CRYSTALLIZATION FOULING IN PACKED COLUMNS

D. GroRerichter and J. Stichlmair

Lehrstuhl fir Fluidverfahrenstechnik, Technische Universitat Minchen, Munich,
Germany

ABSTRACT

Fouling due to crystallization on structured packings has been studied in a 150 mm
diameter column with 1800 mm packing height. A saturated solution of sodium
chloride has been used in countercurrent flow to dry air. The pressure drop increase
of the column during operation and the ratio between dry pressure drop before and
after the experiments are used to quantify the degree of fouling. The data obtained
show clearly that, as expected, rough and porous materials such as ceramics and
steel as well as wire gauze packings tend to a stronger fouling than others.

INTRODUCTION

Due to their advantages, random and structured packings are widely used contact
elements for fluids and gases in the process technology. Intense investigations over
the last decades have made the description of the fluid dynamics possible with
sufficient accuracy. In contrast to this, the well known problem of fouling in packed
columns has met little interest in literature.

Fouling may be defined as the undesired accumulation of solids on a rigid surface.
These accumulations influence the operation of packed columns severely by
reducing the void fraction and thus the capacity of the packing (see Figure 1 and
Figure 2). In this respect higher energy demand caused by increased pressure drop
can be mentioned as well as costs for shutdowns, cleaning or replacement of
packings.

Industrial applications which are typically affected by fouling are e.g. polymerization
reactions in distillation columns (acrylic acid), gas cleaning and waste water
operations. Many processes which are known to be endangered by fouling are
carried out in dualflow tray columns or sprinkling towers. Using dualflow trays, the
advantage of a sufficient fouling resistance has to be paid for with a massive
pressure drop and, in turn, with a high energy demand. With sprinkling towers, only
poor separation performance can be achieved. The aim is, therefore, to design
packings that combine both sufficient pressure drop and good separating
performance with high fouling resistance. The first step in this direction is the
identification of materials and structures which could be used for this purpose.



Figure 1: Crystallization fouling on the surface of a
single Pall-Ring (left side) / clean Pall-Ring (right side)

Figure 2: Crystallization fouling on a
random packing

OBJECTIVES

The investigation consists of two parts, both dealing with the mechanism of
crystallization fouling. In the first part, a simple experimental setup is used to
examine single cylindrical rings. The objective here is to identify the fouling
resistance of different materials (glass, ceramics, steel, PP, PTFE). A standard ring
shape (15 mm diameter, 15 mm length, 1 mm wall thickness) is used for all materials
to make sure that influences resulting from different shapes can be eliminated.

In the second part, several structured packings are investigated in a pilot plant. The
aim is to identify packing structures with a high fouling resistance. These experiments
deal with different shapes (packings with plane surfaces, wire gauze packings) as
well as different materials (PP, steel, textile, glass). For the determination of the
degree of fouling it is suitable to observe the increase of the pressure drop during
operation. For the measurement of enduring fouling related changes, additionally the
dry pressure drop is measured before and after the experiment. The investigated
packings are listed in table 1.

Table 1: List of investigated structured packings

manufacturer |name material specific surface
Sulzer Plastic Mellapak 250.Y |PP 250 m%m?®
Sulzer Mellapak 250.Y steel 250 m?/m?®
Sulzer Mellapak 350.Y steel 350 m?/m?®
Sulzer Gauze packing BX steel gauze 500 m*/m?®
Sulzer Gauze packing BX plastic fibre gauze |500 m?/m?
QVF Dura-Pack glass 300 m¥m?




EXPERIMENTAL SETUP

System

For both the single ring and the packing experiments a saturated solution of sodium
chloride serves as foulant. The deposits are generated when the solution gets into
contact with dry air. The resulting evaporation of water leads to a fallout deposition of
salt. The liquid inlet temperature in all experiments is held at 22 °C. In the relevant
temperature range the solubility of sodium chloride can be considered as constant.
As a consequence, a definite amount of evaporated water corresponds to a definite
amount of salt that falls out.

Single Ring Experimental Setup
The single ring experiments are J'nquid
performed with the setup shown in

Figure 3. It consists of a support to
which the different cylindrical rings
can be attached at an angle of 45°
to the horizontal. The gas stream
consists of dry air. The air load F is
1Pa’. A saturated solution of

sodium chloride is fed to the rings. »?3\ (ﬁs
The effective liquid load B is varied 7\ <

in a range from 15 to 60 m*(m?h). AN

The duration of the experiments is N\

10, 20 or 30 minutes. After each N cylindric ring

experiment the rings are dried at a
temperature of 50 °C. The resulting
masses of the deposits are Figure 3: Single ring experimental setup

measured with a scale.

Pilot Plant

The experiments are performed in a glass column with 150 mm in diameter (see
Figure 4). The column consists of 10 sections with a height of 150 mm each.
Between these sections nozzles for the pressure drop measurement are provided.
The gas stream (dry air) is blown into the column below the bed support. Due to
variable pressure drop during operation a roots fan is used. The saturated air leaving
the top of the column is led trough a demister to separate small droplets from the gas
stream.

The liquid circulates from a heated tank to the top of the column. There it is supplied
to the packing trough a perforated distributor. At the bottom of the column the liquid is
recollected and fed back into the tank.

The heated liquid tank serves on the one hand as a settler for the salt deposits
washed out of the packing, on the other hand it is used to compensate for heat
losses caused by the water evaporation and, thus, maintaining a constant liquid
temperature. For cleaning purposes a separated water circuit is provided.

