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Abstract

Accurate vapor and liquid fugacities are fundamental quantities for the calculation of
reliable vapor-liquid equilibrium and consequently they have a direct impact on sizing
of separation equipment as well as on the quality of simulations used to understand
plant behavior. Traditionally, vapor pressures are taken from a given data source and
many times engineers take interaction parameters for equations of state or activity
coefficient models from the literature. This approach is prone to error and
inconsistency, sometimes creating unrealistic simulations showing non-existent
azeotropes, incorrect phase behavior or even creating azeotropes between isomers.
Perhaps more important, the parameters published in the literature do not include
uncertainty information, and quality assurance on the obtained results is not possible.

Since 1999 Thermodynamics Research Center (TRC) and Virtual Materials Group
(VMG) are working together towards the creation of state of the art databases of
model parameters for the calculation of physical properties necessary for the
modeling of complex chemical processes. Our strategy follows a step by step
development path where extensively validated software building blocks are produced
and assembled to be used in multiphase flash calculations. This strategy was built
upon the following principles:

1 The vapor pressures for pure components are derived from a single data
compilation and the vapor pressure parameters such as Antoine constants or cubic
equation of state attractive term parameters are derived using a single set of
recommended vapor pressure data taking into account recommended uncertainties
for each vapor pressure data point.

2 Pure component parameters necessary for phase modeling such as critical
properties and liquid molar volumes are collected from evaluated values stored in the
TRC SOURCE data system together with estimated uncertainties.



3 Pure component parameters and extensive VLE data are used to generate a large
collection of interaction parameters for each available dataset. Each dataset is
regressed using the most rigorous objective function available depending on the
dataset type. Special care for modeling azeotropic points is taken and all the
calculations are performed using rigorous multiphase flashes. Complete error
analysis for each dataset is performed, and detailed validations are generated for
every dataset. Separate interaction parameter collections are calculated for each
vapor phase model / activity coefficient model combination. In addition, collections of
interaction parameters for GE (Excess Gibbs Energy) - based equations of state and
quadratic mixing rule- based equations of state are generated.

4 After all the available VLE data are regressed, specially developed ranking system
automatically examines each binary pair ensemble of datasets and the most
adequate set for distillation calculations is selected. Subsequently, internally
structured databases of interaction parameters with error information and
bibliography are created.

The final product of this data regression effort is a consistent set of interaction
parameters, vapor pressure and pure component parameters that can be used
confidently for process calculations, based on extensive experimental data as well as
extensive data quality evaluation, combined with full backtracking of data origin and
model fitness. The benefits of this fundamental approach to data regression are
internal consistency, quality assurance, extensive flash engine test and ability of
ranking and suggesting thermodynamic models based on the makeup of mixtures of
interest.

Introduction
The most fundamental aspect of process simulation calculations can be traced back
to the related thermodynamic model used for the mixture phase behavior and
physical properties. Underneath this thermodynamic model we invariably find pure
component properties such as critical properties and vapor pressures, as well as
interaction parameters necessary to guarantee adequate performance of mixture
models such as UNIQUAC and Peng-Robinson.

Common engineering practice stresses the convenience of computer calculations.
However, more often than not the accuracy of the underlining thermodynamic method
used for simulations is not accessed, or, at best, accessed in an incomplete manner
since most of the data collections currently available do not provide complete
statistical information necessary for the proper performance evaluation of a model.
For example, good quality engineering databases such as DIPPR 801 [1] and Yaws
[2] provide only fragmentary statistical information about correlation errors in the form
of average and maximum errors for temperature dependent properties such as vapor
pressure. Standard deviations for important temperature independent physical
properties such as critical properties and acentric factors are not provided.
Temperature dependent properties correlations are also incomplete in a sense that
the variances for regressed parameters are not available, thus precluding the use of
such data for a comprehensive error propagation analysis of calculated physical
properties for mixtures.



For mixture interaction parameters, the situation is even more confusing. Interaction
parameters for VLE models are indirect functions of pure component properties, and
have to be uniquely identified with these pure component parameters. In the
databases currently used to support VLE calculations there is no explicit guarantee
that the vapor pressure and other pure component parameters are consistent with
the interaction parameters being used in the simulations [3, 4, 5, 6, 7, 8] with the
exception of one property data package system [9] that assures automatic trace back
capabilities to all of its interaction parameters and pure component properties. This
lack of quality control and traceability creates the potential for inconsistent
simulations that “look” reasonable, but may have basic errors that are not obvious,
and may cause significant economic losses related to the equipment performance,
product specification failure and plant operability problems. These are known issues
in chemical process simulation, but since their proper resolution depend on
significant resources related to data management, expert analysis, and processing
capabilities, so far, these problems have never been resolved in a comprehensive
manner.

