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Abstract
Motivated by a specific manufacturing problem in 1990, Exxon Chemical Company embarked on the development of a
nonlinear multivariable model-based predictive controller. The controller’s evolution has included collaboration among
academic researchers, engineers from industry, and process control software vendors. The resulting control algorithm was
patented by Exxon Chemical Company and commercialized by Dynamic Optimization Technology Products, Inc. At
the same time, several other academic interactions produced results supporting the implemention of these controllers in
our manufacturing facilities. This paper chronicles the evolution of the controller development, and presents the details
of the control algorithm. The control algorithm features are discussed, and where applicable, compared to other model
predictive control (MPC) algorithms. Finally, two industrial examples are presented to illustrate the methodology.
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Introduction

For the past 10 years, Exxon Chemical Company has
pursued development of a methodology to address in-
dustrial process control challenges characterized by non-
linear process responses. Motivated by problems in man-
ufacturing plants, the evolution of this nonlinear control
methodology has drawn on the expertise and experience
of practitioners (both from manufacturing sites and tech-
nology organizations), of academic researchers, and of
process control vendors.

Over these same 10 years, many changes have occurred
within our company, the process control industry, and
to the process control systems technology. Academic
research has significantly increased our understanding
of MPC, especially stability of linear MPC algorithms.
Computer science and optimization technologies have
improved vendor’s packages, making industrial imple-
mentation easier and more effective. Through all of
these changes, the motivation and development of this
algorithm have persisted. While by no means complete,
the evolution of this control algorithm is an interesting
story about how diversely motivated groups of people
can interact to produce a tool capable of solving com-
mercially relevant and intellectually challenging process
control problems.

Motivating Problem

In 1990, Exxon Chemical Company started up a new
polymerization plant using a new catalyst system. While
the details of the process are proprietary, the process in-
volved a single reactor vessel with a simple monomer
recovery/compression recycle. The product is a copoly-
mer composed of two monomers. The control objective
is to control particular polymer resin properties, specif-
ically polymer melt viscosity and polymer density. In

this case, these variables are controlled by manipulating
reactor feed temperature and feed composition. The re-
actor pressure, feed flow rate and feed temperature are
measured disturbance variables. None of the in-reactor
compositions are measured. When compared to similar
plants, the control of this unit was unable to achieve the
expected prime or “right-first-time” production.

Polymerization processes have been considered chal-
lenging process control problems for many years (Ray,
1986). In these processes, the goal is to control poly-
mer product properties, such as polymer melt viscos-
ity and comonomer incorporation, as well as manufac-
turing targets such as production rate and slurry con-
centration. Reaction temperature has very significant
effects on reaction rates, and hence, both the polymer
properties and the process operability. Typically, these
variables are controlled to targets by manipulating the
feed rate and composition, catalyst feed rates, and re-
actor cooling. Often, regulatory control of polymeriza-
tion reactor is achieved with a combination of PID feed-
back/feedforward and ratio controllers (Congalidis et al.,
1989). These control schemes are often adequate for reg-
ulatory control because the process is linear enough near
the operating point that more sophistication is not war-
ranted. This observation continues to be true for many
industrial polymer processes operating today.

However, the apparent gains and time constants be-
tween the control variables and manipulated variables
often exhibit significant nonlinear behavior when a poly-
mer plant makes different grades of polymer. Often,
the simple regulatory control schemes must be tuned at
each operating condition to achieve good control over the
entire operating window of given plant. To maximize
prime production, manufacturing planning attempts set
schedules with every adjacent grade having overlapping
specifications with the previous grade. Also, the process
nonlinearity must not be severe enough to cause signif-
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icant overshoot. Often, planning can not achieve either
of these objectives, resulting in off-prime polymer pro-
duction.

The transition control problem has been examined by
both academic researchers and industrial practitioners
(McAuley and MacGregor, 1992; Debling et al., 1994).
Gain scheduling or multiple-model controller designs
have been suggested approaches to solving this prob-
lem. However, these approaches require a model or data
for each grade and, need an algorithm to decide when
to switch. The downside to either approach is the sig-
nificant added cost of controller maintenance. Industri-
ally, a nonlinear predictive controller designed to execute
polypropylene reactor transitions was successfully imple-
mented (Hillestad and Andersen, 1994). This controller
design is characteristic of linear MPC applications with
the exceptions that it employs a nonlinear model and
includes a state estimator.

