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Abstract
The behavioral approach provides a mathematical framework for modeling, analysis, and synthesis of dynamical systems.
The main difference from the classical view is that it does not the input/output partition as its starting point. In this
setting, control is viewed as interconnection.
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Introduction

The purpose of this paper is to outline the basics of a
mathematical language for the modeling, analysis, and
the synthesis of systems. The framework that we present
considers the behavior of a system as the main object of
study. This paradigm differs in an essential way from the
input/output paradigm which has dominated the devel-
opment of the field of systems and control in the 20-th
century. This paradigm-shift calls for a reconsideration
of many of the basic concepts, of the model classes, of
the problem formulations, and of the algorithms in the
field.

It is not the purpose to develop mathematical ideas for
their own sake. To the contrary, we will downplay math-
ematical issues of a technical nature. The main aim is to
convince the reader that the behavioral framework is a
cogent systems-theoretic setting that properly deals with
physical systems and that uses modeling as the essential
motivation for choosing appropriate mathematical con-
cepts.

It is impossible to do justice to all these aspects in the
span of one article. We will therefore concentrate of a
few main themes. The behavioral approach is discussed,
including the mathematical technicalities, in the recent
textbook (Polderman and Willems, 1998), where addi-
tional references may be found. We also mention the
article (Pillai and Shankar, 1999) where some of these
results are generalized to partial differential equations.

The Behavior

The framework that we use for discussing mathematical
models views a model as follows. Assume that we have
a phenomenon that we wish to model. Nature (that is,
the reality that governs this phenomenon) can produce
certain events (we will also call them outcomes). The
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totality of these possible events (before we have modeled
the phenomenon) forms a set W, called the universum.
A mathematical model of this phenomenon restricts the
outcomes that are declared possible to a subset B of
W;B is called the behavior of the model. We refer to
(W,B) (or to B by itself, since W is usually obvious
from the context) as a mathematical model.

Examples

1. The port behavior of an electrical resistor The out-
comes are: pairs (V, I) with V the voltage (say, in
volts) across the resistor and I the current (say, in
amps) through the resistor. The universum is R2.
After the resistor is modeled, by Ohm’s law, the be-
havior is B = {(V, I) ∈ R2|V = RI} with R the
value of the resistance (say, in ohms).

2. The ideal gas law poses PV = kNT as the rela-
tion between the pressure P , the volume V , the
number N of moles, and the temperature T of an
ideal gas, with k a physical constant. The univer-
sum W is R+ × R+ × N × R+, and the behavior
B = {(P, V,N, T ) ∈ W|PV = kNT}.

In the study of (dynamical) systems we are, more
specifically, interested in situations where the events are
signals, trajectories, i.e., maps from a set of indepen-
dent variables (time, or space, or time and space) to a
set of dependent variables (the values taken on by the
signals). In this case the universum is the collection of
all maps from the set of independent variables to the
set of dependent variables. It is convenient to distin-
guish these sets explicitly in the notation for a mathe-
matical model: T for the set of independent variables,
and W for the set of dependent variables. T suggests
’time’, but in distributed parameter systems T is often
time and space—we have incorporated distributed sys-
tems because of their importance in chemical engineering
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models. Whence we define a system as a triple

Σ = (W, T,B)

with B, the behavior, a subset of WT (WT is the standard
mathematical notation for the set of all maps from T to
W). The behavior is the central object in this definition.
It formalizes which signals w : T → W are possible,
according to the model: those in B, and which are not:
those not in B.

Examples

1. Newton’s second law imposes a restriction that re-
lates the position ~q of a point mass with mass m

to the force ~F acting on it: ~F = m d2

dt2 ~q. This is a
dynamical system with T = R, W = R3 × R3 (typi-
cal elements of B are maps (~q, ~F ) : R → R3 × R3),
and behavior B consisting of all maps t ∈ R 7→
(~q, ~F )(t) ∈ R3 × R3 that satisfy ~F = m d2

dt2 ~q. We do
not specify the precise sense of what it means that
a function satisfies a differential equation (we will
pay almost no attention to such secondary issues).

2. One-dimensional diffusion describes the evolution of
the temperature T (x, t) (with x ∈ R position, and
t ∈ R time) along a uniform bar and the heat q(x, T )
supplied to it. Their relation is given by the partial
differential equation

∂

∂t
T =

∂2

∂x2
T + q

where the constants are assumed to have been
chosen appropriately. This defines a system with
T = R2, W = R2, and B consisting of all maps
(T, q) : R2 → R2 that satisfy this partial differential
equation.

3. Maxwell’s equations provide the example of a dis-
tributed system with many independent variables.
They describe the possible realizations of the elec-
tric field ~E : R × R3 → R3, the magnetic field ~B :
R×R3 → R3, the current density ~j : R×R3 → R3,
and the charge density ρ : R × R3 → R. Maxwell’s
equations are

∇ · ~E =
1
ε0

ρ,

∇× ~E = − ∂

∂t
~B,

∇ · ~B = 0,

c2∇× ~B =
1
ε0

~j +
∂

∂t
~E,

with ε0 the dielectric constant of the medium and
c2 the speed of light in the medium. This defines
the system (R× R3, R3 × R3 × R3 × R,B), with B

the set of all fields ( ~E, ~B,~j, ρ) : R×R3 → R3×R3×

R3 × R that satisfy Maxwell’s (partial differential)
equations.

These examples fit perfectly our notion of a dynami-
cal system as a triple Σ = (T, W,B) with B ⊆ WT. In
example 1 , the set of independent variables T is time
only, while in the second example, diffusion, and in the
third, Maxwell’s equations, T involves time and space.
Note that in each of these examples, we are dealing with
‘open’ systems, that is, systems that interact with their
environment (mathematically, systems in which appro-
priate initial conditions are insufficient to determine the
solution uniquely). It has been customary to deal with
such systems by viewing them as input/output systems,
and by assuming that the input is imposed by the en-
vironment. Of course, our first two examples could be
thought of as input/output systems. In the case of dif-
fusion, the heat supplied may be thought of as caused
by an external heating mechanism that imposes q. But
q may also be the consequence of radiation due to the
temperature of the bar, making the assumption that it
is q that causes the evolution of T untenable, since it is
more like T that causes the radiation of heat. It is inap-
propriate to force Maxwell’s equations (where there are
clearly free variables in the system: the number of equa-
tions, 8, being strictly less than the number of variables,
10) into an input/output setting.