Our goal is to create a consistent data source for chemical process simulation using
the most accurate and well maintained data source available, combined with
extensive quality control, consistent use of thermodynamic quality tools such as
thermodynamic consistency tests, extensive use of process simulation tools such as
multiphase flash calculations, and complete statistical data analysis for the final
estimation of uncertainties of the calculated values. It is our belief that a numerical
results provided by a process simulation software tools without quantifiers of their
uncertainties are incomplete from a scientific point of view, and potentially dangerous
when used by engineers without appreciation for error estimates in the underlining
thermodynamic models as well as errors in the underlining property data used to
power the thermodynamic model such as vapor pressures and interaction
parameters.

This quality-driven solution for the calculation of physical properties used in process
simulation is possible only if a robust data management system of pure component
and mixture data with evaluated uncertainties is available [10], and the necessary
thermodynamic framework of models and multiphase flash calculations is developed
[9] to be used for extensive data regression and statistical analysis within the
structure of rigorous flash calculations used for process simulation.

Theoretical Framework
The theoretical framework necessary to achieve successfully the goal of quality-
driven process simulation can be divided into three broad categories as database
computer technology, statistical framework and thermodynamic modeling technology.

Database and Computer Technology
The choice of a proper database to work, as the backbone of the data regression and
statistical analysis is the most fundamental aspect of this project and it was the object
of extensive study. We have chosen to use a combination of several electronic
databases developed by the Thermodynamics Research Center at the National
Institute of Standards and Technology in Boulder, Colorado as the source of pure



component and mixture information for the generation of the necessary statistical
information for uncertainty estimates in process calculations. The processing of
information from these databases, in turn, provides the information stored in our own
physical property database. The TRC databases are summarized in the list below [10
– 15].

• NIST Standard Reference Database 85-NIST/TRC Table Database WinTable,
Version 2002 (TABLES)

• NIST Standard Reference Database 87-NIST/TRC Vapor Pressure Database
Version 2001 (VP)

• NIST Standard Reference Database 88-NIST/TRC Compounds Database
Wincmp, Version 2002 (CMP)

• NIST Standard Reference Database 100-NIST/TRC Density Database
TrcDensity, Version 2002 (LD)

• NIST/TRC Standard Reference Database 91-Floppy Book on Viscosity of Liquids
(LVIS)

• NIST/TRC Standard Reference Database 92-Floppy Book on International Data
Series Selected Data on Mixtures 1973-2001 (IDS)

• NIST/TRC Standard Reference Database 93-NIST/TRC Floppy Book on Vapor-
Liquid Equilibrium Data for Binary and Ternary Systems (VLE)

• NIST/TRC Standard Reference Database 96-NIST/TRC Floppy Book on Heats of
Mixing (HE)

These databases are the kernel for the current work being done at Virtual Materials
Group for the creation of a standard database of pure component and mixture data
for process simulation, named the VIRTUAL database. Some of the databases (such
as the TABLE database above) do not contain uncertainty information explicitly
expressed, but rather contain recommended values of physical properties based on
evaluated data where the number of the significant digits can be used as a measure
of the uncertainties. TRC’s largest data system of ‘raw’ experimental data with
evaluated uncertainties, the SOURCE data system, contains the majority of the
thermophysical data published [11, 15].

It is important to note that the work involved in the creation of VIRTUAL is not static,
but rather continuous based on new revisions of the recommended data with the
inclusion of recently reported information. This need for continued revisions to ensure
that the most accurate data and statistical information is provided for process
calculations involve a significant amount of software engineering to ensure that
changes in the database are properly logged and that users can understand why
simulation results may have changed with the use of calculations based on different
versions of VIRTUAL. Changes from version to version are also catalogued in an
automatic report, thus allowing users to critically review their designs and invest
engineering time revising solutions if necessary.



The interaction of all the databases is described in figure 1.

Figure 1. VIRTUAL database integration structure

All the databases used in the creation of VIRTUAL as well as VIRTUAL itself are in
relational format. VIRTUAL supports several formats for data extraction independent
of its own native relational table using software interfaces. These interfaces allow
VIRTUAL to expose data for process simulation tools such as Virtual Materials and
consequently process simulators such as HYSYS and PRO/II. In addition, users
familiar with physical property databases such as DIPPR 801 can explore VIRTUAL
data using VIRTUAL’s software interfaces. For users who have their own data
formats a data dictionary is provided for the creation of custom interfaces without the
need of programming (figure 2).