Finally, polymerization processes are very suscepti-
ble to changes in unmeasured disturbances such as very
small concentrations of polymerization poisons in the
feed or catalyst activation changes for any variety of rea-
sons. A recent study of a polymerization process demon-
strates that linear MPC can not achieve acceptable con-
troller performance when faced with typical industrial
disturbance signals (Bindlish and Rawlings, 2000).

In the case of the new Exxon Chemical facility, the
combination of the process/equipment design and new
catalyst chemistry resulted in a highly-interactive non-
linear process. The nonlinear effects of both measured
and unmeasured disturbances could not be rejected by
the state-of-the art control technology used on similar re-
actor systems. In short, both the regulatory control and
the transition performance was limited by the nonlinear
behavior of the process to either servo or load changes.

Early Controller and Model Development

During this same time frame, multivariable model pre-
dictive control based on identified linear process models
(Cutler and Ramaker, 1980; Richalet et al., 1978) was
being used to solve significant industrial control prob-
lems. At the time, nonlinear control was already a strong
area of academic research and significant effort had been
made to develop nonlinear MPC algorithms (Bequette,
1991). The program at CPC IV (Arkun and Ray, 1991)
contained several presentations on both topics indicating
that both industry and academia had already recognized
the importance of both technologies.

After careful examination of the motivating polymer-
ization control problem, the Exxon Chemical process
control technology organization determined that using
linear MPC could not yield the desired process perfor-
mance. Even given the significant academic research,
there was no commercially available software to bring
nonlinear MPC technology to bear on the polymeriza-

tion problem.

Early Academic Collaboration

Specifically focusing on how to model and control the
nonlinear behavior of the process, Exxon Chemical Com-
pany elected to collaborate with academic researchers. A
request for competitive bids was issued and awarded for
two specific projects. Both of these projects were con-
tractual agreements with specific milestone dates, deliv-
erables, and non-disclosure agreements.

First, to focus on understanding the process, they con-
tracted the University of Maryland to develop nonlinear
models of the polymerization reactor. As a result of this
effort, Professor K. Y. Choi and co-workers developed
a fundamental model of the reaction process and esti-
mated kinetic parameters for this model from pilot-plant
data. This process model is composed of the dynamic
mass and energy balances that describe the polymer re-
action system. The polymer population balances were
condensed through the use of moments (Ray, 1972) af-
ter applying the quasi-steady-state assumption to the
growing polymer chains. The model is very similar to
others found the open literature (McAuley et al., 1990;
Zacca and Ray, 1993; Ogunnaike, 1994) The fundamen-
tal model was combined with empirical correlations to
relate the polymer moments to polymer resin properties.

Also, Georgia Institute of Technology was contracted
to investigate and develop a nonlinear state estimator
and multivariable predictive controller to be used to con-
trol the polymerization reactor. This work was con-
ducted by Professor Yaman Arkun, Professor Joseph
Schork and their co-workers. The state estimation work
revolved around the implementation of different Kalman
filter and Luenberger observer designs. The controller
algorithm developed was a quasi-linearized QDMC algo-
rithm (Peterson et al., 1992; Charos and Arkun, 1993;
Sriniwas et al., 1995). The controller used the nonlinear
model to predict process trajectories and to compute dis-
turbance estimates. During the final stages of this con-
tract work, the observer/NLMPC algorithms were tested
using the fundamental model developed at the University
of Maryland.

Both of these programs were two year contracts, suc-
cessfully meeting all of the expectations set out at the
beginning. However, as is often the case, these initial
investigations were most successful at providing a more
detailed specification about how Exxon Chemical wanted
to address both the specific polymerization control prob-
lem and the general nonlinear control problem.

Internal Development Program

In the first quarter of 1993, the Exxon Chemical project
team evaluated the results of the two academic con-
tracts and defined an internal development project. This
project was focused on both the specific polymerization
reactor control problem and the development of a nonlin-
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ear MPC (NLC) structure for use within Exxon Chemi-
cal Company.

