
Heuristics and Upper Bounds for a Pooling Problem with Cubic

Constraints

Matthew J. Real↵†, Shabbir Ahmed‡, Helder Inàcio‡ and Kevin Norwood⌥
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Abstract
We consider the blending of raw materials to form final products. Final product properties are evaluated
using cubic polynomials functions. We develop heuristics to find feasible solutions for a variant of the
problem and evaluate the quality of these solutions by building tight relaxations based in mixed integer
programming techniques.
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Introduction

The manufacturing of complex chemical products re-
quires precise blending of a large number of ingre-
dients that impart di↵erent properties to the prod-
uct with relatively di↵erent e�cacy. For each final
product, there are a set of properties that we are
interested in either maximizing or keeping at an ac-
ceptable level. In general these properties are given
by polynomial cubic functions in the raw material
composition, which arise from standard cubic poly-
nomial fitting of a set of test points/responses placed
in the composition space by a design of experiments
methodology. The di↵erences in the unit price of
the ingredients creates an optimization opportunity
to achieve the lowest possible cost for a given prop-
erty value, or to have the highest property value for a
given cost. This picture is further complicated by the
blending of certain raw materials in large pools prior
to their inclusion in the product. In our specific case

each final product uses exactly one of the pools for
the majority of the volume in its composition and it
is di↵erentiated from the other products sharing the
same pool by the fraction of the composition that is
extracted from the pool and by the direct addition of
raw materials.

Short Literature Review

There are two key classes of constraints that make our
formulation of the blending problem complex. The
first are the ’pooling constraints’ that appear in any
problem where the property of the material exiting a
blending tank must be computed by a weighted av-
erage of the incoming material flows and properties.
These have been extensively studied: see the book
(Tawarmalani and Sahinidis, 2002) for details and
references of early work and (Misener and Floudas,
2009) for a review of advances made since 2000. In
(Pham et al., 2009) the authors introduce the notion
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of discretizing the variable appearing in the noncon-
vex bilinear pooling equalities. We integrate this ap-
proach in the framework of our problem. In particu-
lar, the connections between the pools and the final
products are not allowed to be arbitrary in the sense
that a final product has to use exactly one of the
pools in the model. In (Wicaksono and Karimi, 2008)
the authors discuss several piecewise linear approxi-
mations for bilinear problems. In (Gounaris et al.,
2009) the authors present a computational study of
this piecewise linear approximations for bilinear prob-
lems. In order to handle the second class of con-
straints, the cubic property computations, we extend
some of the piecewise approximations in these works.

Problem Notation

In Table 1 we introduce the notation used in the de-
scription of the model.

Problem Formulation

We now define the original problem.
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where c̄ is the total cost not to be exceeded by the
portfolio and c̄

L

j

and c̄

U

j

are lower and upper bounds
on the cost for individual final products.

We use notation u

jk

(x·j) to denote the value of prop-
erty k in product j. In the most general form these

Table 1. Nomenclature for the Problem

Indices
i 2 {1, . . . , N

RM

} Raw materials
l 2 {1, . . . , N

P

} Pools
j 2 {1, . . . , N

FP

} End products
k 2 {1, . . . , N

A

} Attributes (qualities monitored)
s 2 {1, . . . , S} Points considered to discretize
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and arise from the use of a response surface method-
ology to empirically fit the experimental results of
benchscale blending.

Primal Heuristics

Finding Feasible Solutions

In this section we describe heuristics for problem (1).
Note that if the pooling constraints and the property
constraints were not present problem (1) would be
a mixed integer linear problem (MILP). We build
an associated problem in which we replace these con-
straints by linear approximations.

Pooling Constraints
The pooling constraints in problem (1) are defined by

v
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We choose to build inner approximations for the pool-
ing constraints in such a way that a feasible solu-
tion to the approximation is a feasible solution to
the original pooling constraints. This excludes us-
ing McCormick envelopes type of outer approxima-
tions because these in general lead to solutions which
are not feasible for the original pooling constraints.
We develop an approach similar to the one in Pham
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This is a big-M type of formulation with M = 1. It is
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which means that the point is feasible for the original
pooling constraints.