The input/output setting imposes an unnecessary—
and unphysical—signal flow structure on our view of
systems in interaction with our environment. The in-
put/output point of view has many virtues as a vehicle
of studying physical systems, but as a starting point, it
is simply inappropriate. First principles laws in physics
always state that some events can happen (those satis-
fying the model equations) while others cannot happen
(those violating the model equations). This is a far dis-
tance from specifying a system as being driven from the
outside by free inputs which together with an initial state
specifies the other variables, the outputs. The behavioral
framework treats a model for what it is: an exclusion law.

Latent Variables

In the basic equations describing systems, very often
other variables appear in addition to those whose be-
havior the model aims at describing. The origin of these
auxiliary variables varies from case to case. They may be
state variables (as in automata and input/state/output
systems); they may be potentials (as in the well-known
expressions for the solutions of Maxwell’s equations);
most frequently, they are interconnection variables (we
will discuss this later). It is important to incorporate
these variables in our basic modeling language ab initio,
and to distinguish clearly between the variables whose
behavior the model aims at, and the auxiliary variables
introduced in the modeling process. We call the former
manifest variables, and the latter latent variables.
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A mathematical model with latent variables is defined
as a triple (W, L,Bfull) with W the universum of man-
ifest variables, L the universum of latent variables, and
Bfull ⊆ W× L the full behavior. It induces the manifest
model (W,B), with B = {w ∈ W| there exists ` ∈ L
such that (w, `) ∈ Bfull}. A system with latent variables
is defined completely analogously as

(T, W, L,Bfull)

with Bfull ⊆ (W × L)T. The notion of a system with
latent variables is the natural end-point of a modeling
process and hence a very natural starting point for the
analysis and synthesis of systems. We shall see that la-
tent variables enter also very forcefully in representation
questions.

Examples

1. In modeling the port behavior of an electrical circuit,
the manifest variables are the voltage V across and
the current I into the circuit through the port. How-
ever, it is usually not possible to come up directly
with a model (say in the form of a differential equa-
tion) that involves only (V, I). In order to model
the port behavior, we usually need to look at the
internal structure of the circuit, and introduce the
currents through and the voltages across the internal
branches as latent variables. Using Kirchhoff’s laws
and the constitutive equations of the elements in
the branches, this readily leads to a latent variable
model. Similar situations occur in other systems,
for example mechanical systems, and more gener-
ally any type of interconnected system.

2. Assume that we want to model the relation between
the temperatures and the heat flows radiated at the
ends of a uniform bar of length 1. The bar is as-
sumed to be isolated, except at the ends. We wish
to model the relation between q0, T0, q1, T1, the
heat flows and temperatures at both ends. In order
to obtain a model, it is convenient to introduce the
temperature distribution T (x, t), 0 ≤ x ≤ 1, in the
bar as latent variables. The full behavior is then
described by the partial differential equation

∂

∂t
T =

∂2

∂x2
T

with the boundary conditions

T (0, t) = T0(t), T (1, t) = T1(t),
∂

∂x
T (0, t) = −q0(t),

∂

∂x
T (1, t) = q1(t).

This defines a latent variable system with T =
R, W = R4, L = C∞([0, 1], R), and Bfull consist-
ing of all maps ((T0, T1, q0, q1), T ) : R → R4 ×
C∞([0, 1], R)) such that the above equations are sat-
isfied.

3. In a state model for a dynamical system, the in-
put/output behavior is specified through a system
of differential equations as

d

dt
x = f(x, u), y = h(x, u).

This defines a latent variable system (R, U ×
Y, X,Bfull) with Bfull all trajectories ((u, y), x) :
R → (U × Y) × X that satisfy these equations.
The manifest behavior is the input/output behav-
ior, that is all trajectories (u, y) : R → U × Y that
are ’supported’ (in the sense made apparent by the
full behavior) by a trajectory x : R → X.

Situations in which models use latent variables either
for mathematical reasons or in order to express the be-
havioral constraints abound: internal voltages and cur-
rents in electrical circuits, momenta in mechanics, chem-
ical potentials, entropy and internal energy in thermo-
dynamics, prices in economics, state variables, the wave
function in quantum mechanics in order to explain ob-
servables, the basic probability space Ω in probability,
etc.

Differential Systems

The ‘ideology’ that underlies the behavioral approach
is the belief that in a model of a dynamical (physical)
phenomenon, it is the behavior B, i.e., a set of possi-
ble trajectories w : T → W, that is the central object
of study. However, as we have seen, in first principles
modeling, also latent variables enter ab initio. But, the
sets B or Bfull of trajectories must be specified somehow,
and it is here that differential equations (and difference
equations in discrete-time systems) enter the scene. Of
course, there are important examples where the behavior
is specified in other ways (for example, hybrid systems),
but we do not consider these very relevant refinements
in the present paper.

For systems described by ODE’s (1-D systems), with
T = R, and in the case without latent variables, B con-
sists of the solutions of a system of differential equations
as

f1(w,
d

dt
w, . . . ,

dN

dtN
w) = f2(w,

d

dt
w, . . . ,

dN

dtN
w).

We call these 1-D differential systems. In the case of
systems with latent variables these differential equations
involve both manifest and latent variables, yielding

f1(w,
d

dt
w, . . . ,

dN

dtN
w, `,

d

dt
`, . . . ,

dN

dtN
`)

= f2(w,
d

dt
w, . . . ,

dN

dtN
w, `,

d

dt
`, . . . ,

dN

dtN
`),

as the equation relating the (vector of) manifest variables
w to the (vector of) latent variables `.
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Of particular interest (in control, signal processing,
circuit theory, econometrics, etc.) are systems with a
signal space that is a finite-dimensional vector space and
behavior described by linear constant coefficient differ-
ential (or difference) equations. Such systems occur not
only when the dynamics are linear, but also after lin-
earization around an equilibrium point, when studying
the ’small signal behavior’. A 1-D linear time-invariant
differential system is a dynamical system Σ = (R, W,B),
with W = Rw a finite-dimensional (real) vector space,
whose behavior consists of the solutions of a system of
differential equations of the form

R0w + R1
d

dt
w + · · ·+ Rn dn

dtn
w = 0,

with R0, R1, . . . , Rn matrices of appropriate size that
specify the system parameters, and w = (w1, w2, . . . , ww)
the vector of (real-valued) system variables. These sys-
tems call for polynomial matrix notation. It is conve-
nient to denote the above system of differential equations
as

R( d
dt )w = 0,

with R ∈ R•×w[ξ] a real polynomial matrix with w
columns. The behavior of this system is defined as

B = {w : R → Rw | R(
d

dt
)w = 0}.