The earliest milestones involved evaluation and on-line
implementation of the modeling equations. The predic-
tions made using the academic model did not match the
plant data well. After some analysis, the model struc-
ture was modified and new parameters estimated from
plant data. After these two changes, the model tracking
errors were significantly reduced.

During the modeling phase of the development, work
was underway formulating the controller. Characteristic
of the NLMPC developed at Georgia Institute of Tech-
nology, any nonlinear controlled variable (CV) dynam-
ics were retained in the closed-loop response of the con-
troller. In other words, the closed loop CV response was
still a function of the operating point. Illustrating this
behavior is easiest with an example. Consider the follow-
ing nonlinear single-input single-output(SISO) process:

400x3 dx

dt
= −x + 0.7(1− x)e

−1
u (1)

This contrived example is motivated by a component
mass balance, a single irreversible reaction, and a con-
centration dependent density. The parameters have no
special meaning but were selected to provided a simple
and illustrative example. Figure 1 is the response of
this system of two setpoint changes—from 0.25 to 0.30
and from 0.30 to 0.35. The process is controlled us-
ing a linearized MPC controller as implemented in the
Mathworks Model Predictive Control Toolbox (Morari
and Ricker, 1995). The controller parameters specified
for these simulations are the prediction horizon equal to
the control horizon set to 25, the output weight (ywt)
equal to one and the input weight (uwt) equal to 0.04.
The manipulated variable (MV) or input is constrained
to be greater than 0.05 and less than 10.0. The pro-
cess model used by the controller is a linearized model
of Equation 1 around the initial operating point for each
setpoint change respectively.

Without dwelling on the tuning of the controller, the
observation made by the development team is easily ob-
served in this example (see Figure 1). The dynamics of
the nonlinear process are not compensated for by the
controller and appear in the closed-loop response. This
observation is not surprising for MPC algorithms that
use move suppression as their primary tuning mecha-
nism. Move suppression allows the engineer to indicate
how much input energy can be used. Excessive use of
MV moves is penalized, sacrificing CV response. This
specification amounts to stating that the amount of al-
lowable change in the process inputs does not depend on
the operating conditions. In the case of the polymeriza-
tion problem, this is equivalent to stating that for some
products, a slow transition response is acceptable even
though a faster response is achievable. Re-tuning the
controller for each operating point or, perhaps, parame-
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Figure 1: Quasi-linearized MPC simulation re-
sponses.

terizing the move suppression factor as a function of the
operating point, may provide a way to circumvent this
issue.

However, to the credit of the development team, the
philosophy driving this effort was to avoid the inclusion
of techniques that add to the life-cycle cost of the con-
troller. Techniques like this include the use of:

• multiple linear models to approximate nonlinear
models,

• linearization at each sample time to approximate
nonlinear models,

• gain or tuning scheduling as a function of operating
point.

Each of these techniques requires additional overhead
in both the development and the maintenance of the
controller. If the controller can be designed and imple-
mented directly, this additional cost can be avoided and
the controller is more likely to remain on-line.

To address the nonlinear CV dynamics, a reference
system performance specification was added to the NLC
design. Reference system synthesis (Bartusiak et al.,
1989) is one of a class of differential geometric meth-
ods used for nonlinear control design (Lee and Sulli-
van, 1988; McLellan et al., 1988; Kravaris and Kantor,
1990a,b). Reference system synthesis employs a perfor-
mance specification on the error trajectory to design a
nonlinear control law. In a non-predictive form, this de-
sign methodology was studied as way to control product
properties in gas-phase polyethylene reactors (McAuley
and MacGregor, 1993).

In this development, a reference system specification
is added as a soft constraint to a model predictive con-
troller. The resulting control algorithm is tuned by spec-
ifying the desired process error trajectory for each CV
and the relative weight for each of the CVs. Figure 2
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Figure 2: NLC simulation responses.

presents the result of applying this control algorithm to
the nonlinear SISO example (Equation 1) for the same
two setpoint changes.

