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Abstract 

Statistics pattern analysis (SPA) is a new multivariate statistical monitoring framework proposed by the 

authors recently. It addresses some challenges that cannot be readily addressed by the commonly used 

multivariate statistical methods such as principal component analysis (PCA) in monitoring batch 

processes in the semiconductor industry. It was later extended to the monitoring of continuous processes 

using a moving window based approach. In this work, we explore the potential of SPA in fault diagnosis. 

Specifically, we derive variable contributions based on the fault detection indices to generate 

contribution plots for fault diagnosis. The superior performance of the proposed method is demonstrated 

using the challenging Tennessee Eastman process (TEP), and compared with the commonly used 

contribution plots based on PCA and dynamic PCA (DPCA). 
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The increasing demand for safer and more reliable systems 
in modern process operations leads to the rapid 
development of process monitoring techniques. By 
promptly detecting process upsets, equipment 
malfunctions, and other special events, online process 
monitoring not only plays an important role in ensuring 
process safety, but also improves process efficiency and 
product quality. With a large amount of variables measured 
and stored automatically by distributed control systems 
(DCS), multivariate statistical monitoring methods have 
become increasingly common in process industry. 
Specifically, PCA-based process monitoring methods have 
gained wide application in chemical and petrochemical 
industries. PCA-based monitoring methods can easily 
handle high dimensional, noisy and highly correlated data 
generated from industrial processes, and provide superior 

performance compared to univariate methods. In addition, 
PCA-based process monitoring methods are attractive 
because they only require a good historical data set of 
normal operation, which are easily obtainable for the 
computer-controlled industrial processes. 

 Although PCA-based monitoring methods have been 
successful in many applications, there are cases where they 
do not perform well. Two of the possible reasons are given 
below. First, PCA only considers the mean and variance-
covariance of the process data, and lacks the capability of 
providing higher-order representation for non-Gaussian 
data. Second, the control limits of Hotelling's T

2
 and the 

squared prediction error (SPE) charts are developed based 
on the assumption that the latent variables follow a 
multivariate Gaussian distribution. Therefore when the 
latent variables are non-Gaussian distributed due to 
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process nonlinearity or other reasons, using Hotelling's T

2
 

and SPE may be misleading (Lee et al., 2006, Martin and 
Morris, 1996).  To address the above mentioned challenges 
presented in industrial processes that cannot be readily 
addressed by PCA, several alternative approaches have 
been developed (Kano et al., 2002, Kano et al., 2003, Lee 
et al., 2006, Lee et al., 2004, Luo et al., 1999). Recently, 
we proposed a new multivariate statistical process 
monitoring framework, named Statistics Pattern Analysis 
(SPA) (Wang and He, 2010, He and Wang, 2011). The 
major difference between the PCA-based and SPA-based 
fault detection methods is that PCA monitors process 
variables while SPA monitors the statistics of the process 
variables. In other words, SPA examines the variance-
covariance of the process variables statistics (e.g. mean, 
variance, autocorrelation, cross-correlation etc.) to perform 
fault detection. In SPA, different statistics that capture the 
different characteristics of the process can be selected to 
build the model for normal process operation, and various 
higher-order statistics can be utilized explicitly. Fault 
detection methods derived based on the SPA framework 
have been shown to provide superior monitoring 
performance for several batch and continuous processes 
compared to the PCA and dynamic PCA based methods 
(Wang and He, 2010, He and Wang, 2011). 

In this work, the potential of the SPA framework for 
fault diagnosis of continuous processes is explored. 
Specifically, we derive variable contributions from the 
fault detection indices generated by SPA; then construct 
contribution plots to perform fault diagnosis. Because the 
SPA based fault detection method for continuous processes 
is a window-based approach, the SPA based contribution 
plot is an averaged contribution plot for all samples in the 
window. The challenging Tennessee Eastman Process 
(TEP) is used to demonstrate the performance of the SPA-
based fault detection and diagnosis method, which is 
compared with PCA and dynamic PCA (DPCA) methods. 

