary mixture
(Figure 3) the lines sl1, sl2, sl3 connect the compositions of the two equilibrium phases
of the binary mixtures. We draw straight lines from each pure component vertex
through the overall composition point Z of the ternary mixture. Thus we get the points
Pi and Qi (i ¼ 1,2,3). We calculate the ratio pi ¼ ZQi/PiQi for all components and we
consider dominant those two components for which we get the two highest values of pi.

Figure 3. Selection of the dominant pair for a Type III mixture
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If there are two pi values, which are less than 1.0, we select the components belonging to
these values as a dominant pair.

STEP 3. ESTIMATION OF COMPOSITION AND RATIO OF

TWO LIQUID PHASES ASSUMED

Splitting of the dominant components
A mixture containing only the two dominant components (dom1, dom2) in the same
amount as in the feed is considered. Considering their mutual miscibility we calculate
the ratio of Phase I to the feed: h ¼ LI/F, then molar flows of the dominant components
in the two phases.

. Input data:
– fdom1, fdom2: molar flows of the dominant components in the feed
– xdom1

I , xdom1
II : mole fractions of dom1 in the phases rich (I) and poor (II) in

dom1.
. Unknowns: ldom1

I , ldom2
I , ldom1

II , ldom2
II

. Solution:

fdom1 ¼ LIxI
dom1 þ LIIxII

dom1 (8)

where LI and LII are the molar flows of the equilibrium phases.

Let

F ¼ LI þ LII (9)

Fzdom1 ¼ hFx I
dom1 þ (1� h)Fx II

dom1 (10)

where

zdom1 ¼
fdom1

fdom1 þ fdom2

(11)

Equation (10) is divided by F and it is rearranged:

h ¼
zdom1 � xII

dom1

xI
dom1 � xII

dom1

(12)

The component flows:

lI
dom1 ¼ hFxI

dom1 ¼ h( fdom1 þ fdom2)xI
dom1 (13)

lI
dom2 ¼ hF � lI

dom1 (14)

lII
dom1 ¼ (1� h)FxII

dom1 (15)
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lII
dom2 ¼ (1� h)F � 1II

dom1 (16)

Splitting of the component(s) totally miscible with both dominant components (Type I)
These components form a ternary mixture of Type I with the dominant components.

– Input data: all data in 3.1 and fi: molar flow of (splitting) component i in the feed
– Unknowns: li

I, li
II

– Solution: We assume that the equilibrium constant of component i is

Ki ¼
xI

i

xII
(17)

Hence component i splits by the proportion of the phases, that is, the molar flows of the
components of the phases: [ldom1

I , ldom2
I , h fi] and [ldom1

II , ldom2
II , (1 2 h) fi and the total

molar flows of the phases: LI ¼ ldom1
I
þ ldom2

I
þ h fi and LII ¼ ldom1

II
þ ldom2

II (1 2 h)fi

The mole fraction vectors:

xI ¼
lI
dom1

LI
,

lI
dom2

LI
,
hfi

LI

� �
xII ¼

lII
dom1

LII
,

lII
dom2

LII
,

(1� h)fi

LII

� �

The activity of any component is the same in both phases, that is, g I
i x I

i ¼ g II
i x II

i .
Hence Ki can be written in this way:

Ki ¼
g II

i (xII)

g I
i (xI)

¼
x I

i

x II
i

� �
new

(18)

We calculate the activity coefficients and update Ki then li
I and li

II.

x I
i ¼

lI
i

lI
dom1 þ lI

dom2 þ lI
i

(19)

x II
i ¼

fi � lI
i

lII
dom1 þ lII

dom2 þ fi � lI
i

(20)

Ki ¼

lI
i

lI
dom1 þ lI

dom2 þ lI
i

fi � lI
i

lII
dom1 þ lII

dom2 þ fi � lI
i

(21)
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In the quadratic equation (21) only li
I is unknown. Always only one of the two solutions

corresponds to these conditions: 0 , li
I , fi. Then component flow li

II is computed by
Equation 2.