The reference system specified describes a second-
order over-damped response with a dominant time con-
stant of 5. The prediction horizon and control horizon
are set to 25, the same in the previous simulation. In
the unconstrained case, both CV responses are identi-
cal and equal to the setpoint change from 0.25 to 0.30.
However, the simulation shows the effect of the high MV
constraint of 10 on the setpoint change from 0.30 to 0.35
(note: u(x=0.30)=2.048, so ∆u = 7.952 at t = 0 is on
the constraint). The quasi-linearized MPC move sup-
pression factor, uwt = 0.04, was selected to generate a
MV response peak value for the setpoint change from
0.25 to 0.30 nearly equal to the NOVA Nonlinear Con-
troller (NLC) peak value. Without reducing this move
suppression factor, the quasi-linearized MPC controller
will not make use of the available input energy to achieve
the desired performance in the second setpoint change.

Besides the addition of the reference system tuning,
the project team chose a controller design based on a
simultaneous optimization/solution algorithm. The im-
plementation was augmented with the necessary code to
initialize the controller. With these modification, the
project team completed the controller in early 1994 and
completed closed-loop testing by year end 1994. All
of the original performance issues that motivated the
work beginning in 1990 were addressed. Regulatory con-
trol achieved performance on par with similar processes.
Transition times were reduced by at least a factor of 2
and were no longer limited by controller performance.

The Nonlinear Control (NLC) Algorithm

The inventors of the control methodology, Fontaine
and Bartusiak, were granted a patent (Bartusiak and
Fontaine, 1997). The methodology was later commercial-

ized by Dynamic Optimization Technology (DOT) Prod-
ucts and is called NOVA Nonlinear Controller (NOVA
NLC, 1997). The algorithm is a nonlinear program
(NLP) optimization problem with a multi-objective cost
function. The optimization problem is solved using the
NOVA DAE solver over a finite time horizon. The solver
uses orthogonal collocation to discretize the equations in
time. The mathematical formulation of the controller is
as follows:

min
uMV

Φ = µ1J1(e) + µ2J2(y, x, u) + µ3J3(∆uMV ) (2)

subject to

0 = f(y, ẋ, x, u, θ) (3)
0 = g(y, ẋ, x, u, θ) (4)

x(0) = x0 and y(0) = y0

0 =
τi

4ξ2
i

d2ycvi

dt2
+

dycvi

dt
+

1
τi

(
ycvi − ysphi

i

)
− esphi

i + ssphi
i (5)

0 =
τi

4ξ2
i

d2ycvi

dt2
+

dycvi

dt
+

1
τi

(
ycvi

− ysplo
i

)
− esplo

i + ssplo
i (6)

esphi
i , esplo

i , ssphi
i , ssplo

i ≥ 0

uLB
mvj

≤ umvj,k
≤ uUB

mvj
(7)

|uj,k − uj,k−1| ≤ ∆uB
mvj

(8)

The objective function (2) is composed of three com-
ponents. J1 is the cost associated with the dynamic re-
sponse of the closed-loop system. J2 is the economic cost
associated with each of the output and input variables.
Finally, J3 is the cost of moving each of the individual
manipulated input variables. Each of these components
is weighted by the µ weights in the equation.

Equations 3 to 4 define the nonlinear process model
where y are the outputs, x are the states, u are the in-
puts and θ are parameters. The set of outputs, y, is com-
posed of controlled variables, ycv, measured outputs, and
auxiliary outputs. The set of inputs u, is composed of
manipulated variables, umv, feed forward variables, uff ,
and disturbance variables, ud. The initial conditions on
both the outputs and the states are specified.

Equations 5 and 6 describe the reference system per-
formance equations for each of the controlled variables.
Changing the tuning parameters τi and ξi, changes the
reference system specifying the desired closed-loop per-
formance for that variable. The errors, esphi

i and esplo
i ,

are the absolute deviation between the reference sys-
tem trajectories and the predicted response trajectories.
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These equations are flexible enough to support a single
target setpoint or a setpoint high/low window.

Equations 7 and 8 specify constraints on manipulated
input variable values and changes.