Currently all databases are maintained using Microsoft Access and the main data
regression and data maintenance machine is a Pentium 4 computer operating at 1.8
GHz with 80 GB disk space.



Figure 2. Interfaces for data access from VIRTUAL database.  Note that specific users can
access data either directly or through the process simulation tools.

The simple collection of data is certainly not enough to accomplish a truly useful
quality-driven database for process simulation. Careful data selection and back
tracking capabilities are as fundamental as the data themself to allow users designing
actual process equipment to check the quality of results. This will be illustrated in the
Thermodynamic Modeling Technology section.

Statistical Tools
The necessary statistical tools are defined by the specifications we imposed onto the
VIRTUAL database for performing the services related to providing the requested
information for the evaluation of uncertainties during process simulation calculations.
It is important to briefly review what is involved in the fulfillment of this goal from a
mathematical point of view.

If one assumes that the statistical error on a value is small and we are measuring a
function of several variables where xr  represents the vector of random variables
whose true values are given by the vector X

r
, we can represent a true value of  a

derived quantity by equation 1:
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One is naturally faced with the need of defining how small is small. Mandell [16]
suggests that if the errors are in the order of 10% or smaller of the variable of interest
then the law of propagation of errors can be reliably used.

Now let us define the vector εr  as the vector containing statistically independent
errors of xr . Then the error in U, denoted as δ  and resulting from the errors εr  has a
variance described by equation 2.
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Therefore, if we want to be able to estimate the error in the calculation of a
thermodynamic property, we need to know not only the values of the parameters it
depends upon, but also their estimated variances. For example, if one is calculating
the composition of a component using Raoult’s law, then it is necessary to know the
uncertainty of the parameters used in the vapor pressure correlation. In this simple
scenario, we can assume that the thermodynamic behavior of the system is well
described by an ideal solution model, and therefore the vapor composition can be
described by the equation 3 (yi.is a mole fraction of the component i  in a vapor
phase, xi.is a mole fraction of the component i  in a liquid phase; Pvi  is a partial vapor
pressure of the component i , P is a total pressure; A and B are parameters defined
in the equation 5, T is a temperature).

( ) ( )iiiiii
i

i xPTBAgxPPvfx
P
Pv

y ,,,,,, === (3)

Then, the uncertainty in the composition of component i in the vapor is given by
equation 4.
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The vapor pressure of component i can be represented by the integrated Clausius-
Clapeyron equation (equation 5).
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B
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Equation 4 clearly shows why it is important to collect complete statistical information
about all parameters used for the calculation of a physical property used for process
simulation. The uncertainties of the parameters Ai and Bi , in turn, could only be
determined consistently on the basis of the uncertainties of the experimental values
of vapor pressure of the component i used to calculate Ai and Bi .



All software subroutines developed for the data regression are written using
Microsoft’s Visual Basic language as ActiveX components. The mathematical
techniques for the determination of model parameters are well established [17-19].

Basically, the non-linear regression engine uses a modification of Marquart-
Levenberg algorithm combined with singular-value decomposition [19]. In addition to
parameter uncertainties the software stores chi-square function values, significance
test results, average and maximum absolute percent errors, average and maximum
absolute deviations and bias, as well as information about thermodynamic calculation
success or failure for each data point used in the calculations. Naturally, all the
thermodynamic calculations are performed through a multiphase flash engine thus
ensuring that not only the data but the flash engine be extensively tested. For
example, during the determination of optimal VLE parameters for an activity
coefficient model, more than 20,000 binary datasets are evaluated and more than
300,000 flash calculations are performed.

Thermodynamic Modeling Technology
Usually the development of physical property databases for process simulation is
performed completely independent of a process simulation engine development. In
our judgment, that is a significant drawback. Coherent development of the property
database and simulation engine provides an opportunity to extensively test the
algorithms under a vast space of test cases while determining optimal parameters for
activity coefficient models as well as equations of state. In turn, sometimes
discrepancies between model and data uncovers problems with the data, such as
typographical errors, unit conversion errors, ordering errors (in the case of binary or
multicomponent data) and incorrect literature values.