Fault detection in SPA 

In this section, we briefly review the SPA-based fault 

detection method for continuous processes. As shown in 

Figure 1, two steps are involved in the SPA-based 

monitoring for continuous processes: statistics pattern (SP) 

generation and dissimilarity quantification. For a 

continuous process, an SP is a collection of various 

statistics calculated from a window (or a segment) of the 

process measurements. These statistics capture the 

characteristics of each individual variable (such as mean, 

variance, and skewness), the interactions among different 

variables (such as correlation), as well as process dynamics 

(such as autocorrelation and cross-correlation). Note that, 

for different processes, different statistics can be selected 

to capture the dominant process characteristics such as 

dynamics and nonlinearity. After the SPs are computed 

from the training data, the dissimilarities among the 

training SPs are quantified to determine the upper control 

limit of the detection index. In this work, we apply PCA to 

quantify the dissimilarities among the training SPs and 

define two detection indices similar to Hotelling's T
2
 and 

SPE. When a single or a block of new measurements 

becomes available for fault detection, the window is shift 

forward by one or multiple samples and a new SP is 

computed; then its dissimilarity to the training SP's is 

quantified and compared with the threshold to perform 

fault detection. To distinguish the SPA-based fault 

detection indices from the traditional PCA-based fault 

detection indices, we use pD  and rD  to denote the T
2
 

and SPE in the SPA framework. The process is considered 

normal if the dissimilarity indices are below the thresholds, 

i.e., 
2

αp TD   and 
2

αr δD , where 
2T  and 

2

δ  denote 

the upper control limits for dissimilarity index in the 

principal component subspace (PCS) and residual 

subspace (RS) with a significance level α. It is worth 

noting that PCA is just one way to determine the 

similarities or dissimilarities among different samples; 

other methods can be implemented to obtain distance-

based or angle-based similarity indices (Singhal and 

Seborg, 2002). The details of the statistics pattern 

generation and dissimilarity quantification can be found in 

(Wang and He, 2010).   

 

 
 

Figure 1: Schematic of the window-based SPA method for 

monitoring continuous processes: (a) original process 

data; (b) computed statistics pattern; (c) fault detection. A 

block or a window of process variables shaded in (a) is 

used to generate an SP shaded in (b), which is then used to 

generate a point or dissimilarity measure shaded in (c) to 

perform fault detection. 

Fault diagnosis in SPA  

After a fault is detected by one or more fault detection 

indices exceeding their control limits, it is desirable to 

perform fault diagnosis to identify the root cause of the 

fault. For PCA-based fault detection methods, contribution 

plot is the most commonly applied fault diagnosis method, 

which is based on the assumption that the variables with 

the largest contributions to the fault detection index are 

most likely the faulty variables. Because in the SPA-based 

fault detection method we apply PCA to quantify the 

dissimilarity among different statistics patterns, here we 

construct the contribution plots for DP and Dr to perform 

fault diagnosis. Let X
nm denote the SP matrix with n 

samples (rows) and m statistics (columns). After 

autoscaling to zero mean and unit variance, the matrix X is 

decomposed as follows 

 

  TTTT ~~~~~
PPTTPTTPXTPX            (1) 



  

where T
ln  and  P

lm  are the score and loading 

matrices, respectively; l is the number of principal 

components.  

For fault detection on a new sample vector x, two 

indices are used: Dp and Dr as defined below, 

 xPPx
T-1ΛTpD                                                    (2) 

 xPPxx
TT2 ~~~ rD                                              (3) 

whereΛ is the diagonal matrix of the l largest eigenvalues 

of 
T

XX . The Dp statistic is a measure of the process 

variation in the principal component subspace; while the 

Dr statistic indicates how well each sample conforms to the 

model. 

The contribution of the i
th

 statistics to Dp and Dr are 

the following, 

  2T

i xPP
21T1-Λξp

iC                                           (4) 

 

 2T

i

~~
xξ T

PPr

iC                                                         (5) 

where iξ  is the i
th

 column of the m-dimensional identity 

matrix. 