Splitting of the components partially miscible with one of

the dominant components (Type II)
(partial miscibility with dom1, total miscibility with dom2)

– Input data: all data in 3.2 and xi
dom1, xi

i: mole fraction of component i in the phases of
the i-dom1 binary mixture (in the phase rich in dom1 and in the phase rich in i)

– Unknowns: li
I, li

II

– Solution:

Equilibrium constant of the component i in the binary i-dom1 mixture (known):

Kdom1
i ¼

xdom1
i

xi
i

(22)

Equilibrium constant of the component i in the investigated multicomponent
mixture (unknown):

KI
i ¼

xI
i

xII
i

(23)

We assume that these two equilibium constants are equal:

KI
i ¼ Kdom1

i ¼ Ki (24)

Molar flows of the components of the phases:½lI
dom1, lI

dom2, li� és ½lII
dom1, lII

dom2, fi � li�

The component flows li
I and li

II are calculated in the same way as in Step 3.2.

Splitting of the components partially miscible with both

dominant components (Type III)
– Input data: all data in 3.2 and xi

dom1, xi
dom2: mole fraction of component i in the phases

poor in i of the i-dom1 and the i-dom2 binary mixtures
– Unknowns: li

I, li
II

– Solution:

Let the equilibrium constant of i:

Ki ¼
xI

i

xII
i

¼
xdom1

i

xdom2
i

(25)

where xi
I and xi

II are unknown.
The component flows li

I and li
II are calculated in the same way as in Step 3.2.
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STEP 4. LIQUID–LIQUID PHASE EQUILIBRIUM CALCULATIONS
We determine the component molar flows belonging to the minimum of the dimensionless
Gibbs free energy of mixing of the feed. The above estimated component flows are the
initial values of the constrained minimization.
Conditions:

– The component flows are positive: 0 , li
k where k ¼ I,II and i ¼ 1. . .C

– The material balances: li
I
þ li

II ¼ fi where fi is the molar flow of i in the feed and
i ¼ 1. . .C

– The activity of any component is the same in both phases: gi
I xi

I ¼ gi
II xi

II where
i ¼ 1. . .C

Objective function:

Dgmix ¼
X2

k¼1

XC

i¼1

lk
i (lnxk

i þ lngk
i ) (26)

If these calculations collapse to a trivial solution (LI ¼ 0 or LII ¼ 0 or xI ¼ xII) then only
one liquid phase exists and the calculations are finished. If two phases with different com-
positions are obtained, further investigations are needed.

STEP 5. ESTIMATION OF THE COMPONENT FLOWS OF THE PHASES

BY ASSUMING THREE LIQUID PHASES
We assign the dominant components of both phases on the basis of their composition. (It is
not sure at all that the two pairs of dominant components are the same for the two phases.)
Then we decompose both phases to two phases by the Step 3. The component flow and
mole fraction vectors of the new liquid phases:

lI ! lI,1, lI,2 and x I,1, x I,2; lII ! lII,1, lII,2 and x II,1 ¼ x II,2

We select the phases I,j and II,k whose composition is the least different ( j ¼ 1,2;
k ¼ 1,2), that is, the two phases for which

XC

i¼1

(x
I,j
i � xII,k

i ) (27)

is minimal. After that we unite these two phases and so we get three liquid phases:
lI , lII , lIII . These component flows are used as initial values for the LLLE calculation.

STEP 6. LIQUID–LIQUID–LIQUID EQUILIBRIUM CALCULATION
The conditions and the objective function are similar to those of Step 4 but in this case
k ¼ I,II,III. If these calculations collapse to a trivial solution (the mole fraction vector
of any two phases equals) then only two phases exist.
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CALCULATION RESULTS
The algorithm and the program were tested among others for two different mixtures of
Type III:

1. ethylene glycol (1) – lauryl alcohol (2) – nitromethane (3) (Type III)
2. 1-hexanol (1) – nitromethane (2) – water (3) (Type III)

Our method is presented in details for Mixture 1.
Input data:
Overall composition of the mixture, mol/s: f1 ¼ 40, f2 ¼ 30, f3 ¼ 30.
The temperature is 25 8C, the activity coefficients are described by the UNIQUAC
model.

STEP 1. DETERMINATION OF THE MUTUAL MISCIBILITY OF

EACH BINARY PAIR
All the three binary mixtures are partially miscible therefore their Dgmix 2 x functions are
similar (See Figure 2). Equilibrium concentrations of the binary mixtures ½xII

i , xI
i �, where i

denotes the component with smaller serial number: (1)–(2): [0.218, 0.994], (1)–(3):
[0.094, 0.968], (2)–(3): [0.005, 0.826].

STEP 2. SELECTION OF THE DOMINANT PAIR
Since all binary mixtures are partially miscible all the three could be dominant pair. The
calculated pi-values: [2.4914 53.8438 3.0480]. Hence dom1 ¼ 2, dom2 ¼ 3.

