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Abstract

Most industrial model predictive controllers (MP@e the traditional two-layer structure developed i
the early 1980’s, where the upper layer definegmltsteady-state targets for inputs and outpulsiew
the lower layer calculates the control moves thiatedthe system towards these steady-state tayets.
rule, both layers use continuous quadratic progragpniQP) formulations to derive the optimal
solutions. On the other hand, the advances in riiegier programming (MIP) algorithms and their
successful utilization to solve large schedulingbbems in reasonable time show that MIP formulation
have the potential of being advantageously appt@®dhe multivariable model predictive control
problem. In this paper we present a mixed-integerdeatic programming (MIQP) formulation for the
steady state targets calculation layer, and shaw ¢bveral difficulties faced in the MPC practical
implementation can be overcome with this appro&tiparticular, it is possible to set explicit piitgs

for inputs and outputs, define minimum moves toroeme hysteresis, and deal with digital or integer
inputs. The proposed formulation was applied taraukted industrial system and the results compared
with those achieved by a traditional continuous MPC
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Introduction

Most industrial model predictive controllers cutttgn inputs. Linear relations among inputs and outparsd
in use are based on the algorithms developed iredinly  constraints limiting the allowable range of botmds of
1980’s (Qin and Badgwell, 2003). These algorithrageh variables are also imposed. As a result of thesstraints
two main functions, i.e., to reduce the processabdity  the problem may be infeasible, and this fact dermahd
through better dynamic control, and to move theraigg  implementation of a relaxation strategy in order to
point closer to the constraints, which in geneesluits in  guarantee that some kind of solution will alway<daend.
significant economic benefits. In order to perfothese The lower layer involves an optimization probleratth
functions, the usual practice is to adopt a hidiaed  includes constraints only on the inputs, which gotees
structure with two layers, where the upper layalslavith  that a feasible solution can always be found.
the steady-state problem of defining optimal tasgfetr We propose to replace both optimization problems by
inputs and outputs, while the lower layer, respaesfor  a mixed-integer (MIP) formulation, thus buildinchgbrid
the dynamic problem, calculates the control movet t MPC. Several advantages may result from such a
drive the system towards these steady-state targets formulation; for instance, the possibility of assity
The upper layer solves an optimization problemexplicit priorities for the outputs, i.e., the defion of a
aiming at minimizing a linear combination of theojacted  preferential order of constraint relaxation in ctseinitial
steady—sate values of the inputs, and simultangouskteady-state problem proves infeasible. The inpatsalso
minimizes the square of the moves to be imposethese receive explicit priorities to select the orderwhich they
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are to be moved to adjust each output. The formoulat

also makes it possible to set a minimum limit fonicol
moves, which is adequate for valves subject toehgsts.
The MIP formulation also allows the controller tead
with discrete inputs, either manipulated variables
disturbances, i.e., variables that can assume @rigt of
discrete values like, for instance, 0 or 1 (onffy. o

Continuous M PC formulation

According to Sotomayor et al. (2009), the MPC targe
calculation layer, also called steady-state liregatimizer,
solves at each sampling instant, a QP problem wthere
objective is to force one or more inputs to thesuhds,

Hybrid formulations for MPC have already beenwhile keeping the outputs inside the bounds. Thiblem

developed, and successfully used in industrialiegibns
as described for instance by Bemporad and Mor&894]},

Morari and Bar (2006), and Zabiri and Samyudia (2006).
Nevertheless, most of these contributions addréss t

control of hybrid systems, while we are focusing tbe

development of a mixed-integer algorithm based lom t

traditional MPC that can be advantageously appdieen
to continuous systems.

may be defined as follows:

Min ¢% :%.AU*V\/OAU* +W'AU +W, 0, (1)
Au 0.