The precise definition of what we consider a solution of
R( d

dt )w = 0 is an issue that we will slide over, but for the
results that follow, it is convenient to consider solutions
in C∞(R, Rw). Since B is the kernel of the differential
operator R( d

dt ), we often write B = ker(R( d
dt )), and call

R( d
dt )w = 0 a kernel representation of the associated

linear time-invariant differential system. We denote the
set of differential systems or their behaviors by L•, or by
Lw when the number of variables is w.

Of course, the number of columns of the polynomial
matrix R equals the dimension of W. The number of
rows of R, which represents the number of scalar dif-
ferential equations, is arbitrary. In fact, when the row
dimension of R is less than its column dimension, as is
usually the case, R( d

dt )w = 0 is an under-determined sys-
tem of differential equations which is typical for models
in which the influence of the environment is taken into
account.

In the linear time-invariant case with latent variables,
this becomes

R( d
dt )w = M( d

dt )`,

with R and M polynomial matrices of appropriate sizes.
Define the full behavior of this system as

{(w, `) : R → Rw+` | R(
d

dt
)w = M(

d

dt
)`}.

Hence the manifest behavior of this system is

{w : R → Rw | there exists ` : R → Rl

such that R(
d

dt
)w = M(

d

dt
)`}.

We call the R( d
dt )w = M( d

dt )` a latent variable represen-
tation of the manifest behavior B.

There is a very extensive theory about these linear
differential systems. It is a natural starting point for a
theory of dynamical systems. Besides being the outcome
of modeling (perhaps after linearization), it incorporates
high order differential equations, the ubiquitous first or-
der state systems and transfer function models, implicit
(descriptor) systems, etc., as special cases. The study of
these systems is intimately connected with the study of
polynomial matrices, and may seem somewhat abstract,
but this is only because of unfamiliarity. See (Polderman
and Willems, 1998) for details.

An important issue that occurs is elimination: the
question whether the manifest behavior B of a latent
variable representation belongs to Lw, i.e., whether it
can also be described by a linear constant coefficient dif-
ferential equation. The following elimination theorem
holds: For any real polynomial matrices (R,M) with
rowdim(R) = rowdim(M), there exists a real polynomial
matrix R′ such that the manifest behavior of R( d

dt )w =
M( d

dt )` has the kernel representation R′( d
dt )w = 0.

The relevance of the elimination problem in object-
oriented modeling is as follows. As we will see, a model
obtained by tearing and zooming usually involves very
many auxiliary (latent) variables and very many equa-
tions, among them many algebraic ones originating from
the interconnection constraints. The elimination theo-
rem tells us that (for 1-D linear time-invariant differ-
ential systems) the latent variables may be completely
eliminated and that the number of equations can be re-
duced to no more than the number of manifest variables.
Of course, the order of the differential equation will go
up in the elimination process. We should also mention
that there exist very effective, computer algebra based,
algorithms for going from a latent variable representa-
tion to a kernel representation. The generalization of
the elimination theorem and of elimination algorithms
to other classes of systems (for example, time-varying
or certain classes of nonlinear systems) is a matter of
ongoing research. Particularly interesting is the gener-
alization of some of the above concepts and results to
systems described by constant coefficient linear PDE ’s.
Define a n-D distributed linear shift-invariant differen-
tial system as a system Σ = (Rn, Rw,B), whose behavior
B consists of the (C∞(Rn, Rd)) solutions of a system of
linear constant-coefficient partial differential equations

R( ∂
∂x1

, . . . , ∂
∂xn

)w = 0
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Figure 1: Interconnected system.

viewed as an equation in the w’s, in the functions

(x1, . . . , xn) = x ∈ Rn 7→ (w1(x), . . . , ww(x)) = w(x) ∈ Rw.

Here, R ∈ R•×w[ξ1, . . . , ξn] is a matrix of polynomials
in R[ξ1, . . . , ξn], polynomials with real coefficients in n
indeterminates.

For distributed differential systems with latent vari-
ables, this leads to equations of the form

R( ∂
∂x1

, . . . , ∂
∂xn

)w = M( ∂
∂x1

, . . . , ∂
∂xn

)`,

with R and M matrices of polynomials in R[ξ1, . . . , ξn].
It is easy to prove that a 1-D linear differential sys-

tem admits an input/output representation. This means
that for every B ∈ Lw, there exists a permutation ma-
trix Π and a partition Πw = col(u, y) such that for any
u∗ ∈ C∞(R, Ru), there exist a y ∈ C∞(R, Ry) such that
(u∗, y) ∈ ΠB. Moreover, the y’s that such (u∗, y) ∈ ΠB
form a linear finite dimensional variety, implying that
such a y is uniquely determined by its derivatives at
t = 0.

Thus in linear differential systems, the variables can
always be partitioned into two groups. The first group
act a free inputs, the second group a bound outputs:
they are completely determined by the inputs and their
initial conditions.

Tearing and Zooming

Systems, especially engineering systems, usually consist
of interconnections of subsystems. This feature is crucial
in both modeling and design. The aim of this section is
to formalize interconnections and to analyze the model
structures that emerge from it. The procedure of mod-
eling by tearing and zooming is an excellent illustration
of the appropriateness of the behavioral approach as the
supporting mathematical language. We assume through-
out finiteness, i.e., that we interconnect a finite number
of modules (subsystems), each with a finite number of
terminals, etc. See figure 1.

We view an interconnected system as a collection of
modules with terminals, interconnected through an in-
terconnection architecture. The building blocks, called

modules, of an interconnected system are systems with
terminals. Each of these terminals carries variables from
a universum, and the (dynamical) laws that govern the
module are expressed by a behavior that relates the vari-
ables at the various terminals. Finally, the terminals of
the modules are assumed to be interconnected, expressed
by an interconnection architecture. The interconnection
architecture imposes relations between the variables on
these terminals.