STEP 3. ESTIMATION OF THE COMPONENT FLOWS OF

THE TWO LIQUID PHASES ASSUMED
lI ¼ [33.74 29.88 6.29], lII ¼ [6.26 0.12 23.71]

STEP 4. LIQUID-LIQUID EQUILIBRIUM CALCULATION
Results: Dgmix ¼ 29.8470 (mol/s)

lI ¼ ½35:96 29:84 10:79� lII ¼ ½4:04 0:16 19:21�

xI ¼ ½0:4695 0:3896 0:1409� xII ¼ ½0:1725 0:0066 0:8209�

Since the compositions of the phases are different further computations are needed.

STEP 5. ESTIMATION OF THE COMPONENT FLOWS OF THE PHASES

BY ASSUMING THREE LIQUID PHASES
a. Splitting of Phase I into two new phases:

The dominant components: (1) and (2).
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lI,1 ¼ ½8:27 29:68 9:71� lI,2 ¼ ½27:69 0:17 1:08�

xI,1 ¼ ½0:1736 0:6227 0:2037� xI,2 ¼ ½0:9567 0:0058 0:0375�

b. Splitting of Phase II into two new phases:
The dominant components: (1) and (3).

lII,1 ¼ ½1:99 0:141 9:14� lII,2 ¼ ½2:05 0:02 0:07�

xII,1 ¼ ½0:0934 0:0065 0:9001� xII,2 ¼ ½0:9604 0:0078 0:0318�

We determined the pair of phases for which sum of square (27) is the lowest. The compo-
sitions of Phases I,2 and II,2 are the least different therefore these phases are united. Initial

Figure 4. LLLE diagram of the ethylene glycol (1) – lauryl alcohol (2) – nitromethane (3)

mixture
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values for LLLE calculations:

lI ¼ lI,1; lII ¼ lII,1; lIII ¼ lI,2 þ lII, 2 ¼ ½29:74 0:19 1:15�

STEP 6. LIQUID–LIQUID–LIQUID EQUILIBRIUM CALCULATION
Results: Dgmix ¼ 214,8753

lI ¼ ½10:206 29:679 7:459�; lII ¼ ½2:308 0:133 21:557�;

lIII ¼ ½27:486 0:188 0:984� xI ¼ ½0:9591 0:0066 0:0343�;

xII ¼ ½0:0962 0:0055 0:8983�; xIII ¼ ½0:2156 0:6269 0:1576�

Figure 5. LLLE diagram of the 1-hexanol (1) – nitromethane (2) – water (3) mixture
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We executed the flash calculations for several compositions (Figure 4). The triangle deter-
mined by the vertices P1, P2, P3 is the area where a mixture of any composition splits into
three equilibrium phases of P1, P2 and P3 respectively.

For each composition studied we obtained the same compositions P1, P2 and
P3. (Stateva et al. (2000) investigated three different overall compositions in the
three-phase area but only for two of them they got three liquid phases of same compo-
sition.)

One- and two-phase areas are also denoted in the diagram. The one- and two-phase
areas poor in component 2 are very narrow. In the two greater two-phase areas we pre-
sented also a tie line.

We present the results obtained for Mixture 2 (studied also by Wasylkiewicz et al.
(1996) and Guo et al. (2004)) at 21 8C in Figure 5. (The UNIQUAC parameters are taken
from Sörensen and Arlt 1980, Vol. V/3, pp 422 and 423). The three phase region agrees
well with those obtained by the above authors (Figure 6). (It practically coincides with that
of Wasylkiewicz et al. 1996).

Figure 6. Three liquid phase regions calculated by the different methods for mixture 2
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The modified method was succesfully tested for mixtures of Type I (acetone –
water – chlorobenzene) and II (ethyl acetate – water – 1-butanol), as well.

CONCLUSIONS
An algorithm and a computer program was developed for the calculation of LLLE mod-
ifying the method of Lucia et al. based on the minimization of the dimensionless Gibbs
free energy. We changed the original algorithm at several points. We estimated the
initial values of the molar flows of the dominant and splitting components in a different
way. Instead of the relative solubilities we used the equilibrium ratios (K ). We took into
consideration the ratio of the phases (h) rich in one and another dominant component.
When from the two liquid phases three phases are formed, the pair of dominant
components was determined separately for the two phases. We started the calculations
from different points of the three-phase area and we got phases with the same mole
fraction vectors. We got better initial values with the modified algorithm than with
the original one.
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