Our thermodynamic modeling is based on Virtual Materials Group Virtual MaterialsTM

property package framework. The Virtual MaterialsTM framework contains all
commonly encountered thermodynamic models used for process simulation in
addition to sophisticated models used for the simulation of reactive systems, coupled
with a rigorous multiphase flash and software interfaces that allow it to be run in line
with a variety of existing application software. These software interfaces make it easy
to access model parameters inside the property package and are used extensively
when determining the physical property parameters in the VIRTUAL database.

The ability to run the thermodynamic engine without a specific graphical interface but
rather by just accessing its parameters and starting calculations is extensively used
in the creation of the VIRTUAL database where Virtual MaterialsTM is called many
times during the optimization of model parameters. This, in turn, is also useful for the
flash algorithm testing since during the early stages of optimization, model
parameters vary significantly and do not correspond to physically meaningful values.

Prototyping – VLE Interaction Parameter Regression
As a prototype for the VIRTUAL database creation, the determination of interaction
parameters for all activity coefficient models supported by Virtual MaterialsTM was
done in 2000 and 2001. This extensive data regression and data selection served as



a foundation for a creation of the VIRTUAL database and provided a preliminary high
quality database of interaction parameters for activity coefficient models.

The generation of the default interaction parameter databases was performed
according to the following procedure:

1 Select thermodynamic model (e.g. NRTL / Ideal Gas)
2 Determine optimal interaction parameters by minimizing the bubble pressure

objective function for all datasets present in the VLE database (NIST Standard
Reference Database 93) using Virtual Materials  rigorous multiphase flash
system.

3 Determine thermodynamic consistency and other quality parameters related to
each dataset.

4 Based on the quality of the regressions for each dataset for a specific binary
mixture and the quality parameters of each dataset related to that binary
mixture choose a default dataset.

5 Store default binary parameters in VIRTUAL database.
6 Calculate bubble and dew pressure or temperature curves as a function of a

composition using default binary interaction parameters to verify accuracy of
parameters and reliability of flash engine.

7 Repeat a procedure for all thermodynamic models supported by Virtual
Materials Group.

The bubble pressure used in the optimization procedure is defined by equation 6.
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Here, pσ is the standard deviation in pressure, assumed to be equal to 0.133 kPa, Pe

is the experimental bubble pressure, Pc is the calculated bubble pressure, N is the
total number of points for the dataset and n is the number of optimized parameters
used by the model.

The bubble pressure is calculated using the following expression for the vapor and
liquid fugacities, equation 7 (φi , γi , and φs are a fugacity coefficient, an activity
coefficient, and a fugacity coefficient at saturation pressure for the component i.

vii
s
iiiii PPoyxPy φγφ = (7)

The fugacity coefficients are calculated using any of the equations of state provided
in the Virtual MaterialsTM framework, while the activity coefficients are calculated
using any of the activity coefficient models supported by Virtual MaterialsTM.  These
are summarized in the tables below.



Table 1. Virtual MaterialsTM Liquid Phase Models

Activity Coefficient Models
Ideal Liquid (not used in regressions)
Regular Solution (not used in regressions)
Margules
Margules 4 Suffix
Monsanto van Laar
Wilson
Wilson-Tsuboka-Katayama
NRTL
UNIQUAC
UNIQUAC-Sander

Table 2. Virtual MaterialsTM Vapor Phase Models

Fugacity Coefficient Models
Ideal Gas
Virial Equation of State (Hayden-O’Connell)
Redlich-Kwong
Soave-Redlidh-Kwong
Refinery-SRK (SRK using API’s definitions)
ZSRK (SRK optimized for natural gas compressibility factor calculations)
Peng-Robinson
Advanced Peng-Robinson
NGL-Peng-Robinson (PR using GPA’s RR-28 specifications)
GE-Peng-Robinson (PR using Huron-Vidal mixing rules and Mathias-Copeman
attractive term for pure components)
PSRK – Predictive SRK

The complete interaction parameter database contains interaction parameter tables
for 96 different combinations of vapor and liquid phase models, or approximately
288,000 recommended interaction parameters for approximately 3,000 different
binary pairs.