After interconnection, the architecture leaves some
terminals available for interaction with the environment
of the overall system. The behavior of the interconnected
system consists of the signals that satisfy both the mod-
ule behavior laws and the interconnection constraints. In
specifying the behavior of an interconnected system, we
consider the variables on the interconnected terminals as
latent variables, and those on the terminals that are left
for interaction with the environment as manifest vari-
ables. We will occasionally call the interconnected vari-
ables internal variables, and the exposed variables exter-
nal variables. It is important to note immediately the
hierarchical nature of this procedure. The modules thus
become subsystems. The paradigmatic example to keep
in mind is an electrical circuit. The modules are resistors,
capacitors, inductors, transformers, etc. The terminals
are the wires attached to the modules and are electrical
terminals, each carrying a voltage (the potential) and a
current. The interconnection architecture states how the
wires are connected. We now formalize all this, assuming
that we are treating continuous time dynamical systems
(hence, with time set T = R). Of course, for process en-
gineering, generalization to distributed systems and to
’distributed’ terminals, as in interconnection along sur-
faces, is mandatory.

A terminal is specified by its type. Giving the type
of a terminal identifies the kind of a physical terminal
that we are dealing with. The type of terminal implies
a universum of terminal variables. These variables are
physical quantities that characterize the possible ’signal
states’ on the terminal, it specifies how the module in-
teracts with the environment through this terminal.

A module is specified by its type, and its behavior.
Giving the type of a module identifies the kind of a
physical system that we are dealing with. Giving a be-
havior specification of a module implies giving a repre-
sentation and the values of the associated parameters a
representation. Combined these specify the behavior of
the variables on the terminals of the module. The type
of a module implies an ordered set of terminals. Since
each of the terminals comes equipped with a universum
of terminal variables, we thus obtain an ordered set of
variables associated with that module. The module be-
havior then specifies what time trajectories are possible
for these variables. Thus a module defines a dynamical
system (R, W,B) with W the Cartesian product over the
terminals of the universa of the terminal variables. How-
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ever, there are very many ways to specify a behavior (for
example, as the solution set of a differential equation,
as the image of a differential operator, through a latent
variable model, through a transfer function, etc.). The
behavioral representation picks out one of these. These
representations will then contain unspecified parameters
(for example, the coefficients of the differential equation,
or the polynomials in a transfer function). Giving the
parameter values specifies their numerical values, and
completes the specification of the behavior of the signals
that are possible on the terminals of a module.

Formally, a system Σ of a given type with T termi-
nals yields W = W1 × W2 × · · · × WT , with Wk the
universum associated with the k-th terminal. The be-
havioral specification yields the behavior B ⊆ WR. If
(w1, w2, . . . , wT ) ∈ B, then we think of wk ∈ (Wk) R as
a signal that can be realized on the k-th terminal.

An interconnected system is composed of modules, its
building blocks. They serve as subsystems of the overall
system. Each module specifies an ordered set of termi-
nals. By listing the modules, and the associated termi-
nals, we obtain the Cartesian product of all the termi-
nals in the interconnected system. The manner in which
these terminals, and hence the associated modules, are
interconnected is specified by the interconnection archi-
tecture. This consists of a set of disjunct pairs of ter-
minals, and it is assumed that each such pair consists of
terminals of adapted type. Typical ’adapted’ type means
that the are the same physical nature (both electrical, or
both 1-D mechanical, both thermal, etc. But, when the
terminal serves for information processing (inputs to ac-
tuators, output of sensors) it could also mean that one
variable must be an input to the module to which it is
connected (say, the input of an actuator), and the other
must be an output to the module to which it is connected
(say the output of a sensor). Note that the intercon-
nection architecture involves only the terminals of the
modules and their type, but not the behavior. Also, the
union of the terminals over the pairs that are part of the
interconnection architecture will in general be a strict
subset of the union of the terminals of all the modules.
We call the terminals that are not involved in the inter-
connection architecture the external (or exposed) termi-
nals. It is along these terminals that the interconnected
system can interact with its environment. The terminals
that enter in the interconnection architecture are called
internal terminal. It is along these terminals that the
modules are interconnected.

Pairing of terminals by the interconnection architec-
ture implies an interconnection law. Some examples of
interconnection laws are V1 = V2, I1+I2 = 0 for electrical
terminals, Q1 + Q2 = 0, T1 = T2 for thermal terminals,
p1 = p2, f1 + f2 = 0 for fluidic terminals, etc.

The physical examples of interconnection laws all in-
volve equating of ‘across’ variables and putting the sum
of ‘through’ variables to zero. This is in contrast to

p22, f22

h2

h1

p11, f11 p12, f12 p21, f21

Figure 2: Tanks.

the input-output identification for information process-
ing terminals. The latter is actually the only intercon-
nection that is used in flow diagram based modeling, as
implemented, for example, in SIMULINK. It is indeed
very much based on the input/output thinking that has
permeated systems theory and control throughout the
past century. Unfortunately, this is of limited interest
when it comes to modeling interconnected physical sys-
tems. As such the ideas developed in the bond-graph
literature and the modeling packages that use this phi-
losophy are bound to be much more useful in the long
run. Interconnection of physical systems involves across
and through variables, efforts and flows, extensive and
intensive quantities, and not in first instance flow dia-
grams. These considerations are the main motivation
for the development of the behavioral approach.

We now formalize the interconnected system. The
most effective way to proceed is to specify it as a la-
tent variable system, with as manifest variables the vari-
ables associated with the external terminals, and as
latent variables the internal variables associated with
the terminals that are paired by the interconnection
architecture. This latent variable system is specified
as follows. Its universum of manifest variables equals
W = We1 × · · · ×We|E| , where E = {e1, . . . , e|E|} is the
set of external terminal. Its universum of latent variables
equals L = Wi1 × · · · ×Wi|I| , where I = {i1, . . . , i|I|} is
the set of internal terminals. Its full behavior behavior
consists of the behavior as specified by each of the mod-
ules, combined by the interconnection laws obtained by
the interconnection architecture. The behavior of each of
the modules involves a combination of internal and exter-
nal variables that are associated with the module. The
interconnection law of a pair in the interconnection ar-
chitecture involves the internal variables associated with
these terminals.