One instance of such a possible advantage can be

identified in systems where two or more inputs erés

similar influence on the outputs. Due to the irgiin

y
subject to:
AU =u -u

multivariable characteristic of the process and they =GpAU’ +yk+n|k

controller, the inputs will be moved at the sanmeeti But
frequently, a better approach would be to use drthem
for smaller moves and the other for larger oness Enthe
case when valves of different dimensions are spaiallel

lines with precisely the intention of allowing hestt

adjustment of the inputs. The larger valve shoulty ke
used for larger flowrate changes, since smalleis anay
not be actually implemented due to valve hysteresis

Another difficulty, also related to the multivarlab
is the change in indepand

nature of the controller,
variables that have only a small influence on atput,
especially when this variable hits a constraintisTih the
case, for example, of the feed flowrate, whichrisirgout
that affects almost every output in the plant. €betroller,

as a rule, aims at maximizing the feed but this rbay

prevented by almost any output hitting a constraimd
cope with this situation, a frequent practice is thutright
elimination of the response model relating the fead
several less-important outputs. The undesired efifidet of
this practice is that the controller will be unaldemove

the feedrate when this is the only solution to dvoi

constraint violation on such outputs, thus compsimgi
the overall performance.

Another opportunity for improvement concerns the

()
utsu su’

y- sy +9,<y

where:
U =inputs implemented at tinke-1,

u” = vector of steady-state targets of the inputs,
y* = vector of steady state targets of the outputs,

5y = vector of slack variables for the controlled autp

G0 = steady-state gain matrix of the process,
K = the present time,

N = settling time of the process in open loop,
W,,W,,W, = weight vectors,

uL,uU = bounds of the manipulated inputs,

yL, yU = bounds of the controlled outputs.
In the aboveyi.n represents the contributions of the past
inputs to the predicted output at time skem, i.e., at the
end of the time horizon.

The solution of the problem defined by equations (1

relaxation algorithm used in the steady state targeand (2) generates the input targets that are &emesf to

calculation, which basically involves transferrirepme
constraints into the objective function throughmerthat
minimize the violation of such constraints. Thitaxation
frequently results in violations of the limits oanables
that are currently within these limits, which igpazzling
change in the controller behavior. This happensabse
there is no straightforward way to determine whéstd
how many limits should be relaxed. Additionally, evh

violations are unavoidable, some inputs are no dong

minimized (or maximized) without any obvious reason
the plant operators.

the MPC dynamic layer. The version of MPC we coaisid
in this work is a modification of the quadratic dynic
matrix control (QDMC) as described in Garcia and
Morshedi (1986) and Soliman et.al (2008). This grs
solves the following optimization problem:

min¢<1dmc = (yk - ysp)T Q(yk — ysp)+
Uy 3
+ AU, AAT, + ( -u’ )T R(Uk - U*)



Subject to: Aj = profit tuning parameter for inpuf, j =1,---,Nm

AW < AT, < ALY nj‘ = priority parameter for inpuf, ] =1,---,Nm

ut < b, < oY (4) 7T’ = priority parameter for outputi =1,---, NC

Y, = AAT, + 9k w, = weight parameter for output violation,
i=1---,Nc

where: z’ = decision to enforce the limits of outputbinary

_ - _ _ variable — if equal to O then the limits are reld)xe

yk_[yk+jjk’yk+2|k’”"yk+p|k]T i=1---,Nc

y® = set-point to the system output. This set-point iszj_J = decision to move inpuj (binary variable),

usually made equal ty)* . j=21---,Nm

U, = [Uk|k’Uk+]jk"”!Uk+m—]jk]T Nm= number of inputs;, j =1---,Nm)

AU, = [AUk|k1AUk+]Jk1'"1AUk+m—1|k]T NC = number of outputsy;,i =1,---,NC)

Y = [yk+14k’ yl<+2ﬂ<""’yk+nlkIr In order to allow the inclusion of constraints fie

AuY = upper limit to the control moves, minimum movement of the inputs, we introduce the

M = control horizon, variablesAu*;+ ,Au’;‘ >0, such that:

p = prediction horizon,

Q,/\ and R are weighting matrices. Au*j — Au]* —Au]' 0j=1...,Nm (6)

In the equations abovywIk represents the predicted

output at time stefx+ ¢, based on information available at Equality congtraints
time stepk, including the planned control moves. This
prediction also includes the effect of measured]imit
disturbances that were not shown for the sakengblgiity.

The dynamic matrix A relates future input chands, to Nm
Y +> G, (Au*j+ —Au*j‘)+ 9. -y-=200 =1..,Nc (7)
j=1

Equations defining the amount of upper and lower
violations for each CV:

predicted outputsy, .

