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Abstract

The growing importance of photovoltaic applications leads to an increasing demand
for silane as an intermediate product for the synthesis of high purity, solar grade
silicon. One important method to produce silane is the redistribution of trichlorosilane
via dichlorosilane and monochlorosilane to silane and silicon tetrachloride.
Conventional redistribution processes, however, require high energy costs as well as
high investment costs. The reason is, that extremely high recycle rates are necessary
due to equilibrium limitations of the redistribution reactions. In this paper a reactive
distillation process for silane production is considered. All redistribution reactions are
carried out in one single reactive distillation column replacing 2 reactors and multiple
columns as in conventional processes. In this way the estimated overall production
costs are reduced by approximately 46 %.
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INTRODUCTION

The growing importance of photovoltaic applications leads to an increasing demand
for solar grade silicon. It is expected that the photovoltaic industry grows more than
15 % per year [1].

Today, the photovoltaic industry mainly uses silicon provided by the electronic
industry. In particular, off spec silicon not matching the electronic grade specifications
is used. Assuming that the amount of available off spec silicon will approximately
remain constant there will be an increasing demand for additional pure silicon. Figure
1 shows that the expected additional demand will approach 5000 t in 2010 and 7500
t in 2015 [1]. These figures motivate the development of economically attractive
processes for the production of solar grade silicon. Please note, that these figures
already include the growing importance of the thin film technology for the production
of solar cells. It is assumed that the importance of thin film technology will approach
10 % of the market in 2010 and 30 % of the market in 2015.
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Fig. 1: Solar grade silicon: availability and demand 1995 — 2015 [1].

For the production of pure silicon a number of different processes has been
proposed. In general, these processes include the production of silane which is then
decomposed to silicon and hydrogen. For the synthesis of silane different routes are
used, for example:

e Trichlorosilane is converted to silane and silicon tetrachloride [2]:
4 SiHCI; --> SiHs+ 3 SiCly.

e Silicon tetrachloride or another polyhalosilane is reduced with an alkyl aluminum
hydride, e.g. dimethyl aluminum hydride or diethyl aluminum hydride [3]:

SiCls + 4 AIR,H --> SiH4 + 4 AIRCI.

e Lithium hydride is treated with silicon tetrachloride, the reaction medium being
molten lithium chloride and potassium chloride [4, 5, 6]:

SiCls +4 LiH --> SiH4 + 4 LiCl.

In this paper, silane synthesis via the first reaction, i.e. redistribution of trichlorosilane
is considered because trichlorosilane is the most important precursor to produce pure
silicon. It is obtained from metallurgical-grade silicon or another silicon solid. Figure 2
shows the corresponding overall structure of the whole silicon process from
metallurgical-grade silicon to solar-grade silicon [1]. The process includes four major
steps: In the first step metallurgical silicon, recycled silicon tetrachloride and
hydrogen are used to produce trichlorosilane. In the second step trichlorosilane is
converted to silane and silicon tetrachloride by redistribution reactions. In the third
step silane is purified, and finally silane is decomposed to silicon and hydrogen. In
the following the paper focuses on the second step of the process, i.e. the
redistribution of trichlorosilane to silane and silicon tetrachloride. This reaction
comprises three redistribution steps.
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Fig. 2: Structure of the silicon process via trichlorosilane redistribution.

First, trichlorosilane is converted to dichlorosilane and silicon tetrachloride:
2 SiHCI; --> SiH.Cl, + SiCls.

Second, dichlorosilane is converted to monochlorosilane and trichlorosilane:
2 SiH,Cl, --> SiH3Cl + SiHCls.

Third, monochlorosilane is converted to silane and dichlorosilane:

2 SiHCI --> SiHs + SiH.Cls.

CONVENTIONAL SILANE PRODUCTION

Conventional silane processes consist of two reactors and multiple distillation
columns [7, 8, 9]. Figure 3 shows a typical process which may serve as an
improvable base case. Here, a first reactor is used for the first redistribution reaction
from trichlorosilane to dichlorosilane and a second reactor combines both following
redistribution reactions. Furthermore, four distillations columns are used to separate
the products from reactants, which are then recycled.

Such conventional processes have the disadvantage that extremely high recycle
rates are necessary. For example, in a silicon process with a silicon capacity of 5000
t/y a recycle rate of 94 t/h trichlorosilane is required. Such recycle rates cause high
equipment and high energy costs.