Modeling interconnected via the above method of tear-
ing and zooming provides the prime example of the use-
fulness of behaviors and the inadequacy of input/output
thinking. Even if our system, after interconnection, al-
lows for a natural input/output representation, it is un-
likely that this will be the case of the subsystem and of
the interconnection architecture. We illustrate this by
means of an example.

Example: Consider two tanks filled with a fluid, both
equipped with two tubes through which the fluid can
flow in or out (see figure 2). Assume that the pressures
(p11, p12) and the flows (f11, f12) at the end of these tubes
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h2

h1

p11, f11 p22, f22p12 = p21
f12 = −f21

Figure 3: Connected tanks.

of the first tank tank are governed by a differential equa-
tion of the form

d

dt
h1 = F1(h1, p11, p12),

f11 = H11(h1, p11), f12 = H12(h1, p12),

where h1 denotes the height of the fluid in the first tank.
Similarly for the second tank:

d

dt
h2 = F2(h2, p21, p22),

f21 = H21(h2, p21), f22 = H22(h2, p22)

It is quite reasonable, by all accounts, to consider in
the first system the pressures p11, p12 as inputs and the
flows f11, f12 as outputs, and for for the second system
the pressures p21, p22 as inputs and the flows f21, f22 as
outputs. Now assume that we interconnect the tube 12
to 21. This yields the interconnection laws of a fluidic
terminal:

p12 = p21, f12 + f21 = 0.

Note that this comes down to equating two inputs, and
equating two outputs. Precisely the opposite that what
is supposed to happen in the output-to-input identifica-
tion that signal flow modeling wants us to do! A simi-
lar situation holds in mechanics: interconnection equates
two positions (often both outputs), and puts the sum of
two forces (often both inputs) equal to zero.

If the field of systems and control wants to take mod-
eling seriously, is should retrace the faux pas of taking
input/output thinking as the basic framework, and cast
models in the language of behaviors. It is only when
considering the more detailed signal flow graph struc-
ture of a system that input/output thinking becomes
useful. Signal flow graphs are useful building blocks for
interpreting information processing systems, but physi-
cal systems need a more flexible framework.

Controllability and Observability

An important property in the analysis and synthesis of
systems is controllability. Controllability refers to be
ability of transferring a system from one mode of op-
eration to another. By viewing the first mode of oper-
ation as undesired and the second one as desirable, the
relevance to control and other areas of applications be-
comes clear. The concept of controllability has originally

w1w1

w1

w2

W

W W

0

0 t

w
w

w
σ−tw2
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time
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Figure 4: Controllability.

been introduced in the context of state space systems.
The classical definition runs as follows. The system de-
scribed by the controlled vector-field d

dtx = f(x, u) is
said to be controllable if for all states a, b, there exists
an inputu and a time T ≥ 0 such that the solution to
d
dtx = f(x, u) and x(0) = a yields x(T ) = b. One of the
elementary results of system theory states that the finite-
dimensional linear system d

dtx = Ax+Bu is controllable
if and only if the matrix [B AB A2B · · ·Adim(x)−1B] has
full row rank. Various generalizations of this result to
time-varying, to nonlinear (involving Lie brackets), and
to infinite-dimensional systems exist.

A disadvantage of the notion of controllability as for-
mulated above is that it refers to a particular representa-
tion of a system, notably to a state space representation.
Thus a system may be uncontrollable either for the in-
trinsic reason that the control has insufficient influence
on the system variables, or because the state has been
chosen in an inefficient way. It is clearly not desirable to
confuse these reasons. In the context of behavioral sys-
tems, a definition of controllability has been put forward
that involves the manifest system variables directly.

Let Σ = (T, W,B) be a dynamical system with T = R
or Z, and assume that is time-invariant, that is σtB = B
for all t ∈ T, where σt denotes the t-shift (defined by
(σtf)(t′) := f(t′ + t)); Σ is said to be controllable if for
all w1, w2 ∈ B there exists T ∈ T, T ≥ 0 and w ∈ B
such that w(t) = w1(t) for t < 0 and w(t) = w2(t − T )
for t ≥ T . Thus controllability refers to the ability to
switch from any one trajectory in the behavior to any
other one, allowing some time-delay. This is illustrated
in figure 4.

Two questions that occur are the following: What con-
ditions on the parameters of a system representation im-
ply controllability? Do controllable systems admit a par-
ticular representation in which controllability becomes
apparent? For linear time-invariant differential systems,



104 Jan C. Willems

these questions are answered in the following theorem.
Let Σ = (R, Rw,B) be a linear time-invariant differential
system. The following are equivalent:

1. B ∈ Lw is controllable.

2. The polynomial matrix R in a kernel representa-
tion R( d

dt )w = 0 of B ∈ Lw satisfies rank(R(λ)) =
rank(R) for all λ ∈ C.

3. The behavior B ∈ Lw is the image of a linear
constant-coefficient differential operator, that is,
there exists a polynomial matrix M ∈ Rw×•[ξ] such
that B = {w | w = M( d

dt )` for some `}.

There exist various algorithms for verifying controlla-
bility of a system starting from the coefficients of the
polynomial matrix R in a kernel (or a latent variable)
representation of Σ.

A point of the above theorem that is worth emphasiz-
ing is that, as stated in the above theorem, controllable
systems admit a representation as the manifest behavior
of the latent variable system of the special form

w = M( d
dt )`.

We call this an image representation of the system with
behavior

B = {w | there exists ` such that w = M(
d

dt
)`}.

It follows from the elimination theorem that every sys-
tem in image representation can be brought in kernel
representation. But not every system in kernel repre-
sentation can be brought in image representation: it are
precisely the controllable ones for which this is possible.

The controllability question has been pursued for
many other classes of systems. In particular (more dif-
ficult to prove) generalizations have been derived for
differential-delay (Rocha and Willems, 1997; Glüsing-
Lüerssen, 1997), for nonlinear systems, and, as we will
discuss soon, for PDE’s. Systems in an image representa-
tion have received much attention recently for nonlinear
differential-algebraic systems, where they are referred to
as flat systems (Fliess and Glad, 1993). Flatness im-
plies controllability, but the exact relation remains to be
studied.