The fact above has the important implication of forcing consistent calculations for all
vapor models used for activity coefficient-based models. For example, the
DECHEMA VLE data collection [21] has an extensive collection of interaction
parameters for a few activity coefficient models assuming ideal gas behavior. the
VIRTUAL database contains 9 times more information since for each vapor model
used in conjunction with an activity coefficient model, a different database of
interaction parameters and recommended interaction parameters is generated. For
example, when determining optimal interaction parameter values for the NRTL
activity coefficient model, the following interaction parameter databases are
generated:



Table 3.  Different NRTL-type databases generated for each vapor phase model

Database Vapor Model Liquid Model
NRTL-1 Ideal Gas NRTL
NRTL-2 Virial (Hayden-O’Connell) NRTL
NRTL-3 Redlich-Kwong NRTL
NRTL-4 Soave-Redlidh-Kwong NRTL
NRTL-5 Refinery-SRK NRTL
NRTL-6 ZSRK NRTL
NRTL-7 Peng-Robinson NRTL
NRTL-8 Advanced Peng-Robinson NRTL
NRTL-9 NGL-Peng-Robinson NRTL
NRTL-10 GE-Peng-Robinson NRTL
NRTL-11 PSRK NRTL

This procedure ensures consistency between the interaction parameters used for
thermodynamic calculations and pure component physical properties. Also, since the
standard Virtual Materials multiphase flash engine is used for all calculations, the
results are consistent with what one would expect when using the interaction
parameters for process calculations.

Since the number of equations of state in Virtual Materials is continuously increasing,
the number of interaction parameters for activity coefficient models is correspondingly
upgraded.

Thermodynamic Consistency and Other Quality Parameters
The thermodynamic consistency of a dataset is determined based on the point
consistency test as suggested by Gess [20]. For each binary, optimal interaction
parameters for the four-suffix Margules equation are determined by minimizing the
bubble pressure objective function (equation 6) as it follows from equations 8 and 9
A, B, and D are parameters of the four-suffix Margules equation).
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Using the optimized interaction parameters for the Margules 4-suffix equation the
vapor compositions can be computed as:
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Then, the average error and bias in vapor composition are calculated:

∑
=

−=∆
np

i

ec yy
N

y
1

11
1 (11)

∑
=

−=
np

i

ec yy
N

Bias
1

11
1 (12)



The dataset is considered consistent if the average error in vapor composition is less
than 0.01.
The bias can be used to check for systematic deviations in the calculated vapor
composition.

VIRTUAL  also includes the estimated classification of the binary systems based on
the magnitude of the Margules two-suffix equation parameters. This provides a
magnitude of the maximum Gibbs free energy of the binary mixture, and it is useful
as a ‘rough’ indication of the non-ideality of a system. Following the suggestion by
Gess and coworkers [20], we classify systems with a two-suffix interaction parameter
equal or less than 0.6 as nearly ideal. Systems having this interaction parameter
greater than 0.6 are classified as non-ideal. In addition, the standard deviation with
respect to the Margules two-suffix model is calculated, thus providing an estimate of
the asymmetry of the Gibbs free energy curve with respect to a mole fraction of the
component in the mixture:
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where gE is the Gibbs free excess energy of the mixture.

Finally, the composition momentum is calculated. The composition momentum
describes how well spread the data are with respect to their distribution along the
liquid mole fraction axis. Data sets with data distributed over the liquid compositions
for a binary mixture have a composition momentum nearly equal to zero.

Regression Statistics
The following information is collected during the data regression for each dataset.

For all dataset types
a) Absolute average error in temperature and in pressure;
b) Absolute deviation in pressure and temperature;
c) Maximum error in temperature and pressure;
d) Maximum deviation in temperature and pressure.

For TXY or PXY or TPXY dataset types
a) Absolute average error in vapor composition;
b) Absolute deviation in vapor composition;
c) Maximum error in vapor mole fraction;
d) Maximum deviation in vapor mole fraction.

Average errors are defined as:
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Default Interaction Parameter Selection Procedure
The selection of default interaction parameters for thermodynamic models is almost
always biased towards a particular class of applications, the available data and the
experience of the user of the data. When creating default interaction parameter
databases, we strive to have the defaults selected using uniform criteria, thus
allowing to compare the performance of different thermodynamic models and choose
the most adequate model for particular application. A software component designed
to work under any host program  was developed to allow for identification of potential
problems with the default parameters and providing information necessary for making
decisions about collecting new experimental data and regressing new interaction
parameters that may be more adequate for a specific application.