Case study 

In this section, the performance of the SPA-based fault 

detection and diagnosis method is compared with the 

traditional PCA and DPCA methods using the Tennessee 

Eastman Process (TEP) (Downs and Vogel, 1993). The 

TEP process simulator has been widely used by the 

process monitoring community as a realistic example to 

compare various approaches (Kano et al., 2001, Ku et al., 

1995, Russell et al., 2000). The simulator was originally 

developed by Downs and Vogel (1993) and different 

control strategies were implemented in different modified 

versions (Banerjee and Arkun, 1995, Chiang et al., 2001, 

Lyman and Georgakis, 1995, Ricker, 1996). In this work, 

we use Ricker’s simulator to generate normal and faulty 

data. The simulator can simulate normal process operation 

together with 20 faulty conditions. Following (Chiang et 

al., 2001), the data are collected at a sampling interval of 3 

min. The process data include 11 manipulated variables, 

22 continuous process measurements, and 19 composition 

measurements which are sampled less frequently. Similar 

to Lee at al. (2006), 22 continuous process measurements 

and 9 manipulated variables listed in Table 1 are used to 

monitor the process. The other two manipulated variables 

were fixed to constants in Ricker’s decentralized control 

scheme, and therefore are not included in the monitoring. 

Details about the process variables can be found in (Downs 

and Vogel, 1993, Ricker, 1996). We use 800 hr of normal 

data for training, 50 hr normal data for false alarm rate 

calculation, and each fault consists of 50 hr samples with 

the first 10 hr being normal. 

Table 1: Monitored variables in TEP 

no. Variable description no. Variable description 

Process Measurements 

1 A feed  

(stream 1) 

12 Product separator 

level 

2 D feed  

(stream 2) 

13 Product separator 

pressure. 

3 E feed 

 (stream 3) 

14 Product separator 

underflow (stream 10) 

4 A and C feed 

(stream 4) 

15 Stripper level 

5 Recycle flow(stream 8) 16 Stripper pressure 

6 Recycle feed rate 

(stream 6) 

17 Stripper underflow 

(stream 11) 

7 Reactor pressure 18 Stripper temperature 

8 Reactor level 19 Stripper steam flow 

9 Reactor temperature 20 Compressor work 

10 Purge rate  

(stream 9) 

21 Reactor cooling water 

outlet temperature 

11 Product separator 

temperature 

22 Separator cooling 

water temperature 

Manipulated Variables 

23 D feed flow  

(stream 2) 

28 Separator pot liquid 

flow (stream 10) 

24 E feed flow  

(stream 3) 

29 Stripper liquid product 

flow (stream 11) 

25 A feed flow  

(stream 1) 

30 Reactor cooling water 

flow 

26 A and C feed flow 

(stream 4) 

31 Condenser cooling 

water flow 

27 Purge valve (stream 9)   

The settings of different methods are listed in Table 2, 

which are similar to the settings in Wang and He (2010). 

The empirical method is used to determine the upper 

control limits so that different methods can be compared 

based on the same confidence level (Wang and He, 2010). 

Table 2: Settings of different fault detection methods 

Methods Variables PCs lags Window 

width 

Window 

shifting 

step 

PCA 31 9 - - - 

DPCA 93 20 2 - - 

SPA 257 6 2 100 50 

● Fault detection: The detection rates of the three 
methods for all faults are listed in Table 3. It is worth 
noting that the results in Table 3 are different from the 
results in Wang and He (2010). This is due to the fact that 
different data sets were used. In Wang and He (2010), the 
data set was generated by Chiang et al. (2001) where the 
plant-wide control structure recommended in Lyman and 
Georgakis (1995) was implemented to generate the closed 
loop normal and faulty process data. While in the current 
work, the TEP simulator with decentralized control system 



  
 
developed by Ricker (1996) was implemented to generate 
the closed loop normal and faulty process data. By visually 
comparing the two control strategies under normal 
operation condition, we noticed that the process variation 
under the decentralized control is much smaller than that 
under the plant-wide control. Therefore, the normal 
process model with the decentralized control defines a 
tighter region of normal operation than that with the plant-
wide control, which makes the model more sensitive and 
therefore more effective to fault detection. This is true no 
matter what fault detection is used. As a result, we see that 
although similar settings were used, the fault detection 
rates of all the three methods are higher for almost all 
faults in this work than those in Wang and He (2010), with 
PCA and DPCA improved the most.  