Property Constraints
We build an approximation to the property con-
straints by considering a linearized version of these
constraints, that is, the functions u

jk

(·) are replaced
by ũ

jk

(·), their linear approximation around a point
x̃·j :
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The quality of the approximation is obviously depen-
dent of the point where the approximation is consid-
ered.

Given the linear approximations for the property con-
straints and for the pooling constraints we can define
an approximation problem for prob. (1) by replacing
the constraints by their linear approximation. De-
note this problem by LAP (Linear Approximation
Problem). In alg. (1) we outline the procedure to
find feasible solutions.
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Algorithm 1 . Heuristic to Find Feasible Solutions

We note that the final problem solved in alg. (1) is
a non-linear mixed integer problem but it is not in
general solved to optimality. We use the gams solver
Dicopt to solve these problems.

Improving Existing Feasible Solutions

Given a feasible solution we try to improve it us-
ing the methodology in alg. (2). The choice of
the sets C

l̄

in alg. (2) is important since it can lead
to either very hard problems (choosing C

l̄

= {I}



Notation: I = {1, . . . , N
RM

}
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end

end
Algorithm 2 . Improving Feasible Solutions

means that we will globally optimize over the orig-
inal problem) or to trivial problems that do not of-
fer any improvements to the feasible solution pro-
vided. In this study we consider the following sets:
C

l̄

= {S ✓ I | |S| = 2}. Also note that this proce-
dure does not guarantee global optimality over any
2�pairs of indexes in I, but in our experiments the
gain from doing a second round of optimizations over
all the pairs of indexes is small when compared with
the first round.

Computing Upper Bounds

We compute upper bounds for prob. (1) using poly-
hedral techniques. The relaxations we consider are
created by replacing each non-linear term by an addi-
tional variable and adding the relaxation of the non-
linear terms to the model. We analyze two di↵erent
relaxations for the non-linear terms. The first one is
an extension of the McCormick envelopes for bilinear
terms. In this formulation the bilinear terms are re-
laxed using McCormick envelopes, trilinear terms are
relaxed using recursive McCormick envelopes, posi-
tive quadratic and cubic terms are relaxed using sub-
gradient inequalities, and negative quadratic and cu-
bic terms are relaxed using secant inequalities. For
mixed cubic terms, that is terms that are quadratic in
one of the variables and linear in the other, x2

y terms,
we relax first z = x ·y and later relax w = z ·x. Writ-
ing the relaxations in terms of the original variables

x, y we get that for x2
y the relaxations are given by

eqs (7).
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In the second formulation the McCormick envelopes
are strengthen by partitioning the domain of the vari-
ables and using binary variables to select in which
domain the relaxations should be valid. The tech-
niques are similar to the ones used in (Wicaksono
and Karimi, 2008) and (Gounaris et al., 2009). We
extend this work for general cubic problems but we
don’t test all the di↵erent combinations that are stud-
ied in the two works mentioned. We exemplify this
with the term of the type x2

y: First we choose one of
the variables to decompose. If we choose x 2 [xl

, x

u]
we define a partition x

l = x0 < x1 < . . . < x

N

= x
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With each of the intervals [x
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], i = 1, . . . , N of
the partition we associate the following variables:

• Binary variables �

n

, that are one if x 2
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] and 0 otherwise.

• Semicontinuous variables u
n

2 {0, [x
n�1, xn

]}

• Continuous variables ⌫
n

Having these variables defined we add the eqs. (8) to



the model.
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The variables and constraints correspond to the con-
vex hull formulation in (Gounaris et al., 2009). In
the results section we compare how partitioning x

compares with partitioning y in the term x

2
y.

Computational Results

The main parameters for the dimension of the prob-
lem we solve are in Table 2.