Selection Process
After all the VLE data is processed for a given thermodynamic model, each data set
is ranked. For VLE data at or close to normal atmospheric pressure, the following
empirical criteria are used:

1 Only data sets with corresponding function (equation 6) values less than 1000
are considered fit for selection. This corresponds to an average number of
points per dataset equal to 10, an error per point of approximately 1 kPa and
an error in pressure of about 0.1 kPa. These values are certainly empirical, but
they seem to represent most of the cases of interest (except for sistems at
high vacuum)

2 For sets that pass criteria 1, thermodynamic consistency is checked. If the
data are consistent, the ranking function is set to zero, else it is set to 1.
If the dataset is of type TXY, zero is added to the ranking function, if the type
is TX, 1 is added to the ranking function, if the type is PXY,  2 is added to the
ranking function, otherwise 3 is added to the ranking function.

3 The average of the absolute difference between the pressures for each point
in the dataset and 101.325 kPa is added to the ranking function.

4 The average deviation in temperature calculated using the selected
thermodynamic model is added to the ranking function.

5 The absolute value of the composition momentum is added to the ranking
function.

6 The dataset with smallest ranking function value is selected as the default
dataset for the binary pair, and the corresponding interaction parameters are
set as default.

Selection Process Characteristics
The selection process was designed to choose data sets of quality from a
thermodynamic point of view, with good overall model fitting, close to atmospheric
pressure and with data reasonably spread over the composition space. These are
generally good principles for defaulting data sets and corresponding binary
coefficients for distillation applications at modest pressures. Naturally, different
processes may require a reevaluation of the parameters, for example, if a
superfractionator model is desired it may be more adequate to change the objective
function to force a better relative volatility fit instead of a better bubble pressure fit.



Nevertheless, the fact remains that the user of the model can determine at any time
the source and the assumptions used for the determination of the physical property
parameters for the process calculations. Typical results are shown in figures 3 and 4.

It is interesting to note that using the database structure and thermodynamic tools
described, a complete interaction parameter determination involving 24,000 binary
pairs based on a bubble pressure objective function and rigorous multiphase flash
calculations, and the corresponding selection of a recommended dataset for each
available binary pair can be done in approximately 8 hours.

Figure 3.  VIRTUAL regression results for 1,1,1-Trichloromethane / Benzene at 101.325 kPa



.
Figure 4.  VIRTUAL regression results for 1,1,1 Trichloromethane / Benzene at 101.325 kPa

– statistical details

Discussion
The creation of a prototype VIRTUAL database using vapor-liquid equilibrium data
was successful, and served to completely test the thermodynamic models used for
calculations, flash engine, statistical calculation procedures and database
maintenance tools.

With these fundamental components tested, the work on the creation of a definitive
VIRTUAL database is in progress where all physical property parameters important
for process simulation calculations are being reworked with the necessary care for
the collection of statistical information on parameter uncertainty to allow property
uncertainty calculations on demand.

The VIRTUAL definitive database currently contains all the pure component data
present in the NIST/TRC TABLE, VP, LDN and LVIS databases, and the VLE tables
are being reworked to include excess enthalpy data as well as estimated
uncertainties in the interaction parameters. This definitive database of
thermodynamic data for process calculations will be available in the summer of 2002.



Conclusions
The ability of qualifying the results coming from process simulation calculations is a
fundamental step towards a sound basis for the design of chemical equipment and
simulation of chemical processes under quantifiable, numerical parameters. Currently
this ability is not present in process simulation software and therefore when designing
equipment the engineer is faced with the need of adding safety factors based on
experiment. The actual value of such safety factors is not based on sound science
but rather, it is based on empirical knowledge gathered from comparing designed and
actual performance of chemical equipment.

It is natural that a certain degree of art will always be related to chemical equipment
design, and our work removes only one factor related to calculation uncertainties,
albeit a very significant one since thermodynamic calculations are the basis for fort
process designs. It is our hope that this same framework can be put to work towards
quantifying uncertainties in mass transfer calculations, heat transfer coefficients and
other relationships used by engineers, and, in turn, help put the safety factors used
for design under a more scientific basis.

Perhaps as important, it is common now to design processes under very tight
concentration specifications due to environmental concerns. The knowledge of at
least estimated errors in computed thermodynamic variables would be priceless for
the proper assessment of effectiveness of processes and for helping to analyze them
under realistic parameters. Also, the knowledge of uncertainties can provide actual
information about realistic values to be used for process control to avoid waste of
time trying to optimize or control process variables that can not be calculated with the
accuracy one would associate with results from calculations where uncertainties are
not available as normally done today when optimizations are done from a purely
mathematical perspective, neglecting the fact that the search values within an error
band are for all practical purposes identical.

The VIRTUAL database combines the best available physical property data with
extensive evaluation and testing under actual process simulation conditions and is a
significant step towards quality-driven process simulation.
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