This formulation is similar to the structure of ses
MPC packages widely applied in refining and

etrochemical processes. Nm . . ~ .
P P Y =36, (au" -au)+y -9, 200 =1..Nc  (8)
j=1

Steady-State Optimization using M1QP Approach

We propose to replace the steady state targéMZere: o )
calculation described by equations (1) and (2) byxed-  Y; = lower operation limit for output

integer quadratic problem (MIQP) as follows: yiU = upper operation limit for outpiit
Objective function: Additionally,
y'20 0i =1,...,Nc 9)
C s W1 © quAl "
ml*n¢ —Z(zAuj,ujAuj — Ay, +”?ij+
Au = (5)
+§ 1 V@ _iﬂy y Equations defining the decision to satisfy the limits of each
27" g7 % output.
Lower limit:
where:
M;= minimum movement tuning parameter for input yi* > yi'- +M (Ziy _1) Oi=1...,Nc (10)

j,j =1..-,Nm



Upper limit:
y’ —yi*zM(ziy—l) 0i=1...,Nc (11)
y’ = upper limit for output
y- = lower limit for output i
M = big-M constant.
Equations defining the decision to move each input
Au]+ <Mz 0j=1...,Nm (12)
Au;” <Mz’ 0j=1...,Nm (13)

Minimum movement to be applied to an input if the
decision to move it is taken.

Auj" +Au]” 2 AujZ =1,...,,Nm (14)

where:

binary) and is divided into tHe andl® subsets,
comprising the continuous and the binary variables,

respectively. Vectork" andXx" contain the upper and
lower bounds fok , which can also be described as:

x O[x, x| Oigie (16)
x, 0{o1} Oio® (17)
C is an nxXn positive definite matrix,D is an

N — dimensional vectord is an MX N matrix, andB is an
M—dimensional vector, wherdM is the number of
constraints.

The algorithm works according to the following
sequence:

1 - Solve problem P as a relaxed QP, i.ex sefo;],

Oi01° and lexX™"*, withk =0, be the solution
vector. If the solution is integral, which meahattevery
XiNLP'O, 0i 01° has a value of 0 or 1, then this solution is

optimal for P. Otherwise, proceed with the algarith

2 —Linearize the objective function arouxtt ¥ , set

Aub = minimum change to be applied to input j, once th k= k + 1 and solve the following MILP:

decision to move it is taken.

Ming

mllp

The formulation described above applies only to the X

steady-state targets calculation layer. The dyndayer
used in this study is a traditional MPC solved bypB
algorithm.

Mixed-integer quadratic programming solver

St.
a = (XNLP'iTC +DT )><+

The MIQP problem described in the previous sectionAx+ B >0
was solved by the Outer-Approximation method (Duran
and Grossmann, 1986), consisting of a series of QX <xsx’

subproblems and MILP master problems.

problem shown by eq. (15):

ming -l ex+Dx
X 2
P st. (15)
+B=0
x" < x<xY

where X is the vector of free variableX, (i=1---,n),

which includes both continuous and discrete vagiglfin
this paper we consider that the discrete varialales

In order toaD R!
describe this algorithm we consider the optimizatio

1 T .

= xRN =1,k (18)
2

which will result in a new optimal solutiog""-" |

3 - Fix the binary variables¢ = x""""*, 0i 01" and

solve P with only thex,[di01° as free variables, thus

NPK 1f the NLP objective function value

obtainingX
qd\"‘P’k is equal to qdv'”‘P‘kwithin a given tolerance, the

NLP k

algorithm converged anc is the optimum solution.

Otherwise, proceed to step 2.



The QP subproblem was solved using the QLthe total air flow and is connected to the regetoera

algorithm, written in FORTRAN by Schittkowski (2005
while the MILP master problem was solved by Ip_splv
which is a freely available LP/MILP solver writtday M.

Berkelaar at Eindhoven University of Technology.

Process simulation

second stage.

The best practice for this system consists in uttieg
larger valve, i.e. FCO1, only for aggressive cdntnoves,
while the smaller ones should be used to deal with
regular fluctuations. The application of frequent
movements on the larger valve, besides being icifte
due to hysteresis, generates wear and tear thateadyto

The proposed formulation was applied to a simutatio premature failure.

of a Fluid Catalytic Cracking unit (FCC), as deked by
Moro and Odloak (1995).