The notion of observability is always introduced hand
in hand with controllability. In the context of the in-
put/state/output system d

dtx = f(x, u), y = h(x, u), it
refers to the possibility of deducing, using the laws of
the system, the state from observation of the input and
the output. The definition that is used in the behavioral
context is more general in that the variables that are
observed and the variables that need to be deduced are
kept general.

In observability, we ask the question: Can the trajec-
tory w1 be deduced from the trajectory w2? (See figure

variablesvariables SYSTEMw1
to-be-deducedobserved

w2

Figure 5: Observability.

5). Let Σ = (T, W,B) be a dynamical system, and as-
sume that W is a product space: W = W1×W2. . Then
w1 is said to be observable from w2 in Σ if (w1, w

′
2) ∈ B

and (w1, w
′′
2 ) ∈ B imply w′

2 = w′′
2 . Observability thus

refers to the possibility of deducing the w1 from observa-
tion of w2 and from the laws of the system (B is assumed
to be known).

The theory of observability runs parallel to that of
controllability. We mention only the result that for lin-
ear time-invariant differential systems, w1 is observable
from w2 if and only if there exists a set of differential
equations satisfied by the behavior of the system (i.e.,
a set of consequences) of the following form, that puts
observability into evidence: w1 = R′

2(
d
dt )w2. This condi-

tion is again readily turned into a standard problem in
computer algebra.

Many of the results for controllability and observabil-
ity have recently been generalized to distributed systems
(Pillai and Shankar, 1999). We mention them briefly.
The system B ∈ Lw

n is said to be controllable if for all
w1, w2 ∈ B and for all open non-overlapping subsets
O1, O2 ⊆ Rn, there exists w ∈ B such that w|O1 = w1|O1

and w|O2 = w2|O2 , i.e., if its solutions are ‘patch-able’.
Note that it follows from the elimination theorem for

L•n that the manifest behavior of a system in image rep-
resentation, i.e., a latent variable system of the special
form

w = M( ∂
∂x1

, . . . , ∂
∂xn

)`

can be described as the solution set of a system of con-
stant coefficient PDE’s. Whence, every image of a con-
stant coefficient linear partial differential operator is the
kernel of a constant coefficient linear partial differential
operator. However, not every kernel of a constant coef-
ficient linear partial differential operator is the image of
a constant coefficient linear partial differential operator.
It turns out that it are precisely the controllable systems
that admit an image representation (Pillai and Shankar,
1999).

Note that an image representation corresponds to
what in mathematical physics is called a potential func-
tion, with ` the potential and M( ∂

∂x1
, . . . , ∂

∂xn
) the par-

tial differential operator that generates elements of the
behavior from the potential. An interesting aspect of
the above theorem therefore is the fact that it identi-
fies the existence of a potential function with the system
theoretic property of controllability (patch-ability of tra-
jectories in the behavior).



The Behavioral Approach to Modeling and Control of Dynamical Systems 105

Sensors
PLANT

exogenous inputs to-be-controlled outputs

measured
outputs

control
inputs

CONTROLLER
FEEDBACK

Actuators

Figure 6: Intelligent control.

It can be shown that Maxwell’s equations define a con-
trollable distributed differential system. Indeed, in the
case of Maxwell’s equations, there exists a well-known
image representation using the scalar and vector poten-
tial.

Control

The behavioral point of view has received broad accep-
tance as an approach for modeling dynamical systems. It
is generally agreed upon that when modeling a dynamic
component it makes no sense to prejudice oneself (as one
would be forced to do in a transfer function setting) as
to which variables should be viewed as inputs and which
variables should be viewed as outputs. We have argued
this point extensively throughout the previous sections
of this paper. This is not to say, by any means, that
there are no situations where the input/output struc-
ture is natural. Quite to the contrary. In fact, whenever
logic devices are involved, in information processing, the
input/output structure is often a must.

The behavioral approach has, until now, met with
much less acceptance in the context of control. We can
offer a number of explanations for this fact. Firstly, there
is something very natural in viewing control variables as
inputs and measured variables as outputs. Control then
becomes decision making on the basis of observations.
When subsequently a controller is regarded as a feed-
back processor, one ends up with the feeling that the in-
put/output structure is in fact an essential feature of con-
trol. Secondly, since, as mentioned in a previous section,
it is possible to prove that every linear time-invariant
system admits a component-wise input/output represen-
tation, one gets the impression that the input/output
framework can be adopted without second thoughts, that
nothing is lost by taking it as a universal starting point.

Present-day control theory centers around the signal
flow graph shown in figure 6. The plant has four
terminals (supporting variables which will typically be
vector-valued). There are two input terminals, one
for the control, one for the other exogenous variables
(disturbances, set-points, reference signals, tracking
inputs, etc.) and there are two output terminals, one
for the measurements, and one for the to-be-controlled
variables. By using feed-through terms in the plant

equations this configuration accommodates, by incor-
porating these variables in the measurements, for the
possible availability to the controller of set-point set-
tings, reference signals, or disturbance measurements for
feed-forward control, and, by incorporating the control
input in the to-be-controlled outputs, for penalizing
excessive control action. The control inputs are gener-
ated by means of actuators and the measurements are
made available through sensors. Usually, the dynamics
of the actuators and of the sensors are considered to
be part of the plant. We call this structure intelligent
control. In intelligent control, the controller is thought
of as a micro-processor type device which is driven by
the sensor outputs and which produces the actuator
inputs through an algorithm involving a combination
of feedback, identification, and adaptation. Also, often
loops expressing model uncertainty are incorporated
in the above as well. Of course, many variations,
refinements, and special cases of this structure are of
interest, but the basic idea is that of supervisor reacting
in an intelligent way to observed events and measured
signals.

The paradigm embodied in figure 6 has been univer-
sally prevalent ever since the beginning of the subject,
from our interpretation of the Watt regulator, Black’s
feedback amplifier, and Wiener’s cybernetics, to the
ideas underlying modern adaptive and robust control.
It is indeed a deep and very appealing paradigm, which
will undoubtedly gain in relevance and impact as logic
devices become ever more prevalent, reliable, and inex-
pensive. This paradigm has a number of features which
are important for considerations which will follow. Some
of these are:

1. There is an asymmetry between the plant and the
controller: it remains apparent what part of the sys-
tem is the plant and what part is the controller. This
asymmetry disappears to some extent in the closed
loop.