From Table 3, we see that all three methods are 
effective in detecting most of the faults. It is worth noting 
that faults 3, 9 and 15 have been suggested to be difficult 
to detect when the plant-wide control strategy is 
implemented. In this work, we find that these faults are 
also difficult to be detected by any of the three methods 
when the decentralized control strategy is implemented. 
Therefore, these three faults are not listed in Table 3. In 
addition, we find that fault 16 cannot be detected by any of 
the three methods either when the decentralized control 
strategy is implemented. After visually inspecting the four 
difficult cases, we believe the reason for these faults not 
being detected is that the disturbances were completely 
rejected without introducing noticeable changes to any 
process variables. For the rest of the 16 faults, PCA and 
DPCA have difficulty in detecting faults 5 and 12 with 
detection rates lower than 50% in most of the cases, which 
are depicted in Figure 2. On the other hand, SPA based 
method is able to detect all 16 faults with all detection 
rates higher than 90%. It is worth noting that although 
detection delay is usually associated with window-based 
approaches, there is only minor detection delay associated 
with SPA method. This is because the detection limit is 
much tighter in SPA, since the variance of the variable 

statistics is only n1  of the process variable (n is the 

window width). In addition, for second or higher-order 
statistics, the contribution from the faulty data to the 
variable statistics is not linear. Therefore, as shown in 
Table 3, the detection rate is almost same for the faults that 
are easily detected. For the faults that cannot be detected 
by PCA or DPCA methods, such as fault 18, SPA is more 
effective. To ensure fair comparison, the false alarm rates 
of all the three methods are listed in Table 4. The results 
indicate that the thresholds determined empirically with 
99% confidence level are reasonable and consistent 
because the false alarm rates are not far from 1% for all the 
methods. 

● Fault diagnosis: In this subsection, the proposed SPA 
based fault diagnosis approach is applied to TEP to 
identify the root cause of each fault. As a comparison, 
PCA and DPCA are also applied to diagnose the faults. 
Due to page limit, the diagnoses of all faults are not 
discussed in detail except the three illustrative examples 
given below. We do want to mention that, in general, all 

the three methods are effective in pinpointing the major 
fault-contributing process variables for most of the faults. 

Table 3: Fault detection rates (percentage) of PCA, 

DPCA, and SPA for TEP 

 PCA DPCA SPA 

fault T
2
 SPE T

2
 SPE Dp Dr 

1 99.9 100.0 100.0 100.0 99.3 99.5 

2 99.5 99.3 99.6 99.4 99.0 98.8 

4 100.0 100.0 100.0 100.0 99.8 99.9 

5 3.6 0.6 3.6 1.5 0.0 93.4 

6 100.0 100.0 100.0 100.0 98.6 99.3 

7 100.0 100.0 100.0 100.0 99.9 99.9 

8 100.0 100.0 100.0 100.0 99.9 99.9 

10 83.7 93.1 93.0 96.2 98.1 98.5 

11 94.9 98.2 98.9 99.8 99.0 99.5 

12 44.2 14.6 59.1 39.1 93.8 94.6 

13 98.8 98.8 99.0 99.1 97.9 98.3 

14 99.1 100.0 100.0 100.0 99.5 99.8 

16 4.4 0.5 4.1 0.4 0.0 0.0 

17 97.3 99.3 99.3 99.6 98.4 99.0 

18 71.3 76.5 73.0 85.7 93.6 96.0 

19 98.0 99.0 99.5 99.0 96.5 98.9 

20 98.9 98.6 99.0 99.0 97.9 98.5 

 

 
                     (a)                                          (b) 

 
                     (c)                                          (d) 

 
                     (e)                                          (f) 

Figure 2: Detection performance of PCA, DPCA and SPA 

for fault 12 ((a) PCA; (c) DPCA; (e) SPA), fault 18 ((b) 

PCA; (d) DPCA, (f) SPA). The dash-dotted lines indicate 

the fault onsets and dashed lines the index thresholds. 

For the contribution plots based on SPA, we use two 

subplots to show the contributions from variable mean and 

standard deviation. The contributions from other statistics 



  

such as auto- and cross-correlations are small and are not 

shown due to limited space.  

The example of fault 10 is shown in Figure 3 where 

random variation is introduced to C feed (steam 4 to the 

stripper) temperature. Figure 3 shows that all the three 

methods correctly identify that the variable 18 (stripper 

temperature) is the major fault-contributing variable. 

Compared to PCA and DPCA based contribution plots, the 

SPA based contribution plots provide extra information by 

identifying that it was the variance, not the mean, of the 

variable 18 that contribute to this fault. 

 

Table 4: False alarms rate (percentage) of PCA, DPCA, 

and SPA for the TEP. 