The usual approach adopted by control engineers to
adjust the controller behavior in such cases, imdoease

The FCC is one of the most important refiningthe move suppression term (in eq. (3)) of the input

processes, and transforms intermediate oil frastiomo
light and more valuable hydrocarbon products. TR F
converter, which is the main equipment of such synit
consists of three major sections: the separatoselethe
regenerator and the riser. The riser is a tubuactor
where at the bottom the preheated liquid feed jiectad,
and mixed with hot fluidized catalyst flowing frothe
regenerator. This hot catalyst provides the enéogyeed
vaporization and for the endothermic cracking rieast
These reactions generate lighter hydrocarbons kudaa
high carbon-content, solid coke, which is deposibedr
the catalyst surface resulting in its deactivatidrhe
catalyst is reactivated in the regenerator by mgrthe

coke in a fluidized bed.

responsible for the larger valve. This usually does
result in the desired behavior, and impairs the Mibdity
to deal with situations when aggressive controloastare
necessary.

In this simulated test, we show that the mixedgate
formulation is able to generate this behavior, t@. move
the larger valve only for larger flow modificatiqremd still
provide adequate regulation of the regenerator.

Simulated Testing

In this simulation, we evaluated the performance of
the MIQP algorithm and compared it with the MPC
currently used to control the plant. The systeralliswed

The MPC configuration used here was taken from théo reach steady state and then a change in thevaddle

actual industrial implementation and includes 33pats
and 11 manipulated inputs, and covers the plargesion
from the preheat train to the fractionator coluniihis
configuration results in an MIQP with 55 continucarsd

44 binary variables, as well as 165 constraints.

Although each one of the variables was kept adtive
the simulated test described in the next sectica,vwll
focus on the control of just one variable, the regator
temperature, which is mainly affected by the ajedtion.
The air is injected through 3 different pipes anusted
by 3 flow controllers, FC01, FCO1A and FC02, asictepl

in Figure 1.

()

X

= Ht

to the
regenarator @

Pd
[t H

=

G

Air blower

turbine

Air

Figurel. regenerator air subsystem

FCO1 controls the flow in the main injection lineda
is responsible for about 60% of the total air. FE®dorks
as a complement to FCO1 and is designed for freque
small adjustments. FC02 is responsible for abodb 15

range of the regenerator temperature — a controlled
variable — is imposed. This change affects onlyldveer
limit of the temperature, which is raised from 8&80to
700°C. The results are depicted in Figures 2 through 5,
where the solid lines represent the behavior wiehMIQP
formulation, and the dotted lines the behavior witle
traditional QP algorithm.

As it can be seen in Figure 2, the temperatureilprof
is similar in both cases, with the MIQP algorithreiry
slightly faster but equally accurate.
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Figure2. Regenerator temperature with the
MIQP formulation (T-MI) and with the
traditional QP (T-QP).

The behavior of the manipulated variables related t
the air injection can be seen in the subsequemtdiy

It can be noticed that with the MIQP formulatiore th
manipulated variables stay more or less constamitewo

réetpoint changes are imposed on the controller.ti@n



other hand, it is capable of vigorous action wheohs
change happens. As previously described, this étix
the kind of behavior that we were aiming for withist
mixed-integer formulation
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Figure 3. Main air flow to the Regenerator
with the MIQP formulation (Air1-MI) and with
the traditional QP (Air1-QP).
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Figure 4. Secondary air flow to the Regenerator with the
MIQP formulation (AirLA-MI) and with the traditional QP
(AIr1A-QP).

It is to be expected that better results will béaoted
once the controller is retuned to utilize more liyethe
characteristics of the hybrid approach.
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Figure 5. Air flow to the Regenerator second
stage with the MIQP formulation (Air2A-Ml)
and with the traditional QP (Air2A-QP).

Conclusions

traditional continuous MPC. The results show tha t
desired behavior is obtained, even without any gaarnn
the tuning parameters previously used.

As a follow-up to this work, we intend to develop a
analogous MIQP formulation for the dynamic layedan
integrate it to the steady state layer. The rewilti
algorithm will then be tested in a simulated precesmnd
after validation, in an industrial refining unit.
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