Table 2. Dimensions of Problem

N

RM

N

P

N

FP

N

A

40 4 10 32

The variables x

i,j

, y

l,j

, z

i,j

, q

i,l

are bounded in [0, 1]
since they are fractions but for some of the vari-
ables/indexes we have available tighter bounds (e.g.
we know that for the variables y

l,j

, the fraction com-
ing from pool l to output j, it must be at least 0.65,
this is a constraint from the industrial process in our

example). The fact that we know we have a smaller
range for the variables y

l,j

together with the fact that
N

P

is smaller than N

FP

is the main justification for
the choice of which variable to partition when build-
ing the approximation for the pooling constraints.

All the models are implemented in the modeling
language Gams. The mip solver used is Cplex
12.2. The minlp problems solved in the heuristics
are solved used Dicopt, and the minlp problems
solved when improving an existing feasible solution
are solved using Baron.

We present results for the heuristic applied to the
problem. Since the final solution depends on the ini-
tial point, we run the heuristic for a fixed number of
times and take the best solution. For our computa-
tional study, we ran it 10 times with a total running
time of no more than 260 seconds. We use the for-
mula in Eqs. (9) for the computation of the gap where
h is a feasible solution and u is an upper bound for
the objective function value.

gap = (u� h)/h (9)

When we use the relaxations derived from Mc-
Cormick envelopes without using partition the of
variables the gap is about 50%. This bound is very
crude, so we use the convex hull method to get better
bounds. Using 5 variables to partition the pooling
equalities and 7 variables to partition the variables
that appear in the cubic functions we have that the
gap for the problem after an hour of computation
was 9.80%. This is much better than the 50% we re-
ported without using the partition scheme, but it is
still high. We note however that after one hour the
mip was not solved to optimality, the gap we report is
the gap computed with the best upper bound known
to Cplex when the maximum computation time was
reached. The best feasible solution for the approxi-
mation problem was at that point 1.32%. So our true
gap lies in the interval [1.32, 9.80]. In order to get
a better idea how the approximation scheme would
perform we applied the approximation scheme to sub-
problems of the original problem. The subproblems
we consider have 1 pool and 2 final products. In Ta-
ble 3 we show the lower and upper bounds for the



gap given by this type of relaxation (the lower bound
on the gap is given by using the best feasible solu-
tion and the lower upper bound known to Cplex at
the time limit). When averaged over all the combina-

Table 3. Sample Results for Convex Hull Approxima-
tion

Lower Bound Upper Bound

(1,2) 1.70% 4.14%
(1,3) 1.60% 3.74%
(1,4) 1.69% 4.21%
(1,5) 1.34% 2.98%
(1,6) 3.62% 4.53%
(1,7) 3.82% 6.13%
(1,8) 5.29% 5.85%
(1,9) 1.80% 3.02%
(1,10) 1.45% 1.96%

tions of final products the interval for lower and upper
bound that we can achieve by using this method is
[2.12, 3.24]%.

We now present some results pertaining to the vari-
able which should be chosen for partitioning when
considering terms of the form x

2
y. The average gap

over all the problems is 3.50% for the version where
we partition the variable x and 5.68% for the version
where we partition the variable y.

Table 4. Gap when Partitioning x or y in x

2
y

% Gap Part. x % Gap Part. y

(1,2) 4.037 7.905
(1,3) 4.349 7.66
(1,4) 4.567 6.962
(1,5) 3.592 5.565
(1,6) 3.67 6.525
(1,7) 7.334 10.434
(1,8) 6.359 8.96
(1,9) 3.846 6.093
(1,10) 3.68 6.095

Finally, we provide results for the heuristic solution
improvement by the scheme defined in alg. (2). Af-

ter the first round, where we consider all the possi-
ble combinations of raw materials, the improvement
is about 0.8% in about 15 minutes of computation
time. A second round of this scheme does not give
significant improvement.

Conclusion

We developed heuristics for an industrial blending
problem by discretizing some of the variables and lin-
earizing some of the constraints. We repeat the pro-
cess and choose the best solutions to get good quality
solutions. We develop methods for estimating the up-
per bound of the optimum value in order to assess the
quality of the heuristic solution. We show that these
methods work well on problems of reasonable size.
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