In addition to the upper and lower bounds on umv and
the bound on ∆umv, the user has to specify the predic-
tion horizon, the control horizon, the sampling period,
the weights that rank the controlled variable errors (both
negative and positive), the costs of any variables in J2,
the cost of each ∆umv, and finally the relative weight of
each of the three objective function components.

Also worthy of note, the implementation of this con-
troller in the NOVA DAE system does not categorize
variables this same way. This presentation of the vari-
ables focuses on variables from a control perspective. In
the NOVA DAE implementation, variables are classified
in a much more mathematical way. Specifically, variables
are either integrated or non-integrated variables. Inte-
grated variables are generally the dependent variables
(outputs and states) while the non-integrated variables
are typically the independent variables (inputs and pa-
rameters). The specification of both the initial state and
output variables in the model is a result of this mathe-
matical view of the problem.

Objective Function Details

The NLP objective function is a weighted composite of
three cost functions. The first component is a measure
of the cost to get the closed-loop system to target. This
cost is computed by

J1(e) =
1
np

ncv∑
i=1

np∑
k=1

wsphi
i esphi

ik + wsplo
i esplo

ik (9)

where np is the length of the prediction horizon, ncv is
the number of controlled output variables. The errors
are computed at those times corresponding to knots in
the collocation grid. This discrete sampling structure
also applies to the other components of the objective
function, J2 and J3.

The economic cost of the outputs, states, and inputs
make the J2 component of the objective function as fol-
lows:

J2(y, x, u) =
1
np

(Cy + Cx + Cu) (10)

where

Cy =
ny∑
i=1

np∑
k=1

cyi
yi,k (11)

Cx =
nx∑

m=1

np∑
k=1

cxmxm,k (12)

Cu =
nu∑
j=1

np∑
k=1

cuj
uj,k (13)

Note that any output, input or state can be included in
the evaluation of this cost function.

Finally, the last term of the objective function penal-
izes manipulated variable moves as follows:

J3(∆umv) =
nu∑
j=1

nq∑
k=1

λj∆umvj,k
(14)

This term in the objective function serves to ensure a
unique solution of the NLP for nonzero weights. Also,
this term is much like a move-suppression term in a
DMC-type MPC controller. In an unconstrained DMC
controller, move-suppression alters the performance of
the controller by altering the singular values of the dy-
namic matrix. The dynamic matrix is the mapping of the
control moves to future prediction errors. If this matrix
is nearly singular, the inverse mapping will generate large
control moves for small predicted errors. Increasing the
move suppression factors serves to stabilize this inverse
mapping, making it more robust to small errors. Increas-
ing the move suppression factors even further serves to
de-tune the controller. The penalty on ∆umvj,k

has the
same effect on this controller.

Model Specification

The model described by equations 3 through 4 define a
very general structure. The model equations must be
compliant with the NOVA DAE format—a continuous-
time open-equation residual form. Our experience has
been to use fundamental models based on mass and en-
ergy balances coupled with empirical correlations and
algebraic relationships. Many of the non-empirical non-
linear algebraic relationships are derived from the ap-
plicable kinetic, transport, and thermodynamic relation-
ships. Besides supporting these types of models, this
framework can easily support algebraic empirical mod-
els, neural network models and linear state-space mod-
els. Because the DAE system expects to use collocation,
using neural network or discrete linear/nonlinear models
will require some additional effort by the user. Typically,
the empirical correlations used relate product properties
to model states and/or other outputs.

Most of these models include parameters that must
be specified. The software currently includes that ca-
pability to estimate these parameters from steady-state
data. The parameter estimation case is defined as a least-
squares fit of the parameters subject to the model and
the steady-state data. In practice, getting sufficient data
to estimate all parameters is difficult. There is still sig-
nificant art in estimating parameters for these models.

Fundamental models have provided several advantages
over models identified from process data. The fundamen-
tal models have extrapolated well to new operating con-
ditions. When the process design changes, these models
can be changed more easily than equivalent models iden-
tified from process data. This comparison is not neces-
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sarily true if the process chemistry changes because of
the parameter estimation issues discussed above.