2. The intelligent control paradigm tells us to be wary
of errors in the measurements. Thus it is considered
as being ill-advised to differentiate measurements,
presumably, because this will lead to noise amplifi-
cation.

3. The plant and the controller are dynamical systems
which can be interconnected at any moment in time.
If for one reason or another the feedback controller
temporarily fails to receive an input signal, then the
control input can be set to a default value, and later
on the controller can resume its action.

We will now analyze an example of a down-to-earth
controller, a very wide-spread automatic control mech-
anism, namely the traditional device which ensures the
automatic closing of doors. There is nothing peculiar



106 Jan C. Willems

hinges

wall

door

spring

damper

Figure 7: Door-closing mechanism.

about this example. Devices based on similar princi-
ples are used for the suspension of automobiles and the
points which we make through this example could also
be made just as well through many temperature or pres-
sure control devices. A typical automatic door-closing
mechanism is schematically shown in figure 7.

A door-closing mechanism usually consists of a spring
to ensure the closing of the door and a damper in order
to make sure that it closes gently. In addition, these
mechanisms often have considerable weight so that their
mass cannot be neglected as compared to the mass of
the door itself. The automatic door-closing mechanism
can be modeled as a mass/spring/damper combination.
In good approximation, the situation can be analyzed
effectively as the mechanical system shown in figure 8.
We model the door as a mass M ′, on which, neglecting
friction in the hinges, two forces act. The first force,
Fc, is the force exerted by the door-closing device, while
the second force, Fe, is the exogenous force exerted for
example by a person pushing the door in order to open
it. The equation of motion for the door becomes

M ′ d2

dt2
θ = Fc + Fe,

where θ denotes the opening angle of the door. The
automatic door-closing mechanism, modeled as a
mass/spring/damper combination, yields

M ′′ d2

dt2
θ + D

d

dt
θ + Kθ = −Fc.

Here, M ′′ denotes the mass of the door-closing mecha-
nism, D its damping coefficient, and K its spring con-
stant. Combining these equations yields

(M ′ + M ′′)
d2

dt2
θ + D

d

dt
θ + Kθ = Fe.

In order to ensure proper functioning of the door-
closing device, the designer can to some extent choose
M ′′, D and K (all of which must, for physical reasons, be
positive). The desired response requirements are: small
overshoot (to avoid banging of the door), fast settling
time, and a reasonably high steady state gain (to avoid

Fc

Fc

e

D

K

θ

M’

M’’

F

Figure 8: Spring/damper representation.

having to exert excessive force when opening the door).
This is an example of an elementary control design exer-
cise. A good design will be achieved by choosing a light
mechanism (M ′′ small), with a reasonably strong spring
(K large), but not too strong so as to avoid having to
use excessive force in order to open the door, and with
the value of D chosen so as to achieve slightly less than
critical damping (ensuring gentle closing of the door).

It is completely natural to view in this example the
door as the plant and the door-closing mechanism as
the controller. Then, if we insist on interpreting this
plant/controller combination in terms of control system
configurations as figure 6, we obtain.

Plant: M ′ d2

dt2
θ = u + v; y = θ; z = θ

with u the control input (u = Fc), v the exogenous input
(v = Fe ), y the measured output, and z the to-be-
controlled output.

Controller: u = −M ′′ d2

dt2
y −D

d

dt
y −Ky.

This yields the controlled system, described by:

Controlled system: (M ′ + M ′′)
d2

dt2
z + D

d

dt
z + Kz = v.

Observe that in the control law, the measurement y
should be considered as the input, and the control u
should be considered as the output. This suggests that
we are using what would be called a PDD-controller (a
proportional and twice differentiating controller), a sin-
gular controller which would be thought of as causing
high noise amplification. Of course, no such noise am-
plification occurs in reality. Further, the plant is second
order, the controller is second order, and the closed loop
system is also second order (unequal to the sum of the
order of the plant and the controller). Hence, in order to
connect the controller to the plant, we will have to ‘pre-
pare’ the initial states of the controller and the plant.
Indeed, in attaching the door-closing mechanism to the
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door, we will make sure that at the moment of attach-
ment the initial values of θ and d

dtθ are zero both for the
door and the door-closing mechanism.

We now come to our most important point concern-
ing this example. Let us analyze the signal flow graph.
In the plant, it is natural to view the forces Fc and Fe

as inputs and θ as output. This input/output choice is
logical both from the physical and from the cybernetic,
control theoretic point of view. In the controller, on the
other hand, the physical and the cybernetic points of
view clash. From the cybernetic, control theoretic point
of view, it is logical to regard the opening angle θ as input
and the control force Fc as output. From the physical
point of view, however, it is logical to regard (just as
in the plant) the force Fc as input and θ as output. It
is evident that as an interconnection of two mechanical
systems, the door and the door-closing mechanism play
completely symmetric roles. However, the cybernetic,
control theoretic point of view obliges us to treat the sit-
uation as asymmetric, making the force the cause in one
mechanical subsystem, and the effect in another.

In our opinion, this simple but realistic example per-
mits us to draw the following conclusions. Notwithstand-
ing all its merits, the intelligent control paradigm of fig-
ure 6 gives an unnecessarily restrictive view of control
theory. In many practical control problems, the signal-
flow-graph interpretation of figure 6 is untenable. The
solution which we propose to this dilemma is the fol-
lowing. We will keep the distinction between plant and
controller with the understanding that this distinction
is justified only from an evolutionary point of view, in
the sense that it becomes evident only after we com-
prehend the genesis of the controlled system, after we
understand the way in which the closed loop system has
come into existence as a purposeful system. However,
we will abandon the intelligent control signal flow graph
as a paradigm for control. We will abandon the dis-
tinction between control inputs and measured outputs.
Instead, we will view interconnection of a controller to
a plant as the central paradigm in control theory. How-
ever, we by no means claim that the intelligent control
paradigm is without merits. To the contrary, it is ex-
tremely useful and important. Claiming that the in-
put/output framework is not always the suitable frame-
work to approach a problem does not mean that one
claims that it is never the suitable framework. How-
ever, a good universal framework for control should be
able to deal both with interconnection, with designing
subsystems, and with intelligent control. The behavioral
framework does, the intelligent control framework does
not.