The necessity for high recycle rates in conventional silane processes arises from
unfavourable chemical equilibria. Figure 4 shows the equilibrium conversions for all
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Fig. 3: Conventional process for silane production.
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brutto reaction: 4 SiHCI; = SiH: + 3 SiCI:
boiling pointat 5 bar: 87,2°C -77,7°C 116,8 °C

chemical equilibria at 80 °C
2S8iHCI; <> SiH,Cl, + SiCl, at 9,8 mol.% SiH,Cl,

2SiH,Cl, <> SiH,Cl + SiHCl; at 28 mol.% SiHsCl

2 SiH;CI <> SiH, + SiH,Cl, at 36 mol.% SiH,4

Fig. 4: Chemical equilibria of chlorosilane redistribution reactions.

redistribution reactions. The equilibrium of the first reaction is at about 10 mol-%
dichlorosilane, the equilibrium of the second reaction is at about 28 mol-%
monochlorosilane, and the third reaction yields about 36 mol-% silane. These
equilibrium conversions are unfavourable. Large amounts of reactants remain in the
product streams leaving the reactor. They are therefore the reason for high recycle
rates necessary in conventional silane processes.

REACTIVE DISTILLATION FOR SILANE PRODUCTION

Reactive distillation is a technology particularly attractive for equilibrium limited
reactions like trichlorosilane redistribution. The basic idea is to combine reaction and
distillation in one column. The integration has a number of general advantages [10]:



higher conversion for reactions limited by chemical equilibrium,
improved selectivity for systems with side reactions,

the possibility to circumvent azeotropes by chemical conversion,
the use of heat from exothermic reactions directly for separation,
avoidance of hot spots by the vaporization of liquid.

Due to these general advantages a high economic benefit is expected for many
reactive distillation applications. An impressive example of the benefits of reactive
distillation is the production of methyl acetate [11, 12]. Concerning silane production
a high benefit can be expected from the first point, i.e. from a significant improvement
of the chemical conversions. Here, the idea is to apply reactive distillation in a way
that only products are removed from the reactive zone whereas reactants remain
within the reactive zone for further reaction. In this way high recycle rates of
unreacted reactants can be avoided. Consequently, equipment and energy costs can
be reduced. Therefore, reactive distillation should be an attractive process for
chlorosilane redistribution reactions.

However, against these advantages of reactive distillation there are a number of
possible constraints and difficulties [10]. General limitations and their consequences
for silane production are the following:

e First, the relative volatility of the components must be checked. The reactants and
products must have suitable volatility to maintain high concentrations of reactants
and low concentrations of products in the reaction zone. In figure 4 the boiling
points of silane, trichlorosilane and silicon tetrachloride are given for a pressure of
5 bar. The boiling point differences are very large. Therefore, separation by
distillation is in these cases very simple. Thus, the relative volatility is favourable
for applying reactive distillation.

e Further, it is important that high reaction rates can be obtained at distillation
conditions. Here it is important to note, that the redistribution reactions must be
carried out in a small temperature range. If the temperature is too low, then the
reactions are slow and high residence times are required. Too high temperatures
cause undesired catalyst deactivation rates. The optimum temperature range
depends on the catalyst. Experimental data [7, 13] show that reasonable reaction
rates are achieved at temperatures between 30 °C and 80 °C, which can easily
be established in distillation columns operated between 1 and 10 bars.

e Then, there are residence time constraints: If the residence time for the reaction is
long, a large column size and large hold-ups will be needed and it may be more
economic to use a conventional reactor-separator arrangement. From available
experimental data [7, 13] it is expected that it is possible to establish the required
residence time by using suitable column internals. However, a detailed column
design requires kinetic data and thus a kinetic study for the chosen catalyst at
distillation conditions.

e A final constraint may result from a quick catalyst deactivation. The use of some
column internals for reactive distillation such as catalytic packings with no
possibility to replace the catalyst may not be economical.
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Fig. 5: Reactive distillation process for silane production.

Considering all these points reactive distillation is a technically possible and attractive
process for silane production. A first reactive distillation process for chlorosilane
redistribution reactions in a bed of a solid ion exchange resin has been proposed by
Bakay [2]. Yamada et al. [14] proposed a process using dimethylamine or
diethylamine as homogeneous catalysts, which are middle boiling components and
thus remaining inside the column. Inoue [15] developed a reactive distillation process
for dichlorosilane redistribution to silane, trichlorosilane and silicon tetrachloride.
Matthes et al. [16] and Frings [17] published a distillation process with a coupled
reactor for trichlorosilane redistribution to dichlorosilane and silicon tetrachloride.

In the following a reactive distillation process combining all three redistribution
reactions in one single column with an intermediate condenser is presented. Figure 5
shows a simplified flowsheet of the reaction column including three sections: one
reaction sections in the middle of the column and two separation sections below and
above. Trichlorosilane is supplied to the reaction section where the first redistribution
reaction is carried out. The products are dichlorosilane and silicon tetrachloride.
Silicon tetrachloride - the high boiling component — is purified in the stripping section
below and taken off as bottoms product. Dichlorosilane is further converted within the
upper part of the reaction section, first to monochlorosilane and then to silane. Finally
the desired product silane — which is the lowest boiling component of the system — is
purified in the rectifying section and taken off as distillate.