Process Feedback and Initialization

Since the user is responsible for writing all of the model
equations, it is possible to incorporate process feedback
in several different ways. The base implementation has
a default state correction built into the algorithm. The
state estimates at the previous sampling time (from the
previous controller execution) are assumed to be known.
The state estimates at the current time are computed
from this “known” starting point by integrating forward
with the measured or known MVs. As implemented, this
correction produces corrected state estimates when the
actual inputs do not match the values computed at the
previous execution.

Given this scheme of updating the state estimates, to
start execution of the controller,“cold-start” estimates
of the states must be computed to turn the control on.
These “cold-start” estimates can be computed by solv-
ing the steady-state model equations before the first con-
troller execution.

Output measurements can be used in a variety of ways
to provide feedback. Probably the easiest and most com-
mon method is to compute a bias between the modeled
value and the measured value. This bias can be filtered
and used as a feedforward input into the model. This
form of output feedback is similar to the approach used
by linear MPC controllers.

As indicated in a review of commercial nonlinear MPC
offerings (Qin and Badgwell, 2000), this controller pro-
vides state estimation through an extended Kalman fil-
ter(EKF). While technically correct, the model designer
must incorporate the disturbance model into the model
equations and augment these equations with the EKF
equations. Alternatively, since the initial conditions can
be imported into the problem, an external state estima-
tion application can generate new initial state and dis-
turbance estimates at each execution. There are many
available methods to incorporate process feedback asso-
ciated with nonlinear MPC (Muske and Edgar, 1997),
however, the burden of implementing these options in
the NLC methodology rests with the application/model
developer.

Nonlinear Controller Stability

There are no known stability results for the controller as
defined by equations 2 through 8. However, controller
stability was one of the most significant areas of aca-
demic research during the decade. The formulation of
the linear constrained MPC problem by Rawlings and
Muske (1993) opened up many new academic studies in
the area, see (Lee and Cooley, 1996; Meadows and Rawl-
ings, 1997; Mayne et al., 2000) for reviews. However,
even now, very few of these results have found their way
into commercially available linear MPC products.

However, the academic stability research provides
“comfort” to users of the NLC technology. The NLC
objective function, equation 2, is very similar to a linear
MPC objective function with soft constraints that has
been shown to be nominally stable (Scokaert and Rawl-
ings, 1999). Given these similarities, there is guarded
optimism that careful selection of horizon lengths and
objective function weights will result in stable closed-
loop behavior.

There is also concern about optimization algorithmic
stability, specifically, will the solution algorithm con-
verge every sampling time. Again, academic work in
this area (Wright, 1996; Biegler, 2000) would indicate
that NLP codes are improving and can be tailored to
the MPC problem to improve the convergence proper-
ties. Finally, our experience with industrially-used codes
for real-time optimization and other on-line applications
has been good and would indicate that reliability of this
solver will not impact the success of the controller.

Controller Commercialization

After successfully implementing the first generation of
the in-house version of the control methodology, Exxon
Chemical Company had to choose how best to deploy
this technology to the rest of the organization and how
to keep the controllers on-line. Several of the following
factors were studied:

• the cost of maintaining the controller software,

• the competitive advantage gained by keeping the
technology proprietary,

• the competitive advantage in the corporate capabil-
ity to develop process and disturbance models for
our processes.

This analysis led Exxon Chemical to commercialize the
nonlinear control methodology. After the award of the
patent in 1997, a vendor evaluation was conducted. Sub-
sequently, a contract was awarded to DOT Products to
develop a commercial version of the software.

The on-line version of this commercial product has
been used for subsequent implementations. A PC-
based configuration and tuning tool has been recently
released to assist with the development of new con-
troller implementations. The configuration tool allows
the engineer to specify the controller parameters, and
given a nonlinear model, build an off-line controller.
This model/controller combination can be used to esti-
mate parameters from steady-state data and to perform
steady-state, dynamic, and interactive simulations of the
controller. While there is significant room for improve-
ment with the graphics and user interface, the configu-
ration tool represents a significant step forward on the
path to new implementations.
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Figure 3: Blending drum schematic.

Blending Example

To illustrate the controller, a small blending example is
presented. In this example, three flows are blended into
a horizontal tank as show in Figure 3.