In order to illustrate the nature of control that we
would like to transmit in this presentation, consider the
system configuration depicted in figure 9. In the top
part of the figure, there are two systems, shown as black-
boxes with terminals. It is through their terminals that

variables variables
control

CONTROLLER

to-be-controlled

PLANTw c

Figure 9: Control as interconnection.

systems interact with their environment. The black-box
imposes relations on the variables that ‘live’ on its ter-
minals. These relations are formalized by the behavior
of the system in the black-box. The system to the left
in figure 9 is called the plant, the one to the right the
controller. The terminals of the plant consist of to-be-
controlled variables w, and control variables c. The con-
troller has only terminals with the control variables c.
In the bottom part of the figure, the control terminals
of the plant and of the controller are connected. Before
interconnection, the variables w and c of the plant have
to satisfy the laws imposed by the plant behavior. But,
after interconnection, the variables c also have to satisfy
the laws imposed by the controller. Thus, after inter-
connection, the restrictions imposed on the variables c
by the controller will be transmitted to the variables w.
Choosing the black-box to the right so that the variables
w have a desirable behavior in the interconnected black-
box is, in our view, the basic problem of control. This
point of view is discussed with examples in (Polderman
and Willems, 1998).

This leads to the following mathematical formulation.
The plant and the controller are both dynamical sys-
tems Σplant = (T, W × V,Bplant) and Σcontroller =
(T, V,Bcontroller) where W denotes the signal space
of the to-be-controlled variables, V denotes the signal
space of control variables, and both systems are as-
sumed to have the same time axis T. The intercon-
nection of Σplant and Σcontroller leads to the system
Σfull = (T, W, V,Bfull) which is a system with latent
variables (V) and full behavior defined by

Bfull = {(w, c) : T → W× V | (w, c) ∈ Bplant

and c ∈ Bcontroller}

The manifest system obtained by Σfull is the con-
trolled system and is hence defined as Σcontrolled =
(T, W,Bcontrolled) with

Bcontrolled = {w : T → W | there exists c : T → V
such that ∈ Bplant and c ∈ Bcontroller}

The notion of a controller put forward by the above
view considers interconnection as the basic idea of con-
trol. The special controllers that consist of sensor-
outputs to actuator-inputs signal processors emerge as
(very important) special cases. We think of these as
controllers as feedback, or intelligent, controllers. How-
ever, our view of control as the design of suitable subsys-
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tems greatly enhances the applicability of control, since
it views control as integrated subsystem design.

A question that arises in this context is the following.
Assume that Σplant is given. What systems Σcontrolled

can be obtained by suitably choosing Σcontroller? This
question can be answered very explicitly, at least for lin-
ear time-invariant differential systems. Assume that the
plant is given by Σplant = (R, Rw × Rc,Bplant) ∈ Lw+c

with Bplant described by a system of linear constant dif-
ferential equations R( d

dt )w = R( d
dt )c. Let Σcontroller =

(R, Rc,Bcontroller) ∈ Lc, and assume that Bcontroller is
similarly described by a system of linear constant coeffi-
cient differential equations C( d

dt )c = 0. Then, by elimi-
nation theorem Σcontrolled = (R, Rw,Bcontrolled) has also
a behavior that is described by a system of linear con-
stant coefficient differential equations. It turns out that
the behaviors Bcontrolled that can be obtained this way
can be characterized very nicely.

Define therefore two behaviors, P and N; P is called
the realizable (plant) behavior and N the hidden behavior.
They are defined as follows: P is the manifest behavior
of the system, i.e.,

P = {w : R → Rw | there exists c : R → Rc

such that (w, c) ∈ Bfull},

and N is defined as

N = {w : R → Rw | (w, 0) ∈ Bplant}.

Hence N is the behavior of the plant variables that are
compatible with the control variables equal to zero. We
say that Bcontroller implements Bcontrolled if there exists
a controller such that the controlled behavior after inter-
connecting the controller with behavior Bcontroller to the
plant, yields Bcontrolled as the controlled behavior.

The controller implementability problem asks what
behaviors Bcontrolled can be obtained this way. For lin-
ear time-invariant systems it is possible to prove that
Bcontrolled is implementable if and only if

N ⊆ Bcontrolled ⊆ P.

This result shows that the behaviors that are imple-
mentable by means of a controller are precisely those
that are wedged in between the hidden behavior N and
the realizable plant P. The problem of control can there-
fore be reduced to finding such a behavior. Of course, the
issue of how to construct Σcontroller (for example, as a
signal processor from the sensor outputs to the actuator
inputs) must be addressed as well, but this can be done.
In (Willems and Trentelman, 2002) this approach is used
for the design of H∞-controllers, and we discuss several
results on the implementability by feedback controllers
as well.

We believe that the point of view of control that
emerges from this, as designing a subsystem (with feed-
back control as a special case) greatly enhances the scope

and applicability of control as a discipline. In this set-
ting, control comes down to sub-system design.

Conclusions

In this paper, we have covered some highlights of the
behavioral approach to systems and control. We view a
mathematical model as a subset of an universum. How-
ever, in engineering applications, models are invariably
obtained by interconnecting subsystems. This leads to
the presence in mathematical models of manifest vari-
ables (the variables whose behavior the model aims at)
and latent variables (the auxiliary variables introduced
in the modeling process). The central object in behav-
ioral systems theory is a system with latent variables.

The concept of controllability becomes an intrinsic sys-
tems property related to patch-ability of system trajec-
tories. In the context of latent variable systems, ob-
servability refers to the possibility of deducing the latent
variables in a system from observation of the manifest
variables. In this way, these important concepts are ex-
tended far beyond their classical state space setting.

We view control as the design of a subsystem in an in-
terconnected system, a subsystem that interacts with the
plant through certain pre-specified variables, the control
variables. For a linear time-invariant differential plant,
it is possible to prove that a behavior is implementable
by a linear time-invariant controller if and only if its be-
havior is wedged in between the hidden behavior and the
realizable plant behavior.

The pre-occupation of systems and control with in-
put/output systems does not do proper justice to the
nature of physical systems: most physical systems are
simply not a signal processors. Notwithstanding the im-
portance of signal processors, the universal view of a sys-
tem as an input/output device is simply a faux pas. And
an unneccesary one at that: the behavioral approach of-
fers a viable alternative.
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