Data 
PCA DPCA SPA 

T
2
 SPE T

2
 SPE Dp Dr 

training 2.1 0.4 2.4 0.7 0.1 0.1 

Testing 1.5 0.3 1.4 0.7 0 2.6 

 

 
                      (a)                                         (b) 

 
                      (c)                                         (d) 

 
                      (e)                                         (f) 

 

Figure 3: Diagnosis of fault 10. (a) PCA-T
2
; (b) PCA-

SPE; (c) DPCA-T
2
; (d) DPCA-SPE; (e) SPA-Dp;  

(f) SPA-Dr. 

There are cases where SPA does a better job in fault 

detection than PCA and DPCA. In these cases, SPA also 

does a better job in fault diagnosis. One such example is 

fault 5 shown in Figure 4 where a step change occurred in 

condenser cooling water inlet temperature. Table 3 shows 

that PCA and DPCA cannot detect this fault. Therefore, it 

is expected that they cannot diagnose the fault either, 

which is verified by Figure 4 (a)-(d) where a range of 

process variables across different units all contribute to this 

fault. On the other hand, SPA was able to isolate the fault 

root cause to the manipulated variable 31, the condenser 

cooling water flow rate. Since the cooling water inlet 

temperature is not measured, the manipulated variable 31 

is the most related variable. In addition, SPA was able to 

indicate that a mean change, not variance, in variable 31 is 

the root cause, which is directly related to the step change 

in the condenser cooling water inlet temperature. 

In the final example of fault 12 (random variation in 

condenser cooling water inlet temperature) shown in 

Figure 5, we want to illustrate that a successful fault 

detection does not necessarily lead to a correct fault 

diagnosis. From Table 3, we see that all the three methods 

were able to detect the fault. However, from Figure 5, we 

see that PCA and DPCA were not able to isolate the root 

cause of the fault. SPA was able to relate the fault to the 

separator temperature (variable 11) right after the 

condenser. Again, since the cooling water temperature or 

the condenser temperature was not measured and this 

random variation would not trigger the manipulated 

cooling water flow rate to change, the downstream 

separator right after the condenser is the closest to the 

actual fault location. In other words, the random variation 

in condenser cooling water inlet temperature (not 

measured) will immediately lead to random variation in the 

separator temperature (measured, variable 11). It is also 

worth noting that SAP correctly identified that the standard 

deviation, not the mean, of variable 11 is the major fault 

contributor. 

 

  
                       (a)                                          (b) 

 
                      (c)                                         (d) 

 
                     (e)                                         (f) 

 

Figure 4: Diagnosis of fault 5. (a) PCA-T
2
; (b) PCA-SPE; 

(c) DPCA-T
2
; (d) DPCA-SPE; (e) SPA-Dp; (f) SPA-Dr. 

 



  
 

  
                      (a)                                          (b) 

 
                      (c)                                         (d) 

 
                     (e)                                         (f) 

 

Figure 5: Diagnosis of fault 12. (a) PCA-T
2
; (b) PCA-

SPE; (c) DPCA-T
2
; (d) DPCA-SPE; (e) SPA-Dp;  

(f) SPA-Dr. 

Conclusions 

In this work, we explore the potential of our recently 
proposed SPA framework in fault diagnosis for continuous 
process. Specifically, the variable contributions are derived 
based on the fault detection indices used in SPA to 
generate contribution plots for fault diagnosis. We use the 
Tennessee Eastman process to evaluate the performance of 
the developed fault detection and diagnosis method based 
on the SPA framework, and compare with the PCA and 
DPCA based methods. The case study shows that in 
general all three methods work well in detecting and 
diagnosing most of faults. However, for some faults that 
are difficult to detect and/or diagnose by PCA and DPCA 
based methods, SPA based method provides superior 
performance. In addition, because the SPA-based method 
breaks down the contribution of a fault to different variable 
statistics, they provide extra information in addition to 
identifying the major fault-contributing variable(s). For 
example, the SPA-based contribution plots tell us whether 
the fault is due to a change in variable mean or variance. It 
also should be noted that in general SPA requires more 
training data to build a reliable model due to the 
computation of variable statistics. However, this is not a 
big issue because most modern processes are equipped 
with DCS systems and therefore are data rich. 
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