Two of the flows, w1 and w2 are pure components 1
and 2, respectively. The third flow, wD is a mixture
of the third component and component 1. The weight
fraction of component 1 in wD is x11. The controlled
variables are the tank level (L), and the weight fraction
of components 1 and 2 (x1 and x2) in the effluent flow,
w. The manipulated variables are the three inlet flow
rates. The system often sees disturbances in the effluent
flow, w, and the weight fraction, x11, both measured.

The model for this blending process is the overall mass
balance and the two component mass balance for com-
ponents 1 and 2 given by

M = ρV (15)

V = aL3 + bL2 + cL + d (16)
dV

dL
= 3aL2 + 2bL + c (17)

0 = −ρ
dV

dL

dL

dt
+ wD + w1 + w2 − w (18)

0 = −d(x1M)
dt

+ x11wD + w1 − x1w (19)

0 = −d(x2M)
dt

+ w2 − x2w (20)

where M is the mass of the tank contents, V is the as-
sociated volume, L is the associated tank level, and the
other variables as shown in Figure 3. The code to model
this blending process for the NLC is less than one page.
Except for the coefficients of the cubic polynomial re-
lating level to volume, there are no parameters. The
volume of the tank as a function of level is known from
the vessel strapping chart and can be fit to a cubic poly-
nomial. The error in this fit is less than the expected
error in the level measurement. More importantly, there
are no parameters that need to be fit to process data
or that change with the operating point. Also, there is
no special treatment of the model because it contains an
integrating mode. The nonlinearities in this problem are
mild, resulting from the cubic relationship between level
and volume and the bilinear relationships between flows
and compositions.
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Figure 4: Blending concentration setpoint response.
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Figure 5: Effluent flow disturbance response.
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Figure 6: Level setpoint change response.
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The disturbances in the effluent flow can be as great as
50% of the nominal value. Setpoint changes in the com-
position, x2, are often made for process reasons. Level
setpoint changes are made occasionally to reduce the res-
idence time. Under normal operating conditions, this
drum has about a one hour hold-up capacity. Level con-
trol is not a priority but it is important to keep the in-
ventory to a manageable level without running the drum
dry. Control of the effluent concentration is very impor-
tant. Given these relative priorities, the controller tun-
ing was specified so that the level response time constant
would be approximately six minutes and the concentra-
tion response time constants would be approximately 1.8
minutes each. The prediction and control horizon are
both five, with a sampling time of one minute. The rel-
ative weights on the CV response were all specified to
be one and the weights on the economic and input move
components of the objective function were set to zero.

Figure 4 shows the response to a setpoint change dou-
bling the x2 concentration, presented as a deviation from
normal operating conditions, normalized to the full-scale
value. This response is very much like the minimum-
time optimal control that one should expect given the
tuning. The w2 flow is driven to a constraint and the
other flows are set to achieve the desired concentration
responses, temporarily sacrificing the level response. The
level response returns to target along the specified error
trajectory.

The response of the closed-loop system to change in
the effluent flow to 53% of the nominal value is presented
in Figure 5. This simulation shows that the expected
level deviation is very small, the result of having a per-
fect model. Since the conventional controls on this unit
operation are a combination of PID and ratio controls
with no feed forward compensation for this disturbance,
the NLC significantly reduces variation for these typical
effluent flow changes.

Unlike the response in Figure 4, the response to a
level setpoint change, shown in Figure 6, does not ap-
pear to have the same minimum-time optimal controller
appearance. Instead, the controller responds smoothly
according to the specified error trajectory. Note that
neither of the concentration responses deviate from tar-
get to achieve this closed-loop performance in the level.

While this example is somewhat simplistic, it illus-
trates how the reference system tuning can be speci-
fied to achieve different desired responses in various con-
trolled variables.

Polymerization Reactor Example

Finally, the control of a polymerization reactor is used
to demonstrate the application of the NLC to a larger-
scale industrial example. This polymerization reactor
process is actually two reactors in series. Each reactor
has independent feed and cooling systems. Catalyst is

fed only to the first reactor. The model for each reactor
includes mass balances for as many as seven species and
multiple phases as well as energy balances around the
reactor and cooling systems.