The instrumentation of the pilot plant contains a temperature measurement for the
liquid at top and bottom of the column and in the heated tank. Temperature, pressure
and relative humidity of the gas are measured at the inlet and outlet. Therefore, the
amount of water in the air can be calculated.



The differential pressure measurement
is connected to pressure nozzles in the
column by magnet valves. With this
system, the pressure drop can be
measured in each section of the
packing.Before starting an experiment,
the dry pressure drop of the observed
packing is measured at a gas flow rate
F of 3Pa%. The experiment is then
performed at a constant gas flow rate F
of 1 Pa®° and at a constant liquid flow
rate. These flow rates are varied
between 10 and 54.8 m®(m?h). During
the experiments the operating pressure
drop is recorded. After 1390 g of water
have been evaporated (corresponding
to 500 g of salt-fallout) the experiment
is stopped. After a constant drying time
of 30 minutes the dry pressure drop of
the fouled packing is measured again
at a gas flow rate F of 3 Pa’°.

EXPERIMENTAL RESULTS

Single Ring Results

Figure 5 shows the development of the deposits on the single rings over a period of
45 minutes. The data was obtained at a liquid load B of 40 m*(m?h). It is obvious that
the ring made of ceramics collects the most deposits. The results also show that the
deposition rate is higher than with all other materials. The differences between PP,
glass and PTFE are rather small. The deposition rates of PP, steel, glass and PTFE
are of about the same order of magnitude. Figure 6 shows the average amount of
salt deposits on the rings taken from all experimental data. Analogous to Figure 5,
ceramics show the lowest fouling resistance. The deposits are stable and cannot be
removed easily. Steel shows only about one fourth of the deposits of ceramics.
Moreover, the salt crust is mechanically rather instable. PP, PTFE and glass show

only few and unstable deposits.

BLLLLENLY @

=
3

Figure 4: Pilot plant
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Figure 5: Amount of salt deposits on the single rings over time at a liquid load of 40 m*/(m?h)
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Figure 6: Average amount of salt deposits on the single rings



Pilot Plant Results

Figure 7 shows the operation pressure drop increase of the Sulzer Mellapak 350Y
steel packing for the 10 sections. The graph indicates that the deposits are mainly
concentrated in the lowest section of the packing. The differences in pressure drop in
the sections 2 to 10 stays almost constant over the time of operation. The result is
validated with the dry pressure drop of the different sections after the experiment

(see Figure 8). Almost all the deposition is collected in the lowest section.
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Figure 7: Development of pressure drop over operating time
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Figure 8: Dry pressure drop of the 10 packing sections




The comparison of the results of the different packings is shown in figure 9.
Obviously, both gauze packings show a strong pressure drop increase during the
operation. Especially the steel gauze packing plot displays an almost constant
increase versus the liquid load. The textile gauze packing ranges in about the same
order of magnitude for a liquid load of less than 30 m*(m“h). With higher liquid loads,
a significant fraction of the deposits is obviously washed out of this packing.

For liquid loads below 30 m*/(m?h) the other 4 packings show a nearly identical
performance. For liquid loads higher than 40 m*/(m?h), higher pressure drop
increases can be observed. In contrast to this, the glass packing’s pressure drop
stays rather constant for all liquid loads.
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Figure 9: Relative wet pressure drop increase of packings

Additional information can be derived from figure 10, where the dry pressure drop of
the fouled packings is refered to that one of the clean packing. Taking into
consideration the results shown in figure 9, the overall range of pressure drop ratios
for the different types of packings is smaller than presumed.

This indicates that the strong increases of pressure drops during operation are
caused by local flooding zones within the packings. This is the case especially for the
steel gauze packing where relatively low ratios of the dry pressure drops are
observed. The packings Mellapak 250Y, 350Y and N 350 Y show a rather similar
behavior. For all three packings liquid loads larger than 30 m*(m?h) lead to large
pressure drop increases. As these increases cannot be found in figure 10, it is not
possible that the deposits are the only reason for the increases. Rather the deposits
cause zones of local flooding with a high pressure drop.

The only packing that shows a consistent plot in both the figure 9 and 10 is
Durapack. Due to its plane surface the deposits can only grow to a certain extent. As
soon as flooding starts, a significant fraction of the deposits is washed out.
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Figure 10: Relative dry pressure drop increase of packings

CONCLUSION

As a result from the single ring experiment it can be stated that porous materials like
ceramics are not suitable for fouling applications. Though the investigation was
performed with an aqueous solution, the strongly hydrophobic PTFE does not turn
out to be as resistant as presumed. Despite its hydrophilic character glass appears to
be quite resistant against deposits. Obviously, the roughness of a surface plays a
decisive role for fouling.

The main conclusion from the pilot plant experiments is that packings with rough or
porous surfaces like gauze packings should not be used for fouling applications. The
results coincide well with the ones from the single ring experiments. For some types
of packings a low amount of deposits contributes to a strong increase of the liquid
holdup. As a consequence local flooding and, thus, strong increases in pressure drop
occur. In contrast to this, fouling resistant packings like the durapack do not show
flooding during the experiment.



NOTATION

REFERENCE

liquid flow rate m%/(m?h)
diameter of column mm
gas flow rate, F =w-\/p; Pa’°
height of packing mm
operation pressure drop mbar
pressure drop at operation start mbar
dry pressure drop before the experiment mbar

o dry pressure drop after the experiment mbar
superficial velocity of the gas m/s
density of the gas kg/m?®
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