An important point of the process is the use of an intermediate condenser. The
intermediate condenser already takes off most of the heat of condensation —
compared to the column top temperatures at a significant higher temperature level.
This is possible as within the rectifying section only a small reflux is necessary.
Furthermore, it is also possible to install the intermediate condenser between two
reaction zones so that trichlorosilane redistribution is performed in a lower reaction
zone whereas dichlorosilane and monochlorosilane redistribution are performed in an
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Fig. 6: Calculated composition profile of the reactive distillation column.

upper reaction zone. In any case, the use of an intermediate condenser has a
significant influence on the process economics.

In figure 6 a calculated composition profile of the liquid phase within the reaction
column is presented. The simulation results are based on an equilibrium stage model
neglecting reaction kinetics. The figure shows the purification of the product silane at
the top of the column as well as the purification of silicon tetrachloride at the bottom
of the column. The figure further shows that all intermediate boiling components — i.e.
trichlorosilane, dichlorosilane and monochlorosilane - reach high concentrations at
different heights of the column. The intermediate condenser on stage 6 has a
significant effect on the profiles as trichlorosilane is kept away from the rectifying
section.

The simulation presented in figure 6 has been carried out for a bottoms product purity
of 99 weight % silicon tetrachloride and a distillate purity of 75 weight % silane.
Please note, that these simulations do not consider reactions kinetics. In general,
kinetic data for chlorosilane redistribution as reported in [7, 13] confirm the feasibility
of the reactive distillation process presented here. But more detailed simulation
studies with a kinetic model are necessary to determine the amount of intermediates
within the column such as monochlorosilane. If more monochlorosilane is formed as
found within the simulation studies presented here then a higher demand is
necessary for the purification of the product silane. For this purpose, the general
reactive distillation concept presented above can be extended by a coupled silane
purification column as shown in figure 7. Here, a second column is used to separate
the product silane from monochlorosilane and dichlorosilane, which are then recycled
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Fig. 7: Extended reactive distillation process with a coupled silane purification column.

to the reaction column. By using the second column more flexibility for additional
separation is achieved.

The reactive distillation concept as a technical plant for silane production requires
suitable column internals. As the chlorosilane redistribution reactions are
heterogeneously catalyzed, packings may be used where catalyst particles are
enclosed in wire gauze envelopes (e.g. Montz MULTIPAK, Sulzer KATAPAK SP) or
sandwiched between corrugated sheets of wire gauze (Sulzer KATAPAK S, Koch-
Glitch KATAMAX). The most important design data concerning fluid dynamics and
mass transfer can be taken from the literature [18, 19]. However, catalytic packings
have the disadvantage, that it is difficult to remove and replace a deactivated
catalyst. Tray concepts with catalyst envelopes, packed catalyst sections or
downcomers holding catalyst particles [20, 21] should be considered as an
alternative. Then standard tray design procedures [22] can be used if residence time
requirements within the catalytic zones are taken into account.

The final choice of the right column internals should not only consider mass transfer
and residence time requirements but also take into account catalyst deactivation
rates.

ECONOMIC POTENTIAL

Figure 8 shows the estimated production costs for the reactive distillation process
based on a column design for a catalytic packing. The cost data are shown in
comparison with the corresponding cost data for the conventional silane process
shown in figure 3. Basis is a capacity of 5000 t/y pure silicon.
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Fig. 8: Economic comparison of the reactive distillation process (Fig. 7) and the conventional
process (Fig. 3) for silane production: estimated production and equipment costs.

The comparison shows that a significant cost reduction can be achieved by applying

reactive distillation. There are two reasons for this cost reduction:

e The first point is, that equipment costs are reduced by 45 %. Consequently also
depreciation and maintenance costs are reduced by approximately 45 %.

e The second point is, that energy costs can be reduced by 60 %.

Altogether, the cost reduction for the redistribution process is about 46 %.

CONCLUSIONS

For silane production a significant economic benefit can be derived by applying
reactive distillation: 2 reactors and 4 columns can be replaced by one single reactive
distillation column, if necessary coupled with one further distillation column. The
estimated overall production costs of silane are reduced by approximately 46 %.

Concerning the benefit of reactive distillation technology silane production is a good
example fulfilling the expectations currently expressed in many scientific papers.
Therefore, this example may serve as a motivation for future research activities in the
field of reactive distillation. Nevertheless, it should be noted that reactive distillation is
not a technology which is optimum for all kind of chemical processes. This is
indicated by the small number of industrial applications. In many cases there are
significant constraints of reactive distillation. Conventional process structures are
then more economic. But also in these cases economically interesting process
structures are often found by considering reaction and separation simultaneously.
Therefore, an integrated process development considering both reaction and
separation is in many cases a key to success.
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