The controlled variables for this application are the
polymer melt viscosity and the polymer comonomer in-
corporation in each reactor. The manipulated variables
are setpoints in the distributed control system (DCS)
that affect the addition of the comonomer and a transfer
agent into the feed to each reactor. The current goal for
this application is to control the transition to a desired
trajectory.

The model for this 4 input×4 output problem has on
the order of 50 state variables and is described by ap-
proximately 120 DAEs. In this application, a simple
output feedback scheme is used. Lab measurements of
the polymer properties are made on product collected at
a sampling point well downstream of the second reactor.
When new results are received, they are compared to
the predicted value at the time the process was sampled.
The difference is filtered and used to modify the out-
put predictions until new feedback is received. Figures 7
through 10 show a typical transition response achieved
with the NLC controller. Note that the laboratory data
is shown on an as-measured basis. To compare the lab-
oratory measurements with the measurement estimate,
the laboratory data must be shifted back in time by the
time period required to complete the analysis.

The controller is tuned so that the ratio of closed-loop
settling time to open-loop settling time is close to one
for the fastest transitions and significant improvement is
achieved for slower transitions. The control and predic-
tion horizons are equal and approximately two-thirds of
the nominal process residence time. The controller is ex-
ecuted every six minutes on a DEC Alpha System 1000
processor running at 266 MHz (circa 1997). Normally,
controller execution completes in a two to three minute
range, less than half of the six minute control period.

The characteristics of the reference system tuning are
most evident in the polymer melt viscosity responses.
The computed transfer agent command signal for the sec-
ond reactor becomes constrained at its maximum value.
The polymer comonomer incorporation illustrates the ef-
fect of corrupted measurements on the controller perfor-
mance. Overall, the performance achieved in this partic-
ular transition represents a significant improvement over
past performance.

Perhaps most importantly, this example demonstrates
that nonlinear MPC problems of industrial significance
can be solved in real-time on modest computing hard-
ware. This demonstration should not discourage the in-
novation of techniques designed to permit implementa-
tion of nonlinear predictive control to even larger prob-
lems. However, it provides a counter example for those
who claim that modifications are required to solve indus-
trial nonlinear MPC problem in general.
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Figure 7: Polymer melt viscosity transition response.
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Figure 8: Transfer agent transition command signal.

Concluding Remarks

There are no signs that the activity in the area of nonlin-
ear model predictive control are slowing. There is contin-
ued academic study of reference system synthesis applied
to model predictive control (Kalra, 1997). The presenta-
tions at the CPC V conference (Kantor et al., 1996) and
the 1998 Workshop on Nonlinear Model Predictive Con-
trol at Ascona, Switzerland (Allgower and Zheng, 2000)
continue to reinforce the industrial need and academic
interests in these areas. A survey of nonlinear model
predictive control products by vendors was presented at
Ascona (Qin and Badgwell, 2000). Besides the controller
described in this paper, four other vendor offerings were
available. Of the five, no two were pursuing exactly the
same approach to solve this problem.

As stated earlier in this paper, there are very ac-
tive academic research programs examining nonlinear
control, model-predictive control, parameter estimation,
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Figure 9: Polymer comonomer incorporation transi-
tion response.
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Figure 10: Comonomer transition command signal.

and optimization that can be used to further the develop-
ment of the NLC. Several academic programs have been
working on demonstrating nonlinear MPC techniques on
industrial-like models (Doyle III and Wisnewski, 2000;
Schley et al., 2000; Nagy et al., 2000; Tenny et al., 2001;
Findeisen et al., 2001). ExxonMobil Chemical Company
actively participates in several university industrial con-
sortia and interacts with several individual faculty mem-
bers, knowing this participation is important to our con-
tinued success in this endeavor.

The NLC controller technology described in this pa-
per is by no means mature. Reminiscent of linear MPC
packages of the late 1980’s, significant insight and de-
tailed knowledge is required to successfully implement
a NLC. However, this control methodology provides a
way to pursue opportunities that have been previously
beyond the reach of industrial